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Abstract: Sleep plays a vital role in optimum working of the brain and the body.
Numerous people suffer from sleep-oriented illnesses like apnea, insomnia, etc.
Sleep stage classification is a primary process in the quantitative examination
of polysomnographic recording. Sleep stage scoring is mainly based on experts’
knowledge which is laborious and time consuming. Hence, it can be essential to
design automated sleep stage classification model using machine learning (ML)
and deep learning (DL) approaches. In this view, this study focuses on the design
of Competitive Multi-verse Optimization with Deep Learning Based Sleep Stage
Classification (CMVODL-SSC) model using Electroencephalogram (EEG) sig-
nals. The proposed CMVODL-SSC model intends to effectively categorize differ-
ent sleep stages on EEG signals. Primarily, data pre-processing is performed to
convert the actual data into useful format. Besides, a cascaded long short term
memory (CLSTM) model is employed to perform classification process. At last,
the CMVO algorithm is utilized for optimally tuning the hyperparameters
involved in the CLSTM model. In order to report the enhancements of the
CMVODL-SSC model, a wide range of simulations was carried out and the
results ensured the better performance of the CMVODL-SSC model with average
accuracy of 96.90%.

Keywords: Signal processing; EEG signals; sleep stage classification; clstm
model; deep learning; cmvo algorithm

1 Introduction

Sleep plays a vital role in the optimal performance of both the brain and the body [1]. But, a larger
number of individual severely suffers from sleeping disorder, namely narcolepsy, insomnia, and sleep
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dyspnoea [2]. Efficient and feasible sleep assessment is made mandatory for analyzing nap related issues and
making timely interference. Assessment of sleep commonly depends on the manual phasing of overnight
polysomnography (PSG) signal, including electrocardiogram (ECG), electroencephalogram (EEG), blood
oxygen saturation electrooculogram (EOG), electromyogram (EMG), and respiration [3], by well trained
and authorized technicians. The more time-taking characteristics of manual doze phasing hamper the
application zones on very huge datasets and restrict related research in this domain [4]. In addition to
this, the inter-scorer accord is comparatively lesser than 90%, and its development remains a challenge.
The several channel ranges of PSG also represent disadvantages in prevention of broader use for the
general population, on account of difficult groundwork and acts as a disruption to participant’ normal
nap. Hence, the past decades have made evident that the development of automated nap phasing depends
on one-channel EEG. These methodologies may eventually result in adequately exact, powerful,
worthwhile, and fastest ways of doze scoring [5].

The conduct of most sleep stage classification (SSC) techniques mainly depends on choosing
representative characteristics for various nap phases [6]. Frequency, time period, and time-frequency field
decays are the few general steps for processing and functioning of time signals and extraction of
characteristics straightforwardly. Several numerical designs have been well-established in the procedure
of finding hidden characteristics. After the extraction of features, several machine learning algorithms
were commonly used for categorization [7], namely ensemble learning, nearest neighbour classifier, linear
discriminate analysis (LDA), support vector machine (SVM), random forest (RF), and so on. It also
depicts the good outcomes with combinatorial machine learning (ML) techniques [8]. In recent times,
deep learning (DL) methodology namely recurrent neural network (RNN), convolution neural network
(CNN), and other forms of deep neural networks (DNN) have become a common tool in pattern
identification in biomedical signal processing. Long short-term memory (LSTM) method that has taken
advantageous factor of sequential data learning to advance categorization performance was highly
recommended for automatic nap phase [9,10].

Eldele et al. [11] present new attention based DL framework named AttnSleep for classifying sleep
stages utilizing single channel EEG signal. This infrastructure begins with the feature extracting element
dependent upon multi-resolution CNN (MRCNN) and adaptive feature recalibration (AFR). The MRCNN
is extracting minimal as well as maximal frequency features and the AFR is capable of improving the
quality of extracting features by modeling the inter-dependency among the features. The authors in [12]
present the primary DL technique to SSC which learn end-to-end with no computing spectrograms or
removing handcrafted feature which activities every multi-variate and multi-modal PSG signals and
exploits the temporal context of all 30-s window of data. The authors in [13] establish a new multi-
channel method dependent upon DL network and hidden Markov model (HMM) for improving the
accuracy of SSC in term neonates. The feature space dimensionality is then decreased by utilizing a
developmental FS approach named MGCACO (Modified Graph Clustering Ant Colony Optimization)
dependent upon the significance and redundancy analysis. The authors in [14] examine the strategy of
deep RNNSs to detect sleep stages in single channel EEG signals recorded at home by non-expert users. It
can be reported the outcome of dataset size, infrastructure selections, regularization, and personalization
on the classifier efficiency.

