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Abstract: Wireless Sensor Networks (WSNs) are a major element of Internet of
Things (IoT) networks which offer seamless sensing and wireless connectivity.
Disaster management in smart cities can be considered as a safety critical applica-
tion. Therefore, it becomes essential in ensuring network accessibility by improv-
ing the lifetime of IoT assisted WSN. Clustering and multihop routing are
considered beneficial solutions to accomplish energy efficiency in IoT networks.
This article designs an IoT enabled energy aware metaheuristic clustering with
routing protocol for real time disaster management (EAMCR-RTDM). The pro-
posed EAMCR-RTDM technique mainly intends to manage the energy utilization
of nodes with the consideration of the features of the disaster region. To achieve
this, EAMCR-RTDM technique primarily designs a yellow saddle goatfish based
clustering (YSGF-C) technique to elect cluster heads (CHs) and organize clusters.
In addition, enhanced cockroach swarm optimization (ECSO) based multihop
routing (ECSO-MHR) approach was derived for optimal route selection. The
YSGF-C and ECSO-MHR techniques compute fitness functions using different
input variables for achieving improved energy efficiency and network lifetime.
The design of YSGF-C and ECSO-MHR techniques for disaster management
in IoT networks shows the novelty of the work. For examining the improved out-
comes of the EAMCR-RTDM system, a wide range of simulations were per-
formed and the extensive results are assessed in terms of different measures.
The comparative outcomes highlighted the enhanced outcomes of the EAMCR-
RTDM algorithm over the existing approaches.
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1 Introduction

Recent advances of Internet of Things (IoT) technologies find useful in different application areas
including disaster management. The IoT plays a vital part in disaster management, as it is ubiquitous and
could be life-saving [1]. Though disasters could not be precisely forecasted, quick relief operations can be
effective to reduce the damage. Disaster management planning is mainly based on the topology, climatic
condition, habitat, etc. [2] of the region and available resources. Recently, real time monitoring and
disaster warning models have been developed using the emergent IoT networks where the things (i.e.,
sensor nodes) are connected to one another. On the other hand, wireless sensor networks (WSN) is an
important part of IoT, which is commonly used to monitor natural disaster in remote as well as
inaccessible regions [3]. WSN utilize independent low energy sensor nodes which is able to measure and
record environmental condition. The nodes generally comprise a battery unit, microcontroller, transceiver,
and sensor array. The integration of WSN and IoT with advancements in information and communication
technology (ICT) becomes highly intellectual and connected infrastructures, where a massive quantity of
data can be collected and investigated. The use of heterogeneous resources and advanced artificial
intelligence (AI) techniques can be utilized to design next generation of disaster management systems
[4,5]. Owing to distinct weather situations, forest fires have undergone rapid variations which result in
challenging monitoring processes. It becomes crucial because of the variation of the location and spread
of fire over time [6]. Besides, the random dispersion of events and non-controllable nature of fire results
in uneven energy utilization of nodes from the network. Several earlier studies have concentrated on the
design of accurate forest fire detection and have not considered the energy efficient characteristics of the
network as major element [7]. Though existing approaches have considered uniform node deployment
process, it is not feasible in practical situations. In practical applications, the nodes are placed in a non-
uniform pattern in the network. Therefore, clustering and routing can be considered as effectual solutions
for disaster management in IoT networks [8].

The clustering process is primarily aimed to divide the network into different groups called clusters and a
leader called cluster head (CH) is chosen. The rest of the nodes in the network are named cluster members
(CMs). The CHs are mainly responsible for the gathering of sensed data from its CMs and forward it to base
station (BS) directly or multiple relay nodes [9]. Besides, disaster management necessitates proficient routing
protocols with random node deployment. A routed protocol is used to deliver application traffic. It provides
appropriate addressing information in its internet layer or network layer to allow a packet to be forwarded
from one network to another. The routing techniques find the possible optimal paths to destination based on
some criteria such as energy, distinct, link quality, etc. Because of the tedious CHs and optimal route
selection process, they can be considered as NP hard problem that is addressed by the use of meta-heuristic
optimization techniques [10]. The design of effective cluster based routing techniques can improve overall
performance of the network. This article designs an IoT enabled energy aware metaheuristic clustering with
routing protocol for real time disaster management (EAMCR-RTDM). The proposed EAMCR-RTDM
technique primarily designs a yellow saddle goatfish based clustering (YSGF-C) technique to elect cluster
heads (CHs) and organize clusters. In addition, enhanced cockroach swarm optimization (ECSO) based
multihop routing (ECSO-MHR) technique is derived for optimal route selection. The YSGF-C and ECSO-
MHR techniques compute fitness functions (FF) using different input variables for achieving improved energy
efficiency (EE) and network lifetime. To inspect the betterment of the EAMCR-RTDM approach, a wide
range of simulations were performed and the extensive results are assessed in terms of different measures.

