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Abstract: Electroencephalography (EEG), helps to analyze the neuronal activity
of a human brain in the form of electrical signals with high temporal resolution
in the millisecond range. To extract clean clinical information from EEG signals,
it is essential to remove unwanted artifacts that are due to different causes includ-
ing at the time of acquisition. In this piece of work, the authors considered the
EEG signal contaminated with Electrocardiogram (ECG) artifacts that occurs
mostly in cardiac patients. The clean EEG is taken from the openly available
Mendeley database whereas the ECG signal is collected from the Physionet data-
base to create artifacts in the EEG signal and verify the proposed algorithm. Being
the artifactual signal is non-linear and non-stationary the Random Vector Func-
tional Link Network (RVFLN) model is used in this case. The Machine Learning
approach has taken a leading role in every field of current research and RVFLN is
one of them. For the proof of adaptive nature, the model is designed with EEG as
a reference and artifactual EEG as input. The peaks of ECG signals are evaluated
for artifact estimation as the amplitude is higher than the EEG signal. To vary the
weight and reduce the error, an exponentially weighted Recursive Least Square
(RLS) algorithm is used to design the adaptive filter with the novel RVFLN mod-
el. The random vectors are considered in this model with a radial basis function to
satisfy the required signal experimentation. It is found that the result is excellent
in terms of Mean Square Error (MSE), Normalized Mean Square Error (NMSE),
Relative Error (RE), Gain in Signal to Artifact Ratio (GSAR), Signal Noise Ratio
(SNR), Information Quantity (IQ), and Improvement in Normalized Power Spec-
trum (INPS). Also, the proposed method is compared with the earlier methods to
show its efficacy.

Keywords: Random vector functional link network (RVFLN); information
quantity (IQ); constrained independent component analysis (cICA)

1 Introduction

Electroencephalogram (EEG) is a non-invasive procedure of recording the neurophysiological activity
of the brain signal by placing the electrodes over the scalp. Due to its non-invasiveness, the EEG signal is
extensively used for the detection and prediction of neurological problems of the brain such as sleep
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disorders, abnormalities in the brain (such as seizure, hypercapnia, and asphyxia), and monitoring alertness,
coma, and brain death, etc. [1–5]. Therefore, the accurate analysis of EEG signals is extremely important in
the field of neuro-clinical applications. The time at which the neurological activities of the brain are recorded
at the same time the physiological and non-physiological artifacts become an integral part of it. Physiological
artifacts are generated by the physiological activity of the body like eyelid movement, muscular contraction,
body movement, and electrical activity of the heart. The movement of the eyelid creates ocular artifacts and
these artifacts are mostly affected by lateral frontal electrodes [6]. Various algorithms are developed for the
removal of ocular artifacts [7–14]. The ECG artifacts are mostly observed at mid-temporal and posterior
temporal electrodes. The ECG artifacts are coincidental with the ECG tracing and synchronize with the
combined Q wave, R Wave, and S Wave “QRS complex” of the ECG channel. Non-physiological
artifacts are removed by taking appropriate caution however, physiological artifacts embedded with the
EEG signal need separate artifact removal algorithms before analyzing to obtain clinical information.
Various artifact removal techniques are developed by the researchers for the removal of the cardiac
artifact. However, the research continues and become a challenge for the researchers to develop a robust
model that can be used to remove artifact of different kinds with minimal loss of information.

In the proposed work, the authors have come up with one new technique which uses the RVFLN model
for the removal of artifacts from the brain signal. In the RVFLNmodel, the weights between the input layer to
the hidden layer are randomly chosen. Due to this, the original feature space is mapped into an unexpected
feature space. The random feature mapping mechanism of RVFLN plays a vital role in the performance of
RVFLN. The important characteristics of RVFLN such as simple architecture, fast training speed, and
universal approximation capability. Since there is very little to explore in the RVFLN model and as the
RVFLN model has not yet been used for artifact removal application which is similar to an adaptive filter
is used in this approach. The neural network model acts as the adaptive filter. As the signal is mixed with
the ECG artifacts, it becomes complex and non-stationary. To filter out the artifacts RVFLN is
considered. It acts well as an adaptive filter for each time segment verification. The writing arrangement
for the proposed work is as follows: Sections 1 and 2 are for Introduction and discussion about the
related works, Section 3 is for Materials used and discussion about the techniques used, Section 4 is
about results and discussion and the last section is about conclusion and references.

