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Abstract: Signal processing based research was adopted with Electroencephalo-
gram (EEQG) for predicting the abnormality and cerebral activities. The proposed
research work is intended to provide an automatic diagnostic system to determine
the EEG signal in order to classify the brain function which shows whether a per-
son is affected with schizophrenia or not. Early detection and intervention are vital
for better prognosis. However, the diagnosis of schizophrenia still depends on
clinical observation to date. Without reliable biomarkers, schizophrenia is difficult
to detect in its early phase and hence we have proposed this idea. In this work, the
EEG signal series are divided into non-linear feature mining, classification and
validation, and t-test integrated feature selection process. For this work, 19-chan-
nel EEG signals are utilized from schizophrenia class and normal pattern. Here,
the datasets initially execute the splitting process based on raw 19-channel
EEG into 6250 sample point’s sequences. With this process, 1142 features of nor-
mal and schizophrenia class patterns can be obtained. In other hand, 157 features
from each EEG patterns are utilized based on Non-linear feature extraction pro-
cess where 14 principal features can be identified in terms of considering the
essential features. At last, the Deep Learning (DL) technique incorporated with
an effective optimization technique is adopted for classification process called a
Deep Convolutional Neural Network (DCNN) with mayfly optimization algo-
rithm. The proposed technique is implemented into the platform of MATLAB
in order to obtain better results and is analyzed based on the performance analysis
framework such as accuracy, Signal to Noise Ratio (SNR), Mean Square Error,
Normalized Mean Square Error (NMSE) and Loss. Through comparison, the pro-
posed technique is proved to a better technique than other existing techniques.
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1 Introduction

Schizophrenia (SZ) is a harmful and prolonged brain disorder which affects normal speech, thinking,
and the behavioral characteristics of a person. These days widely almost 1% of people affected mental
disorder as per the report of World Health Organization (WHO) and the impact of this affect the people
life. The symptoms of them are hallucination, disorganized discourse, and delusions [1]. Because of the
problems in some brain functions [2], schizophrenia easily happens and people in different sectors have
been caused by this disease [3,4]. To an individual, this disease cause damage in a micro-level and to the
country this disease has affected a big cause in macro-level which affects the country economic system
also. The person with symptoms of psychotic disorder shows impacts in their daily routine [5].

Therefore, the diagnosing of schizophrenic patients is becoming the serious topic. EEG is a low-cost and
an effective device to record the activity of the brain [6,7]. Now-a-days, EEG has been largely exploited in
the diagnosis of several nervous system diseases like Alzheimer’s disease, epilepsy, and schizophrenia. EEG
can be implemented by placing the electrodes on Schizophrenia patient’s scalp at different location [8]. Based
on the analysis, the existing technique is required to provide effective outcomes in terms of effective
diagnosing and cognitive analysis with low resolution.

EEG provides detailed information about the disease by analyzing the characteristics of the signal
transformation [9]. Therefore, EEG is considered as an efficient tool for predicting neurological disorders
[10]. The EEG measurement setup shown in Fig. 1 is based on 64 channels. Several schizophrenia based
analysis are processed which includes classification and interpretation based on neurological disorder
[11]. This can be done through the utilization of machine learning (ML) and Deep Learning (DL) techniques.
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Figure 1: Illustrates the EEG 64 channels
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ML algorithms have been used for SZ classification which is primarily based on traditional classifiers
such as Decision Tree (DT), Linear Discriminant analysis (LD), K-Nearest Neighbor (KNN) and kernel
discriminant analysis (KDA) [12,13]. These methods require large datasets for processing. In the
applications of neuroscience, the advancement of DL shows the promising results, therefore, the DCNN
is used as proposed methodology for this research work.

The major contributions of the works are:

e 19-channel EEG signals are utilized for both schizophrenia class and normal pattern.
e Then 157 features from each EEG patterns are utilized based on Non-linear feature extraction process.
e To improve the efficiency of the system DCNN with mayfly optimization algorithm is used.

e Finally, the system performance is analyzed by comparing the proposed method over the conventional
methods.

2 Problem Statement

This section specifies the existing problems in EEG based signal conduction system for predicting the
Schizophrenia detection.

o All the brain monitoring functions may fail to provide detailed information about the diseased portion;
therefore, there is a requirement to utilize the EEG modality which is highly recommended. Moreover,
cost is also affordable for diagnosing disease. So there is a necessity to enable an effective technique
for enhancing the performance of the EEG based diagnosing modality with high spatio-temporal
resolution data.

e Schizophrenia classification relies on effective feature extraction based on EEG signals. The existing
techniques are not as much as effective. Therefore, the Machine Learning (ML) based feature
extraction can be considered as an alternative for effective feature extraction.

e The existing technique [14], is not fully working with large datasets; therefore, the utilization of a
large dataset for developing an effective signal conducting system based on EEG signal are highly
demanded for Schizophrenia early prediction.

e The detection and classification based on EEG signal is not effective with existing techniques. To
enhance it further we need to use an appropriate Deep Learning technique.