The authors in [15] presented an effectual approach for signal-strength-based combining (SSC)
dependent upon EEG signal analysis utilizing ML techniques with assuming 10s of epochs. The EEG
signal has played important role in automatic SSC. EEG signal is filtered and decomposed as to
frequency sub-bands utilizing band-pass filter. In [16], a flexible DL method was presented utilizing raw
PSG signal. A one-dimensional CNN (1D-CNN) was established utilizing EOG and EEG signals to
classifier of sleep stages. The efficiency of the model was estimated utilizing 2 public databases. Fan
et al. [17—19] present a novel sleep staging method utilizing EOG signals that are further convenient for
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obtaining than EEG. A 2-scale CNN initial extracting epoch-wise temporary-equal features in raw EOG
signal. The RNN then captured the long-term sequential data.

This study focuses on the design of Competitive Multi-verse Optimization with Deep Learning Based
Sleep Stage Classification (CMVODL-SSC) model using EEG signals. The proposed CMVODL-SSC model
intends to effectively categorize different sleep stages on EEG signals. Primarily, data pre-processing is
performed to convert the actual data into useful format. Besides, a cascaded long short term memory
(CLSTM) model is employed to perform classification process. At last, the CMVO algorithm is utilized
for optimally tuning the hyperparameters involved in the CLSTM model. In order to report the
enhancements of the CMVODL-SSC model, a wide range of simulations was carried out and the results
ensured the better performance of the CMVODL-SSC model interms of different metrics.

2 The Proposed Model

In this study, a new CMVODL-SSC model has been introduced to effectively categorize different sleep
stages on EEG signals. Primarily, data pre-processing is performed to convert the actual data into useful
format. Besides, a CLSTM model is employed to perform classification process. At last, the CMVO
algorithm is utilized for optimally tuning the hyperparameters involved in the CLSTM model. Fig. 1
illustrates the overall process of CMVODL-SSC technique.

Input: Training Dataset
(Sleep-EDF-Expanded)

iy
I

Data Preprocessing Classification Process
using
l Cascaded LSTM Model
Extracted Features —> T

Parameter Tuning Process
using
Competitive Multi-Verse Optimizer
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Figure 1: Overall process of CMVODL-SSC technique

2.1 Pre-Processing

At the initial stage, data pre-processing is performed to convert the actual data into useful format. The
neural network (NN) trained develops further effectual on the reaching of few pre-processing steps on the
network target and input. Usually, the feature was rescaled in the interval of 0 to 1 or from —1to 1. It
could be formulated as:
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(xi - xmin)

y/ = (ymax _ymin) X ( + Xmin (1)

max xmin)
whereas (Vmax — Vmin) = 0; if (Xmax — Xmin) = O for a feature, it represents the constant rate that features from
the data. Once the value of feature has been recognized by continuous value from the data, it could not be
concern as it does not transport some data to NN. Once the min-max normalized is executed, every feature
lies from the new range of values which remained unchanged.

2.2 CLSTM Based Sleep Stage Classification

Once the sleep stage data is pre-processed, the next level is to perform classification process using the
CLSTM model [20]. A RNN is a sort of artificial neural network (ANN) neural network (NN) that comprises
output, input, and hidden layers. There are two variances among traditional networks and RNN namely feed
forward neural network (FFNN). In a similar hidden state, there are links among the nodes in RNN, while in
the FFNN there is no one. The input of the hidden state in the present time contains the input neuron in the
present time and the hidden state in the preceding time. The specific architecture of the RNN enables the best
explanation of the temporal dynamic performance since it employs the preceding data it learns to design the
pattern of the existing stage, i.e., advantageous for satisfactorily examining the feature of the existing time
sequence. Consequently, in our work, RNN with memory process has been examined and employed in the
time sequence predicting. Generally, an RNN could not preserve a better memory when the time interval is
larger and has a vanishing gradient issue. Consequently, enhanced RNN model has been presented namely an
LSTM with the easy architecture that is extensively employed for time sequence predicting in different
domains. The LSTM calculates the memory unit through activation function. But, the application to
hydrological information was constrained.

The LSTM unit using peephole connection comprises forget gate (FG), input gate (IG), and output gate
(OG). Through the specific interaction process amongst three gates using a memory cell that assists an
accumulator of the cells, the LSTM mitigates the vanishing gradient effects of long term dependency. The
computation procedure of the LSTM using peephole connection is discussed in the following.