2 Related Work

For removal of interference from EEG signals various techniques were developed. Filtering techniques,
Blind Source Separation (BSS) such as Independent Component Analysis (ICA), Principal Component
Analysis (PCA), etc., and some hybrid techniques are already applied for the removal of EEG artifacts.
The ICA was applied for the removal of ECG artifacts from EEG signals. In this case, the authors had
considered EEG signals recorded from small animals and had neglected the differences between human
and small animals’ brain signals. Before the use of the ICA algorithm, the EEG signal passed through
two pre-processing stages they were mean removal and signal whitening with the help of the whitening
matrix. The separating matrix for ICA was found by maximizing the absolute value of kurtosis. Once the
separation matrix was found, the row representing the ECG component in an independent component
matrix was set to zero for the removal of the ECG artifact. For the performance measure, the author had
taken INPS and found the value as 7.71 ± 3.63 dB initially and 1.15 ± 0.6 dB after 1 h of recovery [15].
The modification of ICA was done by the author in [16,17] applied for the removal of ECG artifacts. The
modification was in the case of finding the separation matrix. The separation matrix was found by
maximizing the joint entropy and it was found by the gradient ascent algorithm. The performance of the
modified ICA algorithm was compared with ensemble average subtraction (EAS) and adaptive filtering
algorithm. The artifact-free signal was obtained with a correction rate of 91.0%. However, if there is a
slight difference between cardiac interference and ECG then there are small changes in the performance.
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Another modification to the ICA is constrained ICA (cICA) was used for the removal of pulse-related
artifacts (PRA) by the author in [18]. The constraint in ICA is considered in a model of the PRA and the
PRA template was computed for each channel of the EEG signal. The Clustering Constrained ICA
(ccICA) was also used for the removal of the Ballisto-cardiogram (BCG) artifact. The clustering
technique applied for the Clustering Constrained ICA (CCICA) algorithm catches the time-varying
features of the artifact and constraint ICA removes these BCG artifacts. However, this algorithm’s
performance depends on the cluster types and types of clustering algorithms chosen [19]. The ICA with
the help of an adaptive thresholding-based QRS detection algorithm was used by the author in [20]
provides average sensitivity of above 99%. The performance of the algorithm depends fully on the QRS
detector taken. PCA with the help of an adaptive Optimal Basis Set (aOBS) was used for the removal of
BCG artifacts [21]. However, the BSS methods are based on some assumptions, and in all the cases the
assumptions do not hold good. To avoid the problem of ICA the researchers combine the ICA with
filtering and wavelet transform methods for artifact removal purposes.

Some Hybrid methods that are the combination of two or more methods are also taken for the removal of
cardiac artifacts. The ICA with wavelet transforms was used for the removal of cardiac artifacts. The soft
thresholding was applied to the wavelet coefficients for de-noise purposes. The wavelet transform was
applied in the case of data protection [22]. The ICA with the help of a classification algorithm was used
to classify the independent components into cardiac and non-cardiac components. The cardiac
components were further classified into actual cardiac-related components (CCs) and Non-cardiac related
components (NCCs). The actual CCs were again classified to know whether they were electrically
generated cardiac components (ECCs) or Pulse generated cardiac components (PCCS). In the end, the
CCs, ECCs, and PCCs were removed and the signal reconstruction took place only by considering NCCs
[23]. The combination of ICA and continuous wavelet transform (ICA-CWT) is used for the removal of
electrocardiogram artifacts from EEG signal which considers both temporal and spatial characteristics of
the artifact. In this, the PCA was used for whitening the signal before applying ICA. After applying ICA,
the selected number of Independent Components (ICs) are taken for further analysis. The selection
criteria were that the ICs, whose spatial distribution on the head was similar to that of the pre-computed
template. The continuous wavelet transform was applied to the selected ICs to improve peak detection.
The locations of the peaks were obtained and tested for periodicity and the periodic components are
rejected [24]. However, the Discrete Wavelet Transform (DWT) and Continuous Wavelet Transform
(CWT) denoising methods based on a certain threshold value and appropriate choice of the threshold
value are extremely important to avoid the change of any information loss. The wavelet analysis
represents the signal in terms of the mother wavelet. The mother wavelet is the local function, not the
global one. So, the corresponding filters do not provide a non-linear shift between input and output.