3 Literature Review

This section focuses on literature review related to signal conducting with EEG data for Schizophrenia
disease prediction. For this analysis, the articles from 2016 to 2021 are collected and analyzed in terms of
techniques used.

In 2020, Prabhakar et al. proposed four feature extraction methods such as Isometric Mapping, non-
linear regression technique, partial least squares and expectation maximization based principal component
analysis for classifying the SZ from EEG signals. Then, optimization algorithms were used for this
feature optimization. Then the classification was done with the help of the Adaboost classifier and Naive
Bayesian Classifier. The implemented method showed its efficiency with a classification accuracy of 98.77%.

In 2019, Oh et al. [14] have presented a technique for SZ detection using a convolutional neural system.
Here, the model collected the EEG signals from 28 people, where they were equally for healthy as well as SZ
patients and created CNN model with 11 layers for verifying the signals. During the convolution stage, the
features were extracted and the fully connected layer was used for classification. This model provides
98.07% of accuracy for healthy patient and 81.26% of accuracy for SZ patients.
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In 2020, Sharma et al. [15] have developed schizophrenia detection by EEG signals with features of
statistical and non-statistical. From a set of 16 electrodes, variance, higuchi fractal dimension, correlation
and mean were calculated for these electrodes. Analysis was taken from each electrode to find a potential
electrode set. From the features, SZ detection has been carried out by potential electrodes. Here the
classification was done by Support Vector Machines (SVM) classifier and the results showed that SVM
achieved a 100% of accuracy.

In 2019, Phang et al. [16] have proposed a DCNN for EEG classification to detect SZ. The features were
hybrid by using CNN with multi-domain connection that contained one-dimensional and two-dimensional
CNNs. An apparent group between healthy patient and SZ were identified by learning the representation
of hierarchical latent from EEG signals [17]. When comparing with single-domain CNN, this model with
combined connectivity achieved 93.06% of accuracy with the fusion of decision-level.

In 2016 Santos-Mayo et al. [ 18] used the wave of P3b and designed a Computer-aided diagnosis (CAD)
system to identify the healthy and SZ. CAD system consists of EEG preprocessing [19,20], feature extraction,
grouping of 7 electrodes, discriminant feature selection, and binary classification. Finally, the proposed method
was compared over different ML classification methods [21] on the basis of certain measures.

In 2020 Sunil Kumar Prabhakar et al. [22] used four features such as lempel ziv complexity, detrend
fluctuation analysis, largest lyapunov exponent and recurrence quantification analysis to classify the EEG
signal for SZ. The results showed that a classification accuracy of 92.17% is obtained when Black-Hole
(BH) optimization is utilized with SVM-Radial Basis Function (RBF) kernel.

Rumelhart et al. [23] defined Error back propagation (BP) as the popular algorithm for training DNNs.
DNN:s is a powerful technique for combining and generating information from multimodal data. CNN has
demonstrated better performance in many computer vision tasks [24]. Hence, the CNN models are
promising in processing clinical diagnosis and expression data to detect mental health conditions.

In 2021 Fu et al. [25] designed a novel Sch-net neural network based on a CNN, which perform the SZ
speech detection using DL techniques. The proposed Sch-net combines the advantages of the two
components, which can avoid the procedure of manual feature extraction and selection.

According to 10-20 international standards, horizontal and vertical eye movements of patients are recorded
and extracted the EEG signals from 21 gold cup electrodes, where these were studied in Kim et al. [26].

In 2021 Ziilfikar et al. [27] detect the SZ disease using the features of time frequency and Visual
Geometry Group-16, a pre-trained model of CNN is used for training process and key features are
extracted from scalogram images.

In 2015, Aharon et al. [28] presented the “TFFO” (Time-Frequency transformation followed by Feature-

Optimization), a novel approach for SZ detection. The recordings for single node are suitable for this
approach and process of data acquisition is feasible for the quick detection of SZ.

In 2020, Zulfikar et al. [29] revealed that there is a relationship between frequency components of an
EEG recording and the SZ disease. In 2019, Torres Naira et al. [30] represented the relations between
channels by using Pearson correlation coefficient and used the shorter matrix as an input to the CNN.