I = a(Wyxy + wpihi—1 + wei X ;-1 + b;) )
Simultaneously, the FG assesses that data to remove from the preceding cell state, through

F, = o (wyx, + wihi—1 4+ Wer X ¢1 + by) 3)
The older cell state ¢,_; would be upgraded toward the novel status

¢ = F; X ¢,y + I, x tanh(wyex; + wpehy—y + b.) 4)

(4) The upgraded cell status c;_; passes by “tanh” function and multiplied with the sigmoid activation
function of the OG to describe the last output from LSTM unit 4, It can be formulated by
h, = O, x tanh (¢;), whereas O; = 6(WyoX; + Wiohi—1 + Weo X €1+ by).

Here, wy;, wyr, wp, denotes the recurrent weight; wy;, wyr, wy, indicates the input weight; b;, bs, b, b,
denotes the bias vector; we;, wr, W, indicates the peephole weights, and “x” characterizes pointwise
multiplication. Now, the LSTM discovers the long term feature.

Currently, the LSTM method was illustrated to be efficient at managing temporal correlation, even
though certain limitation unavoidably exists. For example, the targeted value in the present time ¢ is
associated with the variable at preceding time (e.g., t-1), however, it is interconnected to the variable in
the existing time z. But, variable in the present time is absent in actuality because they cohabit with the
targeted value to be predicted. To resolve these issues, cascade modelling has been employed. The
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cascade method includes sub model that is complementary and independent in feature mapping and
extraction. The C LSTM has £ level, as well as the LSTM is employed for the time sequence predicting
in all the levels through the input variable that is comprised of the learning outcomes from the preceding
levels and the equivalent new input. With the cascade structure, the mixed time sequence features are
recognized in distinct stages that might efficiently reject vague patterns. The presented technique is
discussed below:

(1) Rescale and Collect the new information.
(2) Divide the information into testing (10%) and training (90%) datasets.

(3) Training the C-LSTM structure. The training dataset is separated into k classes based on pattern
recognition according to the targeted value. For instance, [P, E] is predicted by another parameter (LSTM
1), as well as the predicted value ([P, E]) is utilized for forecasting Q (LSTM 2). Since there exist two
sub-targets, the data recognizes two patterns.

(4) Testing the trained C LSTM architecture by separating the testing dataset as in the preceding phase
and predicting the targeted parameter.

2.3 CMVO Based Hyperparameter Optimization

Finally, the CMVO algorithm is utilized for optimally tuning the hyperparameters involved in the
CLSTM model [21]. The presented method's aim is to attain solution with better quality and prevent
early convergence of MVO approach. The presented method is inspired by the preceding study of CSO
algorithm. In the modified approach, the dynamic method of object exchange among universes varies
from that in the normal form of MVO where universe presents a competitive process.

The competition method is executed by the universe is attuned instead of based on the personal best
universes and global. The competition model guarantees to prevent early convergence by maintaining
population variety. In CMVO, the population is arbitrarily gathered according to bi-competition to
generate two sets, losers, and winners. In all the competitions, the location of loser from the competition
is attuned through learning from the winner instead of from the personal best and global locations.
Followed by all the competitions, winner enters the following generation. Fig. 2 depicts the flowchart of
CMVO technique.

Accordingly, universe might collectively converge toward the optimum solution. The competition
conserves the best balance among exploitation and exploration as well as assist them to converge on
optimum solution and preserve the diversity of every population. In the presented method, arithmetical
equation of updating location are attuned by the subsequent approach:

1% TDR+r2% (X — X ) +13% (Xi) = Xix ) + 3% ((Xi) = Xix ) (rd1) <WEP (rd2) < WEP
X/, = r1« TDR+12% (Xyi — Xix) ++r3 (Xk) — Xi ) (rd1) > WEP , (5)
’ X}, (rd2) <WEP

In which X,, ; represents the winner universe in the kth; X;; shows the loser universe in the kth; Xl’k
indicates the kth competition in the i-th of loser universe; the TDR and WEP denotes the two major
coefficients; X represent the mean location value of the applicable universe; the value of rdl, rd2, 2, r3,
r4 indicates arbitrary variable within [0, 1]. The common summary of CMVO approach is given in
Algorithm 1.

Step 1 (Initial step): arbitrary universe is initialized according to the population size and dimension of
searching region. Next, all the universes involved in population would be arbitrarily separated.