This paper presents an Internet of Things Enabled Energy Aware Metaheuristic Clustering for Real Time
Disaster Management. The remainder of the paper is organized as follows: Section 2 goes through similar
efforts that make use of pre-existing models. Section 3 describes overall process and design of the
proposed EAMCR-RTDM model. Section 4 inspects the experimental validation of the EAMCR-RTDM
model under distinct aspects. Finally, Section 5 concludes the key results of the proposed research.
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2 Related Work

In [11], a combined modified GA for CH selective in WSN was presented for maximizing the network
lifespan mentioned that ModifyGA. The EE of ModifyGA was improved by integrating dynamic sensing
range and conditions utilized to develop FF. The ModifyGA fulfills several constraints to optimized intra-
cluster distance, systematic consumption of node energy from the clusters, decreasing hop-count, and
promoting selective of extremely able node to CHs. Ejaz et al. [12] presented an energy efficient task
scheduling technique for data gathering by UAVs in the ground IoT networks. The concentration is for
optimizing the path taken by UAVs for minimizing energy consumption (ECM). It also analyses the
important signs data gathered by UAV to people from disaster-affected regions and executes the DT
classifier technique for determining its health risk status.

Chaudhry et al. [13] introduced an enhanced squirrel search algorithm (SSA) by allowing it for
performing in destination-oriented zone (DZ) to offer green communication from multicasting by
sufficient several constraints like delay, energy, and packet loss efficiently are mentioned as DZ enabled
SSA (DZSSA). The computation time of DZSSA was minimized by allowing the agents for acting in DZ
only. Amiri et al. [14] presented a data aggregation back pressure routing (DABPR) technique that
purposes to concurrently aggregate overlapping routes for effectual data broadcast and prolong the
lifespan of networks. These comprise data aggregation, CH election, scheduling, maximized event
detection reliability, and route election with multi features decision making metrics stages. The
researchers in [15] present a GWO based CH election approach to WSN regarding various factors such as
energy level of nodes, intra-cluster distance, node degree (ND), sink distance, and priority factors.

Biabani et al. [16] offered an evolutionary clustering and routing approach that is able to manage the
ECM of nodes but assumes the features of disaster regions. The presented technique has 2 stages.
Primary, it can project a method with enhanced hybrid PSO and Harmony Search Algorithm (HSA) for
CH election. Secondary, it is proposal for a PSO based multi-hop routing scheme with enhanced tree
encoded and altered data packet format. Hussain et al. [17] presented a metaheuristic optimized approach
known as dragonfly algorithm (DA). The presented technique is an actual problem of single and several
smart homes. During this system model, 2 classes of appliances such as Shiftable and Non-shiftable
appliances. The shiftable appliance role a vital play desired side load management.

A new EEC-SDTP technique has been developed in this study to achieve energy efficiency and secure
data transfer in intelligent IoT edge systems [18]. The results demonstrated that the EEC-SDTP technique
outperformed previous state-of-the-art technologies in a variety of tests. To efficiently leverage the
available resources in IoT edge systems, appropriate resource allocation and task scheduling algorithms
can be devised. F. Agostino implements the Multiagent metaheuristic for anomaly detection in Internet of
Things. Depending on the number of agents encountered during the virtual space movement, each agent
executes a certain amount of similarity computations [19].

3 The Proposed Model

At this point, the node is distributed homogeneously and arbitrarily with uniform distribution from
rectangular field ð100 m� 200 mÞ from a disaster application like forest fire. Any assumptions made are
listed in the subsequent:

� The nodes are set (stationary) from the network.

� The node is not location-aware, however, the sink is aware of its place.

� Every node has a similar level of energy (EO) primarily, and the network is homogeneous.

� The minimal RSSI with value of �97 db is recognized as the worse received signals.

� The amount of CHs (k) is assumed that 5% of every node (N).
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� The sink is responsible for cluster and route. Thus, the presented technique was centralized.