The Event Synchronous Adaptive Noise Canceller (ES-ANC) was used for the removal of ECG artifacts
from the EEG signals. This method emphasizes the detection of QRS complex from EEG with the help of an
adaptive filter. The adaptive filter weights are adjusted with the help of the Normalized least mean square
(NLMS) algorithm [25]. The ECG artifact increases the standard deviation considerably larger than the
EEG signal. The adaptive filtering method represented in [26] uses the artifact templates, which are
obtained from the unset parameter of the QRS complex of the ECG artifact. The artifact templates were
updated and adapted by minimizing the mean square error. The Morphological filter (MF) used in [27]
was able to eliminate ECG-related artifacts from EEG signals. The elimination criteria were fully
dependent on the generation of the Structuring Element (SE). MF does two operations involving SE and
source data i.e., erosion and dilation. As MF filters are nonlinear, it modifies the geometrical features of
time-domain data. However, choosing appropriate SE is difficult. Removal of ECG artifacts method
presented in [28] uses Recursive Least Square (RLS) Notch Filter. In this ECG artifacts were modeled
using the instantaneous frequency of the cardiac cycle. ECG artifacts were adaptively estimated using an
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RLS notch filter and subtracted from the contaminated EEG data. However, the appropriate calculation of the
instantaneous frequency component is essential for the performance of the Notch filter. The energy interval
histogram method proposed by authors in [29] had taken three characteristics of ECG artifacts such as lack of
correlation with EEG, the spike-like property, and the periodicity property. They had not used any reference
channel for ECG artifact generation. The Energy Interval Histogram (EIH) method was used for detection
and the modification of ensemble average subtraction was used for the elimination of ECG artifacts. The
Empirical Mode Decomposition (EMD) and its improved version were used for the detection and
removal of ECG artifacts in [30].

An adaptive network that combines the advantages of the Neuro-Fuzzy system, called the Adaptive
Neuro-Fuzzy Interference System (ANFIS) used for the removal of cardiac-related artifacts. To optimize
the ANFIS parameters, PSO (Particle Swam Optimization) with generalized bell (gbell) function was
used. For the ANFIS model reference, an ECG signal was required with the contaminated EEG signal as
the input data [31]. Another neural network algorithm was the Real-Time Recurrent Learning (RTRL)
algorithm, used for the removal of cardiac-related artifacts. The adaptive filter in Adaptive Noise
Cancellation (ANC) was replaced with RTAL. The RTAL learning algorithm is a backpropagation
algorithm in which the weight space is computed by steepest descent [32]. This algorithm can able to
remove the combination of ECG and EMG artifacts. The proposed work is on the neural network-based
RVFLN model and is given in the following section.

3 Materials and Methods Used

3.1 Signal Model

The artifactual EEG signal can be represented as the combination of EEG signal and ECG artifacts. Both
EEG signals are nonlinear and non-stationary.

Mathematically it can be written as

YAeeg ¼ Seeg þ Neeg (1)

where from the Eq. (1) YAeeg is the artifactual EEG signal, Seeg is the clean EEG signal and Neeg is the noise
added to the clean EEG signal. The noise in this case is the cardiac artifact that is to be eliminated. The EEG
signal is modeled with the help of a non-linear radial basis function and mathematically written as

SeegðtÞ ¼
XL
l¼1

bl;tF
XK
k¼1

ak;lxk þ bt;l

 !
þ bh;t (2)

From Eq. (2) the functionF is the non-linear function of inputs to the RVFLN. L is the number of hidden
nodes. bl is the weight between lth hidden layer node and the output node. ak;l is the weight of the lth hidden
node and bt;l is the bias of the lth hidden node. The diagrammatic representation of the RVFLN model used
for the removal of the artifact from the EEG signal is shown in Fig. 1. The input signal is provided through
the input layer. The number of nodes in the input layer defines the no of samples of the input signal given at a
time to the RVFLN network. The enhancement layer is the hidden layer.