Step 2 (Bicompetition step): two sets of population at all the iterations (whereas CMVO chooses) are
allowable to contribute to the bicompetition.
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Start the Algorithm

Step 2

Step 3

Step 4

Initialization of Parameters

Calculate the Fitness for each Universe

Run the Competition Mechanism

Step 5

Step 6

Step 7

Exchange Objects between Universes (Winners to Losers)

Objects in each Universe Teleport to the Loser's Universes

Best Universe with Optimal Fitness Value

Step 7

Stop

Figure 2: Flowchart of CMVO technique

Algorithm 1 Competitive multiple verse optimizer

Initiate the CMVO: WEP, TDR, Ib, ub, Max Iteration, Nbr of individual.

Initiating a set of arbitrary populations depends on the problems.

for iteration () <= Max —iteration do do

Estimate the variable of : WEP, TDR.

Estimate the fitness of all the universes.

run the competitive method.

for all the individuals do

Exchange objects among universes (winner to loser).

Object in all the universe teleport to the loser universe.

end for

end for

The better universe with low fitness values.

3 Results and Discussion

In this section, the experimental assessment of the CMVODL-SSC model is carried out using the Sleep-
EDF-Expanded dataset [22] comprises of 238976 samples with 71197 samples under W class,
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25169 samples under N1 class, 88975 samples under N2 class, 19454 samples under N3 class, and
34181 samples under REM class as shown in Tab. 1. The proposed model is simulated using Python tool.

Table 1: Dataset details

Sleep-EDF-Expanded

Class labels No. of samples
'Y 71197

N1 25169

N2 88975

N3 19454

REM 34181

Total 238976

Fig. 3 shows the confusion matrices produced by the CMVODL-SSC model on 70% of training set
(TRS) and 30% of testing set (TSS). On 70% of TRS, the CMVODL-SSC model has identified
48451 samples into W class, 16343 samples into N1 class, 60495 samples into N2 class, 12218 samples
into N3 class, and 22486 samples into REM class. Similarly, on 30% of TSS, the CMVODL-SSC model
has recognized 20786 samples into W class, 6949 samples into N1 class, 26097 samples into N2 class,
5345 samples into N3 class, and 9557 samples into REM class.

Training Set (70%) Testing Set (30%)

p]) . 140 97 68

258 185 26097 133 122

=1 267 769 252 L 2

446 60495 335

N1
N1

Actual
N2
Actual
N2

464 | 12218

53 176 5345 87

N3
N3

& =
w w
3 o
N2 N2
Predicted Predicted
(a) (b)

Figure 3: Confusion matrix of CMVODL-SSC technique on 70% of TRS and 30% of TSS

Tab. 2 highlights the performance of the CMVODL-SSC model on 70% of TRS and 30% of TSS.

Fig. 4 reports a detailed result of the CMVODL-SSC model offered on 70% of TRS. The CMVODL-
SSC model has identified samples under W class with accu,, prec,, reca;, spec,, Fycore, and MCC of 97.92%,
95.86%, 97.22%, 98.22%, 96.54%, and 95.05% respectively. Moreover, the CMVODL-SSC approach has
identified samples under N2 class with accCMVODL — SSC u,, prec,, reca;, specy, Fyre, and MCC of



1256

97.51%, 96.07%, 97.29%, 97.65%, 96.68%, and 94.70% correspondingly. Eventually, the CMVODL-SSC
system has identified samples under REM class with accu,, prec,, reca;, spec,, Fycore, and MCC of 98.65%,

96.75%, 93.72%, 99.47%, 95.21%, and 94.44% correspondingly.

Table 2: Result analysis of CMVODL-SSC technique with distinct measures on 70% of TRS and 30% of TSS

CSSE, 2023, vol.45, no.2

Class labels Accuracy Precision Recall Specificity F-score MCC
Training set (70%)
W 97.92 95.86 97.22 98.22 96.54 95.05
N1 98.58 94.08 92.41 99.31 93.24 92.45
N2 97.51 96.07 97.29 97.65 96.68 94.70
N3 98.62 92.83 89.92 99.39 91.36 90.62
REM 98.65 96.75 93.72 99.47 95.21 94.44
Average 98.26 95.12 94.11 98.81 94.60 93.45
Testing set (30%)
W 98.04 96.16 97.32 98.35 96.74 95.34
N1 98.63 93.99 92.85 99.31 93.42 92.66
N2 97.62 96.27 97.40 97.75 96.83 94.93
N3 98.78 93.77 91.10 99.46 92.42 91.76
REM 98.67 96.76 93.80 99.48 95.26 94.50
Average 98.35 95.39 94.49 98.87 94.93 93.84
Training Set (70%)
105 EE W [ N2 @ REM
3 NI 3 N3

100 A

95 1

Values (%)

90

3

e

85

Figure 4: Result analysis of CMVODL-SSC technique on 70% of TRS
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Fig. 5 demonstrates a detailed results of the CMVODL-SSC model offered on 30% of TSS. The
CMVODL-SSC model has identified samples under W class with accu,, prec,, reca;, spec,, Fycore, and
MCC of 98.04%, 96.16%, 97.32%, 98.35%, 96.74%, and 95.34% respectively. Furthermore, the
CMVODL-SSC method has identified samples under N2 class with accu,, prec,, reca;, specy, Fycore, and
MCC of 97.62%, 96.27%, 97.40%, 97.75%, 96.83%, and 94.93% correspondingly. Finally, the
CMVODL-SSC approach has identified samples under REM class with accu,, prec,, reca;, spec,, Ficore,
and MCC of 98.67%, 96.76%, 93.80%, 99.48%, 95.26%, and 94.50% respectively.

Testing Set (30%)

105 1
EE W [ N2 [ REM
N1 [ N3
100 -
& o5
(%]
Q
3
©
>
90 -
I
I
85 ‘

Accuracy Precision Recall Specificity F-Score MCC

Figure 5: Result analysis of CMVODL-SSC technique on 30% of TSS

Fig. 6 illustrates the confusion matrices produced by the CMVODL-SSC approach on 80% of training
set (TRS) and 20% of testing set (TSS). On 80% of TRS, the CMVODL-SSC model has identified
55198 samples into W class, 16564 samples into N1 class, 68645 samples into N2 class, 10829 samples
into N3 class, and 25104 samples into REM class. Also, on 20% of TSS, the CMVODL-SSC technique
has recognized 13988 samples into W class, 4203 samples into N1 class, 16986 samples into N2 class,
2689 samples into N3 class, and 6233 samples into REM class.

Tab. 3 examines the performance of the CMVODL-SSC technique on 80% of TRS and 20% of TSS.
Fig. 7 defines a detailed results of the CMVODL-SSC model offered on 80% of TRS. The CMVODL-
SSC model has identified samples under W class with accu,, prec,, reca;, specy,, Fy.ore, and MCC of
97.25%, 93.77%, 97.19%, 97.27%, 95.45%, and 93.51% correspondingly. Additionally, the CMVODL-
SSC systen has identified samples under N2 class with accu,, prec,, reca;, spec,, Fycore, and MCC of
95.91%, 93%, 96.28%, 95.69%, 94.61%, and 91.35% correspondingly. At last, the CMVODL-SSC
approach has identified samples under REM class with accu,, prec,, reca;, specy,, Fycore, and MCC of
97.28%, 89.67%, 91.61%, 98.23%, 90.63%, and 89.05% respectively.

Fig. 8 demonstrates a detailed results of the CMVODL-SSC approach offered on 20% of TSS. The
CMVODL-SSC model has identified samples under W class with accu,, prec,, reca;, spec,, Fyre, and
MCC of 97.23%, 93.88%, 97.13%, 97.27%, 95.48%, and 93.51% respectively. Besides, the CMVODL-
SSC model has identified samples under N2 class with accu,, prec,, reca;, spec,, Fyore, and MCC
of 95.89%, 93.03%, 96.09%, 95.77%, 94.53%, and 91.27% correspondingly. Furthermore, the
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CMVODL-SSC technique has identified samples under REM class with accu,, prec,, reca;, spec,, Fycore, and
MCC of 97.29%, 89.25%, 91.97%, 98.17%, 90.59%, and 89.02% correspondingly.

Actual

Training Set (80%)

E§ 55198 128 408 297

1891 455

N1

502 1091 68645 326

N2

823 318 2448 10829
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27 102
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AN 4203 LY 89
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Figure 6: Confusion matrix of CMVODL-SSC technique on 80% of TRS and 20% of TSS

Table 3: Result analysis of CMVODL-SSC technique with distinct measures on 80% of TRS and 20% of TSS

Class labels Accuracy Precision Recall Specificity F-score MCC

Training set (80%)
W 97.25 93.77 97.19 97.27 95.45 93.51
N1 97.14 89.74 82.23 98.89 85.82 84.33
N2 95.91 93.00 96.28 95.69 94.61 91.35
N3 96.90 89.84 69.69 99.30 78.49 77.57
REM 97.28 89.67 91.61 98.23 90.63 89.05
Average 96.90 91.21 87.40 97.88 89.00 87.16

Testing set (20%)
W 97.23 93.88 97.13 97.27 95.48 93.51
N1 97.25 89.52 83.64 98.85 86.48 85.01
N2 95.89 93.03 96.09 95.77 94.53 91.27
N3 96.87 90.91 68.68 99.39 78.25 77.47
REM 97.29 89.25 91.97 98.17 90.59 89.02
Average 96.91 91.32 87.50 97.89 89.07 87.26
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Figure 7: Result analysis of CMVODL-SSC technique on 80% of TRS
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Figure 8: Result analysis of CMVODL-SSC technique on 20% of TSS

For ensuring the enhanced performance of the CMVODL-SSC model, a comparative analysis with
MRCNN model interms of accu, is shown in Tab. 4 and Fig. 9 [23]. The results indicated that the
MRCNN model has obtained reduced accu, of 94.13%, 85.78%, 86.83%, 96.67%, and 92.22% under W,
N1, N2, N3, and REM classes respectively. However, the CMVODL-SSC model has showcased
enhanced accu, of 97.23%, 97.25%, 95.89%, 96.87%, and 97.29% under W, N1, N2, N3, and REM
classes respectively.



1260 CSSE, 2023, vol.45, no.2

Table 4: Acc, analysis of CMVODL-SSC technique with existing methods under distinct class labels

Accuracy (%)

Class labels MRCNN CMVODL-SSC
W 94.13 97.23
N1 85.78 97.25
N2 86.83 95.89
N3 96.67 96.87
REM 92.22 97.29
EE MRCNN [—] CMVODL-SSC
100 -
95 4
g
>
& 90
2
<
85
80

w N1 N2 N3 REM

Figure 9: Acc, analysis of CMVODL-SSC technique with existing methods

In order to ensure the enhanced performance of the CMVODL-SSC model, a comparative analysis with
MRCNN model with respect to reca is revealed in Tab. 5 and Fig. 10. The results indicated that the MRCNN
technique has obtained reduced reca; of 88.56%, 60.17%, 70.10%, 82.92%, and 77.31% under W, N1, N2,
N3, and REM classes correspondingly. But, the CMVODL-SSC method has outperformed higher reca; of
97.13%, 83.64%, 96.09%, 68.68%, and 91.97% under W, N1, N2, N3, and REM classes correspondingly.

Table 5: Reca; analysis of CMVODL-SSC technique with existing methods under distinct class labels

Recall (%)

Class labels MRCNN CMVODL-SSC
W 88.56 97.13
N1 60.17 83.64
N2 70.10 96.09
N3 82.92 68.68

REM 77.31 91.97
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Figure 10: Reca; analysis of CMVODL-SSC technique with existing methods

For demonstrating the enhanced performance of the CMVODL-SSC model, a comparative analysis with
MRCNN technique interms of spec, is shown in Tab. 6 and Fig. 11. The results exposed that the MRCNN
approach has obtained lower spec, of 97.55%, 88.73%, 95.07%, 97.67%, and 92.24% under W, N1, N2, N3,
and REM classes respectively. At last, the CMVODL-SSC model has exhibited maximal spec, of 97.27%,
98.85%, 95.77%, 99.39%, and 98.17% under W, N1, N2, N3, and REM classes correspondingly.

Table 6: Spec, analysis of CMVODL-SSC technique with existing methods under distinct class labels

Specificity (%)

Class labels MRCNN CMVODL-SSC
\W% 97.55 97.27
N1 88.73 98.85
N2 95.07 95.77
N3 97.67 99.39
REM 94.24 98.17

After looking into the above mentioned tables and discussion, it can be concluded that the CMVODL-
SSC model has outperformed the other methods on sleep stage classification.
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Figure 11: Spec, analysis of CMVODL-SSC technique with existing methods

4 Conclusion

In this study, a new CMVODL-SSC model has been introduced to effectively categorize different sleep
stages on EEG signals. Primarily, data pre-processing is performed to convert the actual data into useful
format. Besides, a CLSTM model is employed to perform classification process. At last, the CMVO
algorithm is utilized for optimally tuning the hyperparameters involved in the CLSTM model. In order to
report the enhancements of the CMVODL-SSC model, a wide range of simulations was carried out and
the results ensured the better performance of the CMVODL-SSC model interms of different metrics. In
future, the performance of the CMVODL-SSC model can be improved by the design of hybrid
metaheuristic optimization algorithms.
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