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Abstract: Due to exponential increase in smart resource limited devices and high
speed communication technologies, Internet of Things (IoT) have received signif-
icant attention in different application areas. However, IoT environment is highly
susceptible to cyber-attacks because of memory, processing, and communication
restrictions. Since traditional models are not adequate for accomplishing security
in the IoT environment, the recent developments of deep learning (DL) models
find beneficial. This study introduces novel hybrid metaheuristics feature selection
with stacked deep learning enabled cyber-attack detection (HMFS-SDLCAD)
model. The major intention of the HMFS-SDLCAD model is to recognize the
occurrence of cyberattacks in the IoT environment. At the preliminary stage, data
pre-processing is carried out to transform the input data into useful format. In
addition, salp swarm optimization based on particle swarm optimization (SSOP-
SO) algorithm is used for feature selection process. Besides, stacked bidirectional
gated recurrent unit (SBiGRU) model is utilized for the identification and classi-
fication of cyberattacks. Finally, whale optimization algorithm (WOA) is
employed for optimal hyperparameter optimization process. The experimental
analysis of the HMFS-SDLCAD model is validated using benchmark dataset
and the results are assessed under several aspects. The simulation outcomes
pointed out the improvements of the HMFS-SDLCAD model over recent
approaches.
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1 Introduction

The Internet of things (IoT) consists of a compilation of heterogeneous resource-restrained objects
interlinked through distinct network frameworks, namely wireless sensor networks (WSNs) [1]. These
“things” or objects are generally made up of processors, sensors, and actuators with the capability to
interact with one another for achieving a common objective or applications by unique identifiers in
relation to the Internet protocol (IP) [2]. Recent IoT applications involve smart buildings, agriculture,
industrial and manufacturing processes, aerospace and aviation, telecommunications, medical and
pharmaceutical, and environmental phenomenon monitoring [3]. The fundamental IoT layered structure
consists of 3 layers firstly the perception layer (comprising edge devices which interact with the
environment for identifying specific external elements or other smart objects in the environment),
secondly the network layer (made up of number of networking devices which finds and links devices
beyond the IoT network for sending and receiving the sensed data), and lastly the application layer (made
up of several IoT services or applications which is accountable for storage and data processing). Many
cyber-attacks focus on the network and application layers of the IoT system [4]. After the IoT architecture
is breached, attackers have the capability for sharing the IoT data with unapproved crews and may
control consistency and preciseness of the IoT data over its whole life cycle [5]. Thus, these cyber-attacks
must be addressed for utilization of safe IoT. Fig. 1 depicts the role of machine learning (ML) in
cybersecurity.

Network intrusion identification approaches achieve progression from mechanisms lying on port
inspection to methods making complete use of ML [6]. The normal port-related approaches are outdated
since recent applications majorly depend on dynamic port allotment instead of registered port numbers
[7]. The rise in the proportion of encrypted traffic drives the failure of payload-related methodologies.
This guides the cybersecurity experts in the direction of using ML and network flow features. Current
developments in ML methodologies for network anomaly identification were most welcomed [8,9].
Owing to the diverse and heterogeneous nature of cloud environments, ML offers responses to the

Figure 1: Role of ML in cybersecurity

1680 CSSE, 2023, vol.45, no.2



difficulties impelled because of the availability of virtualized environments with its vast range of application
workloads [10].

Panda et al. [11] utilized the University of New South Wales (UNSW)-NB15, a novel IoT-Botnet data
(imbalanced and noisy dataset) to categorize cyberattacks. Scatter search-based feature engineering and K-
Medoid sampling methods are utilized for obtaining representation data with optimum feature sets. Al-Haija
[12] proposed an effectual and generic top-down structure for intrusion classification, along with recognition
in IoT networks through non-conventional ML technique is presented. The presented method is personalized
and utilized for intrusion classification/detection integrating IoT cyber-attack data, namely MeSSOge
Queuing Telemetry Transport (MQTT) dataset, CICIDS Dataset, etc. Especially, the presented method is
comprised of detection and classification (DC) subsystems, feature engineering (FE) subsystems, and
feature learning (FL) subsystems. In [13], a hybrid deep random neural network (HDRaNN) for detecting
cyber-attack in the IIoT is proposed. The presented method integrates a multilayer perceptron with
dropout regularization and deep random neural network.