3.2 Parameter Estimation by RVFLN

From Eq. (1) it is shown that model parameters are estimated through RVFLN neural network. Most of
the conventional data-driven modeling techniques fail to provide good performance due to interference
occurring in outliers. For the proposed work RVFLN is used to find out the optimum model co-efficient.
The structure of the RVFLN network is similar to that of a single hidden layer feed-forward neural
network (SLFN), but the problem in SLFN such as the sensitive setting of the learning rate, very slow
convergence, and local minima are resolved with the help of RVFLN in which the hidden node
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parameters are randomly assigned based on certain probability distributions. The RVFLN and its variants are
basically committed to solving the regression problems [33].

Similar to SLFN, RVFLN also has three layers as shown in Fig. 2. The three layers are the input layer,
enhancement layer, and output layer. There is also some direct link between the input and output layers.
These direct links help to regularize the enhancement features. The weights between the input and
enhancement layer are randomly generated. These random weights transform the input features. After
transforming the inputs, the activation function is applied to the transformed input to obtain the specific
feature in the hidden layer. For the given set of training samples, the RVFLN for K hidden nodes is
represented mathematically as

f ðxÞ ¼
XK
k¼1

bkhkðak ; bk ; xÞ (3)

In the above Eq. (3) ak and bk represent the hidden layer parameters such as weight and bias respectively.
bk is the output weight between kth hidden layer node and the output node. hk is the activation function for
which radial basis function is generally used.

The activation function is given as

hk ¼ h
kx� akk

bk

� �
(4)

Figure 1: Diagrammatic representation of the proposed method

Figure 2: Structure of RVFLN
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In the above equation k:k represents the l2 norm. The parameters wk and bk are randomly assigned and
the output layer parameters bk needs to be estimated by the RVFNL network by minimizing the sum square
error cost function which is written as

w ¼
XN
i¼1

XK
k¼1

bkhkðwk ; bk ; xiÞ � yi

�����
�����
2

(5)

The above equation is written in matrix form as

w ¼ argminbkHb� Yk2 (6)

From the Eq. (6) Y is the desired output and Ŷ ¼ Hb is the estimated output.H is the hidden layer output
as given in Eq. (7).

H ¼
hða1; b1; x1Þ � � � hðak ; bk ; x1Þ

..

. . .
. ..

.

hða1; b1; xN Þ � � � hðak ; bk ; xN Þ

264
375 (7)

b ¼
b1
..
.

bk

264
375 and Y ¼

y1
..
.

yN

264
375 (8)

The optimal output weight that minimizes the cost function w is obtained as

b ¼ H 1Y (9)

H 1 ¼ is the pseudoinverse of H ¼ ðHT � HÞ�1 � H .

The output weight is updated with the help of RLS algorithm which is given as follows:

eðtÞ ¼ YAeeg � ’T ðtÞ � biðt � 1Þ
biðtÞ ¼ biðt � 1Þ þ kðtÞ � eðtÞ

kðtÞ ¼ Pðt � 1Þ’TðtÞ
’TðtÞpðt � 1Þ’TðtÞ þ k

pðtÞ ¼ 1

k
½pðt � 1Þ � kðtÞ’TðtÞpðt � 1Þ�

(10)

From the above algorithm k is the forgetting parameter and is taken in between 0 and 1. pð0Þ ¼ gI . I is
the identity matrix and g is the large number taken as 104. ’ðtÞ is the regression vector consists of taking past
input and output samples. In special case it is considered as 1.eðtÞ is the error. Based on this error the output
weights are updated.

3.3 Quantitative Measure

To evaluate the performances of ECG artifact removal method, the indicators taken are MSE, NMSE,
RE, GSAR, SNR, IQ and INPS.

3.3.1 Mean Square Error (MSE)
The MSE is used as a measure of similarity between two signal. It measures the similarity between the

clean EEG signal and the EEG signal obtained after the removal of artifact. Mathematically MSE is given by
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MSE ¼ 1

n

Xn
i¼1

ðEEGi � dEEGiÞ2 (11)

From Eq. (11) EEGi is the clean EEG signal and dEEGi is the recovered EEG signal. The small value of
MSE indicates the more similarity between two signal under consideration. Thus, the MSE is used as a
degree of information preservation in EEG signal after removal of artifact.