� The energy utilization of nodes is evaluated dependent upon its distance in the sink or CH (by parameter d).

In [20], the researchers estimate the energy utilization method dependent upon the distance amongst the
sending and receiving (d). During this technique, the energy dedicated for sending messages was computed
by length of messages (L) and the distance amongst sending and receiving (d) as follows in Eq. (1):

ETxð1; dÞ ¼ L:Eelec þ L:efs:d2; if d � d0
L:Eelec þ L4mp:d4; if d. d0

�
(1)

In Eq. (1), the energy utilization to send 1-bit of data was computed by Elec. Moreover, sending issues of
efs and eamp are valued from proportion for boosting method of sender-radar. The dedicated and consumed
energy of lengths L (in bits) are computed based on Eq. (2) for receiving all the messages.

ERx ¼ L:Eelec (2)

It is notable that the primary distance d0 was computed as follows in Eq. (3):

d0 ¼
ffiffiffiffiffiffiffi
efs
emp

r
(3)

In this study, a new EAMCR-RTDM technique has been developed for disaster management in IoT
networks. The EAMCR-RTDM technique has the ability to handle the energy utilization of nodes with the
consideration of the features of the disaster region. The presented EAMCR-RTDM technique follows a
2 stage process such as YSGF-C based clustering and ECSO-MHR based routing. Fig. 1 depicts the overall
process of EAMCR-RTDM technique. The detailed working of the two modules is elaborated in the following.

Figure 1: Overall process of EAMCR-RTDM technique
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3.1 Design of YSGF-C Technique

At the initial stage, the YSGF-C technique has been developed to elect CHs and construct clusters using
a FF involving coverage, communication cost, residual energy (RE), and ND. The YSGA is a current meta-
heuristic technique simulated by the YSG performance. This optimized technique considers a population of
individuals separated as distinct groups, whereas all the subpopulations are generated utilizing the k-means
algorithm. An individual from all the groups is playing 2 various roles such as chaser and blocker. Moreover,
interchange role and alter zone operator is comprised of the searching approach of YSGA. In all
subpopulations, the individual with optimum fitness value is the chaser �l. Therefore, the place of chaser
was determined in Eq. (4) [21].

�tþ1
l ¼ �t

l þ a
u

jvj1b

 !
ð�t

l � �t
bestÞ (4)

0,b � 2

where a refers the step size that value is 1. The values of u and v are measured in the normal distribution as:

u � Nð0; r2uÞ
v � Nð0; r2vÞ

Assuming � as the Gamma function, ru and rv are demonstrated in Eq. (5):

ru ¼
�ð1þ bÞ sin pb

2

�
1þ b
2

� �
b2ðb� 1Þ
2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

1
b

; rv ¼ 1 (5)

The Lévy index b controls the tail of probability distributions. The value of b is computed in Eq. (6):

b ¼ 1:99þ 0:001t
tmax

10

(6)

where tmax implies the maximal amount of iterations, but t denotes the present amount of iterations. An
optimum chaser amongst groups is the global optimum particle �best. Therefore, the place of global
optimum was upgraded by the subsequent formula in Eq. (7):

�tþ1
besi ¼ �t

best þ a
u

jvj1b

 !
(7)

All the groups have one chaser individual. So, the residual particles from all the groups are assumed that
blockers fg. The place of blockers are upgraded dependent upon a logarithmic spiral determined in Eq. (8):

ftþ1
g ¼ Dg � ebq � cos2pqþ �l (8)

At this point, q signifies the arbitrary number from the interval of ½a; 1�, whereas a is linearly reduced in
�1 to �2 over iterations. The value of parameters b is 1. The distance Dg among the blocker and equivalent
chaser can be computed in Eq. (9):
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Dg ¼ jr � �l � ft
gj (9)

The arbitrary number r is amongst [1, 1]. The change of roles permits blocker individuals for developing
a chaser particle. It can be simple process which upgrades the chaser when a blocker is optimum with respect
to fitness value. Conversely, the exchange of zones is an approach for escaping in local optimal. When an
optimum solution is not created in a defined time, afterward the exchange of zone function was
implemented based on the subsequent formula in Eq. (10):

ptþ1
g ¼ �best þ ptg

2
(10)

This formula upgrades the place of all the particles ptg from the population without seeing their role. The
presented YSGF-C technique selects the secure optimum CHs in the cluster to attained secured information
broadcast on the network. The aim is for selecting one of the optimum amounts of nodes like CHs. The
function is for accomplishing, suitable fitness by expressing the RE, network coverage, ND, and
communication cost (CC). The parameters utilized from the clustering optimize are defined as follows
[22]: The network coverage is determined as Eq. (11),

Ncov ¼ rðNiÞ (11)

where rðNiÞ implies the radius covered by nodes. A primary function is represented as:

Minimize f1 ¼ 1

NT

XN
i¼1

NcovðNiÞ

The cost important to transmit for neighboring nodes is defined in Eq. (12).