Amma [14] proposed a Vector Convolution Deep Autonomous Learning (VCDAL) classification for
detecting cyberattacks in the network traffic dataset. The presented method classification extracts the
feature through vector convolution neural network (CNN), automatically learns the feature via increment
learning using distilled cross entropy, as well as classifies the developing network traffic dataset via
softmax function. The presented classification has been by implementing experiments on standard
network traffic data sets and it is clear that the presented classification could probably identify known and
unknown cyberattacks. An et al. [15–18] presented an unsupervised ensemble autoencoder (AE)
interconnected with the Gaussian mixture method (GMM) for adapting various fields nevertheless of the
skewness of all the domains. In the hidden region of the ensemble AE, the attention-based latent
representation and recreated feature of the minimal error are employed.

This study introduces novel hybrid metaheuristics feature selection with stacked deep learning enabled
cyber-attack detection (HMFS-SDLCAD) model. The major intention of the HMFS-SDLCAD model is to
design salp swarm optimization based on particle swarm optimization (SSOPSO) algorithm for feature
selection process. Moreover, stacked bidirectional gated recurrent unit (SBiGRU) model is utilized for the
identification and classification of cyberattacks. At last, whale optimization algorithm (WOA) is
employed for optimal hyperparameter optimization process. The experimental analysis of the HMFS-
SDLCAD model is validated using benchmark dataset and the results are assessed under several aspects.

2 The Proposed Cyber-Attack Detection Model

In this study, a new HMFS-SDLCAD model has been developed to recognize the occurrence of
cyberattacks in the IoT environment. At the preliminary stage, data pre-processing is carried out to
transform the input data into useful format. Then, the SSOPSO algorithm is utilized to elect features. In
addition, the WOA with SBiGRU model is utilized for the identification and classification of
cyberattacks. Fig. 2 demonstrates the block diagram of HMFS-SDLCAD technique.

2.1 Process Involved in SSOPSO Based FS Model

In this work, the SSOPSO algorithm is employed to choose an optimal subset of features from the
preprocessed data. The framework of the presented technique is explained. It is named SSOPSO that
integrates the SSO and PSO approaches. The fundamental infrastructure of SSO technique was improved
by enhancing the upgrade step of population place. This alteration merges the upgrade process of PSO as
to important infrastructure of SSO. This combination adds further flexibility to SSO in exploring the
population and makes sure its diversity of it and attains the optimum value rapidly.
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In the primary stage, the presented SSOPSO is used for determining the parameter and creating the
population that signifies the group of solutions to offered problem (feature selection) [19]. Next, the
performance of all the solutions is measured by calculating the fitness function (FF) for everyone and
defining the optimum of them. The next stage from the presented SSOPSO technique is for updating the
existing population by utilizing also the SSO or PSO technique that depends upon the quality of FF
(evaluated by their probability). When the probability of FF, to the present solution, is superior to
0.5 then SSO, else, the PSO was utilized. Next, the FF to all the solutions was calculated and optimum
solution was defined then upgrades the population. The next stage is for checking when the end criteria
are fulfilled before returning by optimum solution, then, repeating the preceding stages in calculating the
probability to end.

The SSOPSO technique begins with determining the primary value of SSO and PSO techniques, next
the SSO creates an arbitrary population X of size N in dimensional D, next SSO computes the food fitness to
all the solutions xi; i ¼ 1; 2; . . . ; N . But, before calculating the objective function, all the solutions xi was
changed to binary vector (that comprises only 1’s and 00s) based on the value of an arbitrary threshold
e 2 ½O; 1� utilizing the subsequent formula:

xiðt þ 1Þ ¼ 1 if
1

1þ e�xiðtÞ
. e

0 otherwise

(
(1)