3.3.2 Normalized Mean Square Error (NMSE)
The NMSE is also used as measure to evaluate the performance of artifact removal algorithm. The

Normalized Mean Square Error is given by Eq. (12)

NMSE ¼
PN

i¼1 ðEEGi � dEEGiÞ
2

N
PN

i¼1 EEG
2
i

(12)

3.3.3 Relative Error (RE)
The Relative Error (RE) is a measure of precision. Mathematically the RE is calculated by Eq. (13)

RE ¼ jdEEGi � EEGij
EEGi

(13)

3.3.4 Gain in Signal to Artifact Ratio (Y)
The Gain in signal to artifact ratio is obtained after calculating Signal to Artifact Ratio (SAR) before and

after the removal of artifact. The gain in signal to artifact ratio (Y) indicates wheather the signal to artifact
ratio is improved or decreased or there is no improvement in signal quality. Mathematically the gain in signal
to artifact ratio (Y) is given as:

Y ¼ 10log10
SARA

SARB

� �
(14)

In Eq. (14) SARA is the signal to artifact ratio after removal of artifact from the EEG signal and SARB is
the signal to artifact ratio before artifact removal and are calculated by the using Eqs. (15) and (16)
respectively.

SARA ¼
1

N

XN

i¼1
jEEGij2

1

N

XN

i¼1
jdEEGi � EEGij

2
(15)

SARB ¼
1

N

XN

i¼1
jEEGij2

1

N

XN

i¼1
jEEGCon � EEGij2

(16)

3.3.5 Signal to Noise Ratio (SNR)
The signal to noise ratio is given by

SNR ¼ 10log10
EEGi

ðdEEGi � EEGiÞ
(17)

The signal to noise ratio in Eq. (17) is expressed in dB. It is also used as a measure to evaluate the
performance of artifact removal algorithm.
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3.3.6 Information Quantity (IQ)
The IQ is used as a measure to validate the performance of the artifact removal algorithm as calculated in

[34]. It is found by sliding temporal window technique and is give by Eq. (18)

W ðn; w; DÞ ¼ fEEGi; i ¼ 1þ nD; . . .wþ nDg (18)

where w is the sliding window and D is the sliding step D � w .To find out IQ first DWT coefficients within
each window are obtained as given in Eq. (19)

WDCðr; n; w; DÞ ¼ DWT ½ðW ðn; w; DÞÞ� (19)

The probability in each transformed window is found out by introducing the interval Im in that window
which is given as

WDCðr; n; w; DÞ ¼ [M
m¼1Im (20)

The probability Pn is the signal sample belongs to the the interval Im is the ratio of number of samples
found within Im and the total number of samples. The IQ is mathematically defined in Eq. (21) as

IQðnÞ ¼ �
XM
m¼1

PnðmÞlog2ðPnðmÞÞ (21)

The high value of IQ indicates greater randomness in EEG signal i.e., more ECG artifact still present in
EEG. Lower value of IQ indicates lower comonents of ECG artifact present in EEG signal. So, IQ is used as a
measure of information preservation in EEG signal after removal of artifact.

3.3.7 INPS (Improvement in Normalized Power Spectrum)
INPS is used as a measure to evaluate the performance of the proposed algorithm. In this, the normalized

power spectrum is calculated for the EEG signal before and after removal of artifact after passing EEG data
through rectangular window using Welch method. Mathematically IMPS is given by the Eq. (22)

INPS ¼ 10log10
XN
i¼1

PEEG
i

PcEEGi

(22)

In Eq. (22) N is the number of harmonics considered. INPS indicates whearther the ECG artifact and
their hamonics are effectively supressed or not. Higher the value of INPS greater the performance of
artifact removal algorithm.

4 Result and Discussion

In order to validate the performance of the proposed method the human brain signal is taken. The clean
EEG signal is taken from the Mendeley data base [35]. The clean EEG signal is obtained from 14 males
having mean age of 28.2 � 7.5 and 13 females having mean age of 27.1 � 5.2. so total 17 set of clean
EEG signal is available. Each set have 19 channels. The sampling frequency for this clean EEG signal is
200 Hz and each data set are of 30 sec durations. The artifact contaminated EEG signal is obtained by
adding the cardiac interference with the clean simulated EEG signal. Mathematically,

YAeegðtÞ ¼ SeegðtÞ þ Neeg ¼ SeegðtÞ þ c:eðtÞ (23)

In the above Eq. (23) eðtÞ is the cardiac interference which is generated by 10-fold filtering of the ECG
signal and c is the scaling coefficient. By changing the scaling coefficient, the ECG interference is added to
the signal with different noise ratio (SNR). The resultant artifactual EEG signal xðtÞ is of 3600 sample sizes.
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The clean EEG signal taken from the Mendeley data base have sample size 3600 as shown in Fig. 3. The
clean EEG signal is taken as reference signal for the proposed algorithm. It is observed from the Fig. 3 that
the amplitude of the clean EEG signal is within 4 μV. The artifactual signal considered is shown in Fig. 4. The
amplitude of the artifactual signal is more than the amplitude of the clean EEG signal.

Fig. 5 represents the recovered signal along with artifactual and clean signal. From Fig. 5, it can be
observed well that the output of the proposed method ties with the desired signal. To validate the
performance of the algorithm the quantitative measures are taken which are discussed in Section 3.3. The
measurement parameters MSE and NMSE are in μV2. The Relative Error (RE) discussed above has no
unit. The GSAR, SNR, IQ and INPS all in measured in dB The MSE, NMSE and RE obtained are quite
lesser. The SNR obtained for 0 dB SNR case is 68.4077 dB which indicates the signal is recovered
without the loss of back ground information. The IQ obtained in the proposed algorithm is quite lesser

Figure 3: Clean EEG signal taken as reference

Figure 4: Artifactual EEG signal
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than the existing artifact removal algorithm which indicates more information is preserved after removal of
artifact. The INPS obtained by the proposed algorithm is 9.95 dB.

The comparison of the proposed artifact removal algorithm is compared with some existing algorithm
and is observed that the proposed algorithm performs well than the existing algorithm. The comparison table
is shown in Tab. 1.

As given in the Tab. 1 the decomposition method EMD and adaptive filter used in [30] gives poor SNR
than the proposed method. The EMD methods have many drawbacks such as end effect, mode-mixing. The
Ensemble Empirical mode decomposition (EEMD) improves the performance of EMD by adding the White
Gaussian noise. As a result, this white noise has not been completely offset after multiple averaging. The
Complete Ensemble Empirical mode decomposition with Adaptive Noise (CEEMDAN) is the improved
version of EEMD. So, the CEEMDAN provides better result than EEMD and adaptive filtering. The ICA
algorithm assumes the resultant signal is the linear combination of sources and the sources are assumed

Figure 5: Artifactual EEG, Clean EEG and the Recovered EEG signal after denoising

Table 1: Comparison of performances with the existing algorithms

Sl.
No

Methods MSE NMSE RE GSAR SNR IQ

1 EMD + AF [30] - - - - 51.4 dB -

2 CEEMDAN + AF
[30]

- - - - 53.5 dB -

3 ANFIS + PSO [31] 5.8904*10Λ −
4 v2

- - - 21.8553 dB -

4 Infomax 3.31 μV2 - - - - 0.341

5 ICA 5.59 μV2 - - - - 0.350

6 RLS notch filter [28] 0.20 μV2 - - - - 0.331

7 Proposed Algorithm 0.1998 μV2 0.4470 μV2 0.2771 10.4807 dB 68.1117 dB 0.330
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to be Gaussian but practically it is not possible in all the cases. The ICA and Infomax algorithms provide
average result in the case of artifact removal from the EEG signal. The Recursive Least Square Notch
filter method provides better result than ICA and Infomax and EMD with adaptive filter. In the case of
RLS notch filter the exact frequency of the artifact needs to be known. The amplitude for each frequency
component is estimated recursively with the help of Least Square algorithm. However, this method can
also be unsuccessful when the exact frequency of the artifact component is unknown or difficult to
calculate. The proposed methods overcome the demerits of the method under comparison and provides
better result with minimal loss of information.

5 Conclusion

An RVFLN model was developed for removal Cardiac artifact from the EEG signal was successfully
applied for EEG data without disturbing the background activity and the results found better than the
existing methods because of the use of RVFLN which is used to estimate the exact parameter which are
required for estimating the clean EEG signal from the artifactual EEG signal. The method can be applied
for removal of other kinds of artifact also. Though this method is tested for ocular artifact and can be
applied for other kinds of EEG dataset recorded in non-constrained environment.
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