Ccom ¼ d2avg
d20

(12)

where d2avg has declared that the distance amongst the neighbor as well as node; node radius is determined as

d20. The secondary function is determined as Minimize f2 ¼ 1
NT

PN
i¼1 NproxðNiÞ, where N implies the amount

of nodes. The tertiary function of RE is f1 that is decreased and demonstrated in Eq. (13).

Minimize f3 ¼
Xm

i¼1

1

ECHi
(13)

ND represents the quantity of non-CH participants which drive to the specific mobile node. Therefore,
the last function is f3 that is reduced in Eq. (14).

Minimize f4 ¼
Xm

i¼1
Ii (14)

The aforementioned declaration functions convert the multi-objective functions to single function.
Therefore, the normalized procedure ðFðxÞÞ was executed to all functions a10a20a30a4 in Eq. (15):

FðxÞ ¼ fi � fmin

fmax � fmin
(15)

where function value is suggested as fi, and fmin and fmax are stated as the minimal and maximal fitness values
in Eq. (16):

Minimum fitness ¼ a1f1 þ a2f2 þ a3f3 þ a4f4 (16)

where �4
i¼1ai ¼ 1, and ai 2 ð0; 1Þ.
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3.2 Design of ECSO-MHR Technique

During data transmission process, the ECSO-MHR technique has been presented with the FF involving
queue length, link quality, communication cost, and RE for optimal selection of routes. CSO technique is a
population based global optimized technique that is executed for problems. CSO [23] techniques are
provided as follows. The chase swarming behavior is defined as follows in Eq. (17).

xj ¼ xi þ step � rand � ðpi � xiÞ; xi 6¼ pi
xi þ step � rand � ðpg � xiÞ; xi ¼ pi

�
; (17)

where xi refers the cockroach place, stage is a set value, rand signifies the arbitrary number in zero and one,
pi denotes the personal optimum place, and pg stands for the global optimum place in Eq. (18).

pi ¼ Optjfxj; jxj � xjj � visualg; (18)

whereas perception distance visual is constant, j ¼ 1; 2; . . . ; N ; i ¼ 1; 2; . . . ; N . Let see in Eq. (19).

pg ¼ Optifxig: (19)

The dispersion behavior can be represented using Eq. (20):

xi ¼ xi þ randð1; DÞ; i ¼ 1; 2; . . . ; N ; (20)

where randð1; DÞ represents the D-dimension arbitrary vector which is fixed in a particular range.

The ruthless behavior can be defined using Eq. (21):

xk ¼ pg; (21)

where k denotes the arbitrary integer in 1 and N, and pg indicates the global optimum place. In order to
improve the performance of the CSO algorithm, the ECSO algorithm has been developed with the
summary of inertial weight for chase-swarming element of original CSO. Other techniques endure as in
original CSO. The chase-swarming performance is given as follows in Eq. (22):

xi ¼ w � xi þ step � rand � ðpi � xiÞ; xi 6¼ pi
w � xi þ step � rand � ðpg � xiÞ; xi ¼ pi

�
; (22)

where w demonstrates the inertial weight that is constant. Fig. 2 demonstrates the process in CSO technique.

Figure 2: Process in CSO Algorithm
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During the procedure of routing, all the populations dimensional is similar to the quantity of CHs (m).
Assume Pi ¼ ðP1

i ; P2
i ; . . .Pm

i Þ be ith population, whereas all the dimensions of a population, for instance,
P1
i ¼ ð0; 1Þ, is arbitrarily adjusted. Additionally, a novel plotting technique was utilized for determining the

subsequent node from the direction of BS: The parameter utilized Queue length QL, demonstrated in Eq.
(23), has assumed that initial fitness value in the routing as it assumes the congestion level of all the
nodes from the WSN-IoT. While the established method was needed for transmitting the alert message on
the WSN-IoT, this QL was utilized for improving the data delivery performance in Eq. (23).

QL ¼ RPk

Total buffer
(23)

whereas the received packet at kth node are signified as RPk . The link quality was utilized for defining the
effective data delivery amongst the nodes k and l dependent upon the count of data packet transmission
and the retransmission that is formulated in Eq. (24).

Link quality ¼ 1

f � r
(24)

where f and r denote the forwarding and reversing data transmission amongst the node [24]. Next, all the
several objective’s fitness is conflict with everyone, hence it can be changed as to single objective fitness
value as demonstrated in Eq. (25)

Routing fitness ¼ d1 � QLþ d2 � Link qualityþ d3 � CC þ d4 � RE (25)

where, d1; d2; d3, and d4 implies the weighted parameters that are equivalent to 0.3, 0.25, 0.25, and 0.2,
correspondingly; CC and RE refer the CCs and RE correspondingly.

4 Performance Validation

This section inspects the experimental validation of the EAMCR-RTDM model under distinct aspects.
The experimental results are inspected under varying numbers of rounds, nodes, and sink locations.

Tab. 1 and Fig. 3 provide detailed residual energy (RE) examination of the EAMCR-RTDMmodel with
other methods under distinct sink locations and rounds. The results indicated that the EAMCR-RTDMmodel
has accomplished effective outcomes with increased RE. For instance, with sink location (100, 100) and
5 rounds, the EAMCR-RTDM model has obtained improved RE of 44.77 J whereas the ECHSR, TPSO,
and PSO algorithms have attained reduced RE of 43.68 J, 41.12 J, and 41.12 J respectively. Concurrently,
with sink location (100, 100) and 20 rounds, the EAMCR-RTDM approach has obtained higher RE of
31.63 J whereas the ECHSR, TPSO, and PSO algorithms have attained lower RE of 26.28 J, 13.74 J, and
17.03 J respectively.

In line with, with sink location (100, 100) and 40 rounds, the EAMCR-RTDM model has obtained
improved RE of 11.55 J whereas the ECHSR, TPSO, and PSO algorithms have gained reduced RE of
6.93 J, 0.72 J, and 1.09 J respectively. Followed by, with sink location (0, 100) and 5 rounds, the
EAMCR-RTDM algorithm has obtained enhanced RE of 45.61 J whereas the ECHSR, TPSO, and PSO
algorithms have attained reduced RE of 42.67 J, 40.35 J, and 41.08 J correspondingly. Along with that,
with sink location (50, 150) and 5 rounds, the EAMCR-RTDM model has gained improved RE of 44.07
J whereas the ECHSR, TPSO, and PSO algorithms have attained reduced RE of 42.34 J, 41.72 J, and
41.35 J respectively. Lastly, with sink location (50, 200) and 5 rounds, the EAMCR-RTDM model has
obtained improved RE of 45.90 J whereas the ECHSR, TPSO, and PSO algorithms have attained reduced
RE of 45.05 J, 42.63 J, and 41.42 J correspondingly.
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Tab. 2 and Fig. 4 provide detailed residual energy (RE) examination of the EAMCR-RTDM algorithm
with other methods under distinct sink locations and rounds. The results referred that the EAMCR-RTDM
model has accomplished effective outcomes with increased RE.

For instance, with sink location (100, 100) and 10 rounds, the EAMCR-RTDM system has obtained
improved NAN of 100 whereas the ECHSR, TPSO, and PSO approaches have attained reduced NAN of
99, 98, and 98 correspondingly. Likewise, with sink location (100, 100) and 20 rounds, the EAMCR-
RTDM model has achieved enhanced NAN of 100 whereas the ECHSR, TPSO, and PSO techniques
have attained reduced NAN of 93, 91, and 92 respectively. Along with that, with sink location (100, 100)
and 40 rounds, the EAMCR-RTDM model has gained enhanced NAN of 70 whereas the ECHSR, TPSO,
and PSO algorithms have attained lower NAN of 53, 12, and 12 correspondingly. Besides, with sink
location (0, 100) and 10 rounds, the EAMCR-RTDM model has obtained improved NAN of 100 whereas
the ECHSR, TPSO, and PSO algorithms have attained reduced NAN of 100, 99, and 99 respectively.
Moreover, with sink location (50, 150) and 20 rounds, the EAMCR-RTDM technique has obtained
improved NAN of 100 whereas the ECHSR, TPSO, and PSO algorithms have attained reduced NAN of
97, 97, and 87 correspondingly. At last, with sink location (50, 200) and 5 rounds, the EAMCR-RTDM
approach has obtained maximum NAN of 100 whereas the ECHSR, TPSO, and PSO algorithms have
attained decreased NAN of 98, 98, and 97 correspondingly.

Table 1: Residual energy analysis of EAMCR-RTDM technique under various sink locations and rounds

Residual Energy (J)

No. of Rounds EAMCR-RTDM ECHSR TPSO PSO EAMCR-RTDM ECHSR TPSO PSO

Sink Location (100, 100) Sink Location (0, 100)

5 44.77 43.68 41.12 41.49 45.61 42.67 40.35 41.08

10 40.39 38.08 33.09 33.21 40.60 35.34 30.45 32.52

15 36.74 32.48 22.99 25.55 34.48 27.88 21.15 22.62

20 31.63 26.28 13.74 17.03 28.37 20.17 14.30 13.94

25 27.01 20.07 8.15 10.34 23.23 15.53 8.31 8.92

30 21.90 15.81 4.62 5.59 19.19 11.61 4.40 5.01

35 15.57 10.70 1.33 1.94 14.18 8.56 2.20 2.81

40 11.55 6.93 0.72 1.09 12.35 5.13 1.10 1.22

Sink Location (50, 150) Sink Location (50, 200)

5 44.07 42.34 41.72 41.35 45.90 45.05 42.63 41.42

10 38.62 35.78 32.68 34.04 42.27 39.24 34.52 34.28

15 33.30 29.09 23.65 27.48 38.15 33.43 27.02 27.26

20 28.35 22.78 15.73 23.40 33.92 30.16 20.84 20.36

25 23.15 16.35 8.92 17.46 30.29 25.93 14.43 14.55

30 18.08 10.65 5.21 10.65 25.81 20.72 8.01 9.10

35 13.62 8.30 2.98 6.07 23.02 18.91 4.50 5.23

40 9.66 6.07 1.62 3.72 18.54 13.34 2.80 2.08
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Figure 3: RE analysis of EAMCR-RTDM technique under various sink locations and rounds

Table 2: Number of alive nodes analysis of EAMCR-RTDM technique under various sink locations and rounds

No. of Alive nodes

No. of Rounds EAMCR-RTDM ECHSR TPSO PSO EAMCR-RTDM ECHSR TPSO PSO

Sink Location (100, 100) Sink Location (0, 100)

5 100 100 100 100 100 100 100 100

10 100 99 98 98 100 100 99 99

15 100 95 99 96 100 100 97 99

20 100 93 91 92 98 94 90 90

25 95 85 67 75 84 73 63 68

30 90 77 46 55 77 61 44 49

35 83 73 23 28 69 57 24 34

40 70 53 12 12 59 41 14 17
(Continued)
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Table 2 (continued)

No. of Alive nodes

No. of Rounds EAMCR-RTDM ECHSR TPSO PSO EAMCR-RTDM ECHSR TPSO PSO

Sink Location (50, 150) Sink Location (50, 200)

5 100 100 100 97 100 98 98 97

10 100 100 100 94 98 92 94 93

15 100 98 99 89 96 90 88 89

20 100 97 97 87 94 87 86 89

25 92 87 71 73 91 85 70 76

30 83 72 45 60 88 79 45 64

35 69 54 30 45 82 68 32 38

40 54 40 21 27 76 56 20 19

Figure 4: NAN analysis of EAMCR-RTDM technique under various sink locations and rounds
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Fig. 5 reports the average RE (ARE) inspection of the EAMCR-RTDMmodel with recent methods. The
results represented that the EAMCR-RTDM model has the ability to outperform the other methods with
increased ARE under all sink positions. For instance, with sink position of (100, 100), the EAMCR-
RTDM model has exhibited enhanced ARE of 30.68 J whereas the ECHSR, TPSO, and PSO algorithms
have depicted reduced ARE of 26.43 J, 18.02 J, and 19.29 J respectively. At the same time, with sink
position of (0, 100), the EAMCR-RTDM technique has exhibited enhanced ARE of 29.16 J whereas the
ECHSR, TPSO, and PSO algorithms have depicted reduced ARE of 23.26 J, 17.54 J, and 18.47 J
correspondingly. In addition, with sink position of (50, 150), the EAMCR-RTDM method has exhibited
maximum ARE of 27.98 J whereas the ECHSR, TPSO, and PSO algorithms have depicted reduced ARE
of 23.64 J, 18.95 J, and 22.68 J correspondingly. Moreover, with sink position of (50, 200), the EAMCR-
RTDM system has exhibited enhanced ARE of 33.81 J whereas the ECHSR, TPSO, and PSO algorithms
have depicted minimum ARE of 30.19 J, 21.41 J, and 21.37 J correspondingly.

Fig. 6 examine the average PDR (APDR) examination of the EAMCR-RTDM technique with existing
approaches. The outcomes demonstrated that the EAMCR-RTDM approach has the ability to outperform the
other methods with increased APDR under all sink positions. For sample, with sink position of (100, 100),
the EAMCR-RTDM model has portrayed higher APDR of 89.75% whereas the ECHSR, TPSO, and PSO
algorithms have depicted reduced APDR of 85.37%, 70.60%, and 63.21% correspondingly.
Simultaneously, with sink position of (0, 100), the EAMCR-RTDM approach has exhibited enhanced
APDR of 88.38% whereas the ECHSR, TPSO, and PSO algorithms have depicted reduced APDR of
82.91%, 65.95%, and 59.66% correspondingly. Moreover, with sink position of (50, 150), the EAMCR-
RTDM model has exhibited enhanced APDR of 90.84% whereas the ECHSR, TPSO, and PSO
algorithms have depicted reduced APDR of 84.27%, 67.32%, and 61.02% correspondingly. Eventually,
with sink position of (50, 200), the EAMCR-RTDM technique has exhibited enhanced APDR of 87.83%

Figure 5: ARE analysis of EAMCR-RTDM technique with recent algorithms
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whereas the ECHSR, TPSO, and PSO methodologies have depicted reduced APDR of 82.09%, 65.13%, and
59.38% correspondingly.

Finally, and Fig. 7 portray the average packet loss rate (APLR) examination of the EAMCR-RTDM
model with recent methods. The values indicated that the EAMCR-RTDM model has showcased better
performance with reduced APLR under all sink positions. For instance, with sink position of (100, 100),
the EAMCR-RTDM model has demonstrated decreased APLR of 10.25% of 30.68 J whereas the
ECHSR, TPSO, and PSO algorithms have attained increased APLR of 14.63%, 29.40%, and 36.79%
respectively. Meanwhile, with sink position of (50, 150), the EAMCR-RTDM method has exhibited
lower APLR of 9.16% of 30.68 J whereas the ECHSR, TPSO, and PSO algorithms have attained
enhanced APLR of 15.73%, 32.68%, and 38.98% respectively.

Eventually, with sink position of (50, 200), the EAMCR-RTDM system has outperformed decreased
APLR of 12.17% of 30.68 J whereas the ECHSR, TPSO, and PSO algorithms have attained higher
APLR of 17.91%, 34.87%, and 40.62% correspondingly. From the results and discussion, it is apparent
that the EAMCR-RTDM model has outperformed other methods in all aspects. Therefore, the EAMCR-
RTDM model can be applied as an effective tool for disaster management in IoT networks.

Figure 6: APDR analysis of EAMCR-RTDM technique with recent algorithms
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5 Conclusion

In this study, a new EAMCR-RTDM approach was established for disaster management in IoT
networks. The EAMCR-RTDM technique has the ability to handle the energy utilization of nodes with
the consideration of the features of the disaster region. Initially, the YSGF-C technique has been
developed to elect CHs and construct clusters using a FF involving coverage, communication cost, RE,
and ND. Secondly, the ECSO-MHR technique has been presented with the FF involving queue length,
link quality, CC, and RE for optimal selection of routes. To inspect the betterment of the EAMCR-RTDM
approach, a wide range of simulations are performed and the extensive results are assessed in terms of
different measures. The comparative outcomes highlighted the enhanced outcomes of the EAMCR-
RTDM method over the recent approaches. Therefore, the EAMCR-RTDM approach can be employed
for effective disaster management in IoT networks. In future, the performance of the EAMCR-RTDM
system was enhanced by the design of unequal clustering mechanism to resolve hot spot issues in the IoT
networks.
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