From the analysis of the several research articles, the existing techniques utilized for SZ disease are
analyzed and understood for developing the novel EEG based diagnosing framework.
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4 Proposed Methodology
4.1 Data Acquisition

During the data acquisition phase, the proposed model is based on obtaining the dataset from the open
source internet “https://www.kaggle.com/broach/buttontonesz2”. This helps to obtain better results with a
proposed model.

The dataset is adopted with 14 subjects as normal and 14 as affected schizophrenia disease from the
Institute of Psychiatry and Neurology based on Poland. This is inclusive of 7 males with average age of
27.0+3.3 years and the number of females is 7 with average age of 28.3+4.1 years. For this dataset
collection, the patients are in the state of relax with closed eye position. In this process, within 15 min of
time period, the obtained EEG signals are in 19 channel. Each channel is associated with 2, 25,000 samples
that can be partitioned into 5000 groups as sample segments. This is based on the formation of [5000 * 45]
as the data matrix of each channel. In Tab. 1, the two classes based EEG segments are provided.

Table 1: The number of EEG patterns utilized

EEG Segments Types

626 Schizophrenia
516 Unaffected person
1142 Overall count

For the implementation of this work, the proposed work is made up of 19 electrodes including C3, C4,
Cz,F4,F2, F1,F7,F3, T5, T4, Pz, T5, Pz, P3, P4, O1, O2, and T6. Therefore, this is considered as the multi-
channel EEG signal.

4.2 Pre-Processing and Feature Extraction

The overall architecture of the proposed model is shown in Fig. 2. In the pre-processing stage, EEG
signals based feature extraction is done by Particle Swarm Optimization (PSO). Therefore, the signals are
segmented as non-overlapping of 25s. This is done by considering 6250 x 19 sample points. The
segmentation carried out as 1142 EEG patterns, then the collected signals to form a new database in
terms of schizophrenia and normal patients with fixed length. Then, the feature extraction is processed by
means 157 non-linear features from EEG classes. From the 157 features based Student’s t-test, the
selection process is done based on 14 features by means of optimal features. The employed features are
KolmogorovSinai entropy (k-s), Rényi(re), Tsallis(ts), largest Lyapunov exponent(Ix), permutation
entropy(pe), Shannon(sn), Hjorth complexity(hc), mobility(hm), cumulant(c), bispectrum (bs), cumulant
(c), and Kolmogorov complexity(kc).

4.3 Classification

Several existing techniques are used for classifying two classes (affected or not-affected) based on image
as well as signal based classification. The widely used algorithms are Decision Tree (DT), Linear
Discriminant (LD), K-Nearest Neighbors (KNN), etc., DT based classifier is processed based on tree-like
configuration with a sequence of test sequences. LD classifier executes based on matching category by
analyzing the combination of values. This work is based on DL based classification process; therefore,
DCNN is considered as most suitable technique for classifying the diseases. The DCNN is improved by
utilizing the May Fly optimization technique that provides enhancement in the model. This enhances the
performance and efficiency of the proposed technique.
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Figure 2: Overall architecture of the proposed model
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The architecture of Deep CNN is complex due to its parameters and masked layers. It is mainly
associated with three tiers such as convolution, fully connected, and max pooling. In this process, the
kernels with different sizes are utilized for signal processing and it is taken as input during training
protocol. In the convolutional operation, feature extraction process is executed from input signals. Then
the extracted features are transferred to next layer. The batch normalization process is executed for
normalizing the training data in the middle layers. Therefore, the learning process can be enhanced for
further processing. In the max pooling layer, the feature map’s size can be changed, this provides high
number of kernels. The output obtained from the convolutional and pooling layers depicts the essential
features of the input data. Based on the prior results, the fully connected layer executes the categorization
process by considering input data to form different classes. In this architecture, the neurons are
interconnected in max pooling and fully-connected; therefore, the expected outcome can be predicted as
normal or not as shown in Fig. 3. This work highly relies on better performance and efficiency. The CNN
is improved by adopting the Mayfly optimization for enhancing the performance. The combination of
CNN and Mayfly algorithm may produce good results in terms of performance analysis methods.

4.4 Mayfly Optimization

The novel optimization technique introduced by Tsafarakis and Zervoudakis for providing enhanced
results is Mayfly Algorithm (MA). The following steps illustrate the execution process of the MA optimization.