Thus, only the xj element which is equivalent to 1’s were selected for representing the chosen features
(moreover, the other elements were ignored later which can signify the irrelevant feature). The next stage is
for computing the objective function for all xi as in Eq. (2):

f ðxiðtÞÞ ¼ nExiðtÞ þ ð1� nÞ jxiðtÞj
jCj

� �
; (2)

whereas ExiðtÞ implies the error of classifier executed by the effectual classification, but the second term
signifies the amount of chosen features. For balancing amongst the classifier error and the amount of
chosen features, the parameter n 2 ½0; 1� was utilized. The next stage is for computing the probability of
all the FFs ðProiÞ as:

Proj ¼ fiPN
i¼1 fi

(3)

Figure 2: Block diagram of HMFS-SDLCAD technique
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Based on the Proj value, the present solution xj is upgraded utilizing the SSO or PSO techniques. The FF
was calculated for all upgrade solutions, and optimum solution was upgraded. This sequence was iterated still
meeting the end criteria (the presented SSOPSO technique executes to the max iteration number as ending
criteria).

2.2 SBiGRU Based Classification

Once the feature subsets are chosen, the next step is to identify the cyberattacks using the SBiGRU
model. The SBiGRU is comprised of forwarding and backwarding layers stacked on top of the other. The
input dataset is given to the initial forward and backward layers. The output is a sequence of latter
forward and backward layers [20]. For time series t, the input series fe; e . . . ; etg entered hidden layer in
the forward direction fha1; ha2; . . . ; hat g for obtaining comprehensive dataset from each historical time
step and entering hidden layer in the reverse direction fhc1; hc2; . . . ; hct g for obtaining comprehensive
data from each future time step. Next, the upper hidden layer takes the output from the low hidden layer
as input for extracting features. Especially, the upper layer of the forwarding hidden layer is
fhb1; hb2; . . . ; hbt g; and the upper layer of the backward hidden layer is fhd1; hd2; . . . ; hdt g. Lastly, the
output layer integrates the hidden vector of two upper layers as output. For the initial forward layer,
hidden layer hat , is to attain the candidate value, update, and reset gates, correspondingly:

uat ¼ rðWa
u h

a
t�1 þ Ua

u et þ bauÞ (4)

rat ¼ rðWa
r h

a
t�1 þ Ua

r et þ bar Þ (5)

~C ¼ tanhðWa
c : ½rat � hat�1� þ Ua

c et þ bacÞ (6)

hat ¼ uat � ~Ca
t þ ð1� uat Þ � hat�1 (7)

In the next forward layer, the hidden layer hbt , is to attain the candidate value, update, and reset gates,
correspondingly:

ubt ¼ rðWb
u h

b
t�1 þ Ub

u h
a
t þ bbuÞ (8)

rbt ¼ rðWb
r h

b
t�1 þ Ub

r h
a
t þ bbr Þ (9)

~C ¼ tanh ðWb
c : ½rbt � hbt�1� þ Ub

c h
a
t þ bbcÞ (10)

hbt ¼ ubt � ~C þ ð1� ubt Þ � hbt�1 (11)

In the initial backward layer, hidden layer hct , is to attain the candidate value, update, and reset gates,
correspondingly:

uct ¼ rðWc
uh

c
iþ1 þ Uc

uet þ bcuÞ (12)

rct ¼ rðWc
r h

c
iþ1 þ Uc

r et þ bcrÞ (13)

~C ¼ tanh ðWc
c : ½rct � hciþ1� þ Uc

c et þ bccÞ (14)

hct ¼ uct � ~Cc
t þ ð1� uct Þ � hct�1 (15)

In the next backward layer, the hidden layer hdt ; is to attain the candidate value, update, and reset gates,
correspondingly:
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udt ¼ rðWd
u h

d
iþ1 þ Ud

u h
c
t þ bduÞ (16)

rdt ¼ rðWd
r h

d
iþ1 þ Ud

r h
c
t þ bdr Þ (17)

~C ¼ tanhðWd
c :½rdt � hdiþ1� þ Ud

c h
c
t þ bdc Þ (18)

hdt ¼ udt � ~Cd
t þ ð1� udt Þ � hdt�1 (19)

The output of next forward and backward layers is given in the following:

Ot ¼ Uohbt þWohdt þ bo (20)

2.3 WOA Based Hyperparameter Optimization

Finally, the WOA is utilized for optimal hyperparameter optimization process. Mirjalili et al. [21]
presented the WOA stimulated by the whale behavior. The foraging behavior is named bubble-net
feeding technique. But, in WOA, the existing optimal candidate solution is to set the target prey or closer
to the optimal. The other tries to upgrade the location towards the optimal one. Arithmetically, it can be
expressed in the following:

D ¼ jC � X �ðtÞ � X ðtÞj (21)

X ðt þ lÞ ¼ X �ðt þ 1Þ � A � D (22)

whereas t indicates the existing iteration, X denotes the location vector, X � represent the location vector
coincides with the optimal solution found, and A and C denote the coefficient vectors. A and C are
determined as follows:

A ¼ 2 � a: r � a (23)

C ¼ 2 � r (24)

whereas r is positioned arbitrarily within ½0; 1� and a is reduced linearly from 2 to 0. This method has two
stages: exploration and exploitation. The exploitation stage: is separated into; (1) shrinking encircling
mechanism: This is attained by reducing a value. Noted that a indicates an arbitrary number within ½�a; a�.

Spiral updating location: This technique estimates the distance among the whale and the prey. A spiral
formula is utilized for mimicking the helix-shaped movement:

X ðt þ 1Þ ¼ Dlebl � cos ð2plÞ þ X �ðtÞ (25)

whereas 1 denotes an arbitrary value within [1,1] and b denotes a constant. A possibility of 50% to choose
among the shrinking encircling model or the spiral model. Therefore, the arithmetical method is expressed in
the following:

X ðt þ 1Þ ¼ X �ðtÞ � :A � D ifp, 0:5
D1 � ebl cos ð2plÞ þ X �ðtÞ ifp � 0:5

�
(26)

In which p denotes an arbitrary value in a uniform distribution. The exploration stage:

While, in the exploration stage, A has utilized arbitrary value in 1 � A � �1 to force the agent to move
away from the position and arithmetically expressed in the following:

D ¼ jC � Xrand � X j (27)
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X ðt þ 1Þ ¼ Xr and � A � D (28)

3 Experimental Validation

In this section, the experimental validation of the HMFS-SDLCAD model is tested using a benchmark
dataset, available at https://dataset.litnet.lt/. The dataset holds samples under 12 class labels and 84 features.
The proposed model has chosen a set of 47 features. Tab. 1 provides the details related to the dataset.

Fig. 3 indicates the confusion matrix created by the HMFS-SDLCAD model on the classification of
cyberattacks under entire dataset. The figure indicated that the HMFS-SDLCAD model has identified all
the 12 classes effectively.

Tab. 2 and Fig. 4 highlight the overall classification outcomes of the HMFS-SDLCAD model on entire
dataset. The experimental values indicated that the HMFS-SDLCAD model has gained maximum classifier
results under all class labels. For instance, with label-1, the HMFS-SDLCADmodel has offered accuy, precn,
recal, Fscore, and Mathew Correlation Coefficient (MCC) of 99.76%, 98.20%, 99.54%, 98.87%, and 98.74%
respectively. Also, with label-5, the HMFS-SDLCAD approach has offered accuy, precn, recal, Fscore, and
MCC of 99.85%, 99.50%, 99.04%, 99.27%, and 99.18% correspondingly. Moreover, with label-10, the
HMFS-SDLCAD algorithm has offered accuy, precn, recal, Fscore, and MCC of 99.91%, 96.68%,
99.10%, 97.88%, and 97.84% correspondingly. Furthermore, with label-12, the HMFS-SDLCAD system
has obtainable accuy, precn, recal, Fscore, and MCC of 99.96%, 97.75%, 97.75%, 97.75%, and 97.73%
correspondingly.

Fig. 5 designates the confusion matrix created by the HMFS-SDLCAD approach on the classification of
cyberattacks under 70% of training set (TRS) dataset. The figure represented that the HMFS-SDLCAD
methodology has identified all the 12 classes effectively.

Table 1: Dataset details

Class labels Attack type Attacks For experimentation

Label-1 Smurf 59479 5000

Label-2 ICMP-flood 11628 5000

Label-3 UDP-flood 59479 5000

Label-4 TCP SYN-flood 3725838 5000

Label-5 HTTP-flood 22959 5000

Label-6 LANDattack 52417 5000

Label-7 Blaster worm 24291 5000

Label-8 Code red worm 1255702 5000

Label-9 Spam bot’s detection 747 700

Label-10 Reaper worm 1176 1000

Label-11 Scanning/spread 6232 5000

Label-12 Packet fragmentation attack 477 400

Total No. of Samples 5220425 47100

CSSE, 2023, vol.45, no.2 1685
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Tab. 3 and Fig. 6 demonstrate the overall classification outcome of the HMFS-SDLCAD technique on
70% of TRS dataset. The experimental values represented that the HMFS-SDLCAD approach has reached
maximum classifier results under all class labels. For instance, with label-1, the HMFS-SDLCAD approach
has offered accuy, precn, recal, Fscore, and MCC of 99.77%, 98.29%, 99.51%, 98.89%, and 98.77%
correspondingly. In addition, with label-5, the HMFS-SDLCAD model has offered accuy, precn, recal,

Figure 3: Confusion matrix of HMFS-SDLCAD technique under entire dataset

Table 2: Result analysis of HMFS-SDLCAD technique with various measures on entire dataset

Entire dataset

Class labels Accuracy Precision Recall F-Score MCC

Label 1 99.76 98.20 99.54 98.87 98.74

Label 2 99.86 99.24 99.40 99.32 99.24

Label 3 99.79 99.58 98.44 99.00 98.89

Label 4 99.85 99.72 98.82 99.27 99.18

Label 5 99.85 99.50 99.04 99.27 99.18

Label 6 99.91 99.52 99.60 99.56 99.51

Label 7 99.86 99.08 99.58 99.33 99.25

Label 8 99.85 99.20 99.42 99.31 99.23

Label 9 99.93 97.71 97.57 97.64 97.61

Label 10 99.91 96.68 99.10 97.88 97.84

Label 11 99.86 99.50 99.20 99.35 99.27

Label 12 99.96 97.75 97.75 97.75 97.73

Average 99.86 98.81 98.96 98.88 98.81
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Fscore, and MCC of 99.83%, 99.51%, 98.92%, 99.22%, and 99.12% correspondingly. Furthermore, with
label-10, the HMFS-SDLCAD system has accessible accuy, precn, recal, Fscore, and MCC of 99.92%,
97.07%, 99.29%, 98.16%, and 98.13% respectively. Besides, with label-12, the HMFS-SDLCAD model
has obtainable accuy, precn, recal, Fscore, and MCC of 99.95%, 97.51%, 97.16%, 97.34%, and 97.31%
respectively.

Figure 4: Result analysis of HMFS-SDLCAD technique on entire dataset

Figure 5: Confusion matrix of HMFS-SDLCAD technique under 70% of TRS dataset
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Fig. 7 demonstrates the confusion matrix created by the HMFS-SDLCAD algorithm on the classification
of cyberattacks under 30% of testing set (TSS) dataset. The figure outperformed that the HMFS-SDLCAD
approach has identified all the 12 classes effectively.

Tab. 4 and Fig. 8 examine the overall classification outcome of the HMFS-SDLCAD technique on 30%
of TSS dataset. The experimental values revealed that the HMFS-SDLCAD algorithm has gained maximal
classifier results under all class labels. For instance, with label-1, the HMFS-SDLCAD model has offered

Table 3: Result analysis of HMFS-SDLCAD technique with various measures on 70% of TRS dataset

Training phase (70%)

Class labels Accuracy Precision Recall F-Score MCC

Label 1 99.77 98.29 99.51 98.89 98.77

Label 2 99.85 99.20 99.43 99.31 99.23

Label 3 99.80 99.62 98.51 99.07 98.96

Label 4 99.85 99.74 98.84 99.29 99.20

Label 5 99.83 99.51 98.92 99.22 99.12

Label 6 99.90 99.52 99.57 99.54 99.49

Label 7 99.87 99.14 99.63 99.39 99.31

Label 8 99.87 99.23 99.54 99.38 99.31

Label 9 99.92 97.52 97.12 97.32 97.28

Label 10 99.92 97.07 99.29 98.16 98.13

Label 11 99.87 99.40 99.35 99.38 99.30

Label 12 99.95 97.51 97.16 97.34 97.31

Average 99.87 98.81 98.91 98.86 98.79

Figure 6: Result analysis of HMFS-SDLCAD technique on 70% of TRS dataset
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accuy, precn, recal, Fscore, and MCC of 99.74%, 98.02%, 99.61%, 98.81%, and 98.67% respectively.
Likewise, with label-5, the HMFS-SDLCAD model has offered accuy, precn, recal, Fscore, and MCC of
99.87%, 99.46%, 99.32%, 99.39%, and 99.32% correspondingly. Similarly, with label-10, the HMFS-
SDLCAD model has obtainable accuy, precn, recal, Fscore, and MCC of 99.88%, 95.79%, 98.67%,
97.21%, and 97.16% respectively. Eventually, with label-12, the HMFS-SDLCAD technique has offered
accuy, precn, recal, Fscore, and MCC of 99.98%, 98.32%, 99.15%, 98.73%, and 98.72% respectively.

Figure 7: Confusion matrix of HMFS-SDLCAD technique under 30% of TSS dataset

Table 4: Result analysis of HMFS-SDLCAD technique with various measures on 30% of TSS dataset

Testing phase (30%)

Class labels Accuracy Precision Recall F-Score MCC

Label 1 99.74 98.02 99.61 98.81 98.67

Label 2 99.86 99.34 99.34 99.34 99.26

Label 3 99.76 99.46 98.27 98.86 98.73

Label 4 99.84 99.66 98.78 99.22 99.13

Label 5 99.87 99.46 99.32 99.39 99.32

Label 6 99.92 99.53 99.66 99.60 99.55

Label 7 99.83 98.95 99.47 99.21 99.11

Label 8 99.82 99.14 99.14 99.14 99.04

Label 9 99.95 98.14 98.60 98.37 98.34

Label 10 99.88 95.79 98.67 97.21 97.16

Label 11 99.85 99.73 98.84 99.28 99.20

Label 12 99.98 98.32 99.15 98.73 98.72

Average 99.86 98.79 99.07 98.93 98.85
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The training accuracy (TA) and validation accuracy (VA) attained by the HMFS-SDLCAD method on
test dataset is demonstrated in Fig. 9. The experimental outcome implied that the HMFS-SDLCAD model
has gained maximum values of TA and VA. In specific, the VA seemed that superior to TA.

The training loss (TL) and validation loss (VL) achieved by the HMFS-SDLCAD system on test dataset
are established in Fig. 10. The experimental outcomes inferred that the HMFS-SDLCAD approach has able
least values of TL and VL. In specific, the VL appeared to be lower than TL.

Figure 8: Result analysis of HMFS-SDLCAD technique on 30% of TSS dataset

Figure 9: TA and VA analysis of HMFS-SDLCAD technique
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A detailed precision-recall examination of the HMFS-SDLCAD approach on test dataset is exhibited in
Fig. 11. By observing the figure, it can be noticed that the HMFS-SDLCAD model has accomplished
maximal precision-recall performance under all labels.

Fig. 12 depicts the comparative accy, precn, and recal analysis of the HMFS-SDLCAD approach with
existing methods [22–24]. The figure represents that the random forest (RF), support vector machine (SVM),
multilayer perceptron (MLP), and deep neural network (DNN) techniques have demonstrated worse

Figure 10: TL and VL analysis of HMFS-SDLCAD technique

Figure 11: Precision-recall curve analysis of HMFS-SDLCAD technique
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performance with lower values of accy, precn, and recal. Next, the