Step 1: Initialization

The first step of the Mayfly optimization is initialization where the populations of both male and female are
initially x = [x1, ..., x4] and y = [y,, ..., y,], respectively. These populations are considered as candidate
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solution that incorporated with d-dimensional vector. The proposed methodology is incorporated to select
optimal learning by utilizing the mayfly optimization technique which helps to enhance the DCNN.
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Figure 3: The execution process of CNN based architecture

The mathematical formulation of objective function is shown below.

FF = Optimal Learning Rate @)
The respective velocity is

v=_[v, ..., v )

Step 2: Movement of Male

f(x) represents the global best position for the current iteration and it is marked as f{gbest). f(gbest) is
denoted as global best position this is utilized for updating the next iteration and the Cartesian distance is
calculated between the personal element and the global best agent gbest. The following equation provides
the description.

A =y 3)
vz.j“ = v+ aje P (gbest; — xj;) + we (pbest; — x};) “)
where,

xﬁj => Agent i in dimension j at the current iteration ¢,
vj; => Velocity,

a, => Global learning coefficient,

a, => Personal learning coefficient,

rg => Cartesian distance for global,

r, => Cartesian distance for personal,

Equation for the best agent’s velocity in the current iteration is derived below:
Vil =y +dxr

where,
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d = > Nuptial dance,
r => Random variable located in [-1, 1].
Step 3: Movement of Female

By analyzing the movement of the male’s mayfly, the female start to fly for breeding towards males. By
considering the Cartesian distance between female and male, the velocities are updated.

g D ae T — 3y () >/ (x0) 5)
PO\ Axr, S () < (%)

where,
y => Female agent,
a3 = > learning coefficient,
f = > Distance sight coefficient,
rmy = > Cartesian distance among with the female and male agent.

Moreover, based on the analysis of best male, the best females are arranged to match. Then next level
females are arranged to match second-best male. Therefore, the male’s positions are significant in MA.

Step 4: Mating

In MA, offspring are generated from each couple where one part of them is configured to male
population, whereas others are configured to female population.

Step 5: Updating

In updating phase, the weak solution is removed by best solution; this process is repeated until the
expected outcome is reached.

Algorithm: Pseudo Code of Proposed Model with Mayfly Algorithm
Objective function based on Eq. (5)

In Eq. (1), objective function is clearly stated
Male mayfly population is initialized based on CNN parameters
Female mayfly population is initialized based on CNN parameters
Execute computation based on solutions
Execute computation based on global best solution (optimal learning rate)
Do while maximum iteration reached
Execute update process based on velocity function in both male and female functions
Computation process is executed based on solutions
Ranking process is executed for mayflies
Mating process is executed
Offspring based computation are processed
Separating male and female offspring
By considering best solutions updating processes are executed
Both local and global best solution are updated
End while

Save the results.
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The overall execution processes based on mayfly algorithm are clearly stated in the above algorithm.
Based on aforementioned process and the results obtained in terms of performance analysis parameters,
the proposed model seems to produce better outcomes.

5 Results and Discussion

By implementing the combination of DCNN with Mayfly optimization, the proposed model produces
better results. This section mainly focuses on providing the results obtained based on the implementation of
the work in MATLAB platform. The following section provides results in terms of accuracy, loss, SNR,
MSE and NRMSE etc. This shows that the proposed model is effective in obtaining the expected outcome.

The results obtained in terms of loss are also shown which depicts that the proposed model incurred
minimum loss. The Tab. 2 shows the type and training process in terms of accuracy and loss.

Table 2: Illustrates the accuracy and loss training parameters

Parameters Values (Accuracy and Loss)
Epoch 10 of 10
Iteration 100 of 100

Iteration per epoch 10
Maximum iteration 100

Training time 3s

The Fig. 4 shows the results in terms of input data provided with the mean of 193.2847 and StD is
115.0069.

450 Mean = 193.2847, STD = 115.0069
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Figure 4: Shows the graphical representation of input data
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The Fig. 5 shows the graphical image based on rank correlation with normalized data 0.9727.
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Figure 5: Shows the graphical representation of normalized data

In Fig. 5, the thick blue line represents smoothed and thin line represents unsmoothed during the training
process. Similarly, in Fig. 6, the thick orange line represents smoothed and thin orange line represents
unsmoothed.
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Figure 6: Shows the correlation based on rank correlation ratio

The Fig. 6 illustrates the rank correlation ration based on training values and prediction values. The
result obtained based on rank correlation is 0.9782.



CSSE, 2023, vol.45, no.2 1879

The Fig. 7 provides information about the error evaluation based on input signals which obtains
MSE =2820.637, RMSE =53.1097, NRMSE =0.84011.

MSE = 2820.637, RMSE = 53.1097 NRMSE = 0.84011
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Figure 7: Shows the graphical representation of error evaluation based on input

The Fig. 8 provides information about the error evaluation based on output signals which shows
MSE =823.9263, RMSE =28.7041, NRMSE = 0.14949.
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Figure 8: Shows the graphical representation of error evaluation based on output

The Fig. 9 shows the Error Histogram Test which provides Error mean of 3.1232 and Error StD is
28.6597.
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Error Mean = 3.1232, Error StD = 28.6597
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Figure 9: Shows the graphical representation of error histogram test

The Fig. 10 provides the graphical image of Error Histogram that provides error mean of 8.681, and error
StD is 53.573.
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Figure 10: Shows the graphical representation of error mean

The Fig. 11 shows that the graphical representation of function evaluation. The green graphical line
indicates the estimated min objective and the blue line indicate that the min observed objective.
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Min objective vs. Number of function evaluations
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Figure 11: Shows the graphical representation of function evaluation

The Fig. 12 shows that histogram based on trained data. The results obtained in terms of error mean is
1.7184 and error StD is 17.8836.

Error Mean = 1.7184, Error StD = 17.8836
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Figure 12: Shows the graphical representation of histogram trained data

The Fig. 13 shows that the rank correlation based on trained data. The result obtained for rank correlation
is 0.70232.
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Rank Correlation = 0.70232
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Figure 13: Shows the graphical representation of rank correlation

The Fig. 14 shows graphical representation of regression output which shows that the proposed model
provides better results. The small circle in diagram illustrates the number of data, the linear line indicates fit,
and the dot line is relying just near the fit line.
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Figure 14: Shows the graphical representation of regression output
The Fig. 15 shows the graphical representation of SNR with a result of 23.67 dB in which the blue line

represents the fundamental, the orange line represents the noise, and the black line represents the DC and
Harmonics.
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Figure 15: Shows the graphical representation of SNR

The below Figs. 16 and 17 illustrates the graphical results of proposed technique based on accuracy and
loss respectively. It shows the proposed model has obtained 95% of accuracy.

100 |-
80
3
> 60
I
3
g 40
20
Epoch 2l Epoch 3I Epoch 4I Epoch 5I Epoch § Epoch 7l Epoch 8I Epoch 9l Epoch 1l
0
0 10 20 30 40 50 60 70 80 90 100
Iteration
Figure 16: Shows the graphical results of accuracy during training
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Figure 17: Shows the graphical results of loss during training
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6 Comparative Analysis

This section shows a comparative table obtained from different classifiers to prove the proposed model is
better than other existing techniques. For this analysis, the classifiers based on detection of schizophrenia
including SVM, SVM-RBF, LS-SVM, Decision Tree, KNN, DCNN, Proposed (CNN-MA) were used.
The following Tab. 3 provides the comparative results based on proposed model.

Table 3: Comparative results based on proposed model

S. No Classifiers Accuracy % Precision % Recall % F-Measure %
1 SVM 88.24 87.87 86.85 89.55
2 SVM-RBF 92.91 94.15 94.85 94.65
3 LS-SVM 91.65 92.45 91.65 93.56
4 Decision tree 88.35 89.45 87.46 87.58
5 KNN 91.61 89.82 90.65 89.99
6 DCNN 94.515 90.415 89.12 90.45
7 MDC-CNN 91.69 89.99 90.45 91.75
8 Ensemble bagged tree 89.59 89.85 88.63 90.25
9 Proposed (CNN-MA) 95.85 92.08 93.37 92.71

As per the above mentioned comparative results table, the performance of the proposed model is highly
effective in terms of performance evaluation metrics such as accuracy, precision, recall, and f-measure. The
comparative performance results shows that proposed model is better than the existing techniques.

7 Conclusion

This proposed technique is based on signal conducting system with EEG signals for diagnosing the
schizophrenia disease. The ultimate purpose of the proposed model is to develop a novel technique to
provide automated prediction system that helps in classifying the affected and non-affected people by
utilizing the hybrid DL technique. This technique is incorporated with an excellent optimization
technique namely Mayfly optimization which incorporates the functionalities of PSO and genetic
algorithm. Therefore, the proposed model produces effective results. The implementation of this model is
carried out in MATLAB platform and the results are obtained. Moreover, the obtained results including
accuracy, loss, MSE, RMSE, MRMSE, etc. show that the proposed model is very effective in providing
better outcomes. By this analysis, the proposed model is proved to be a better technique in predicting
schizophrenia disease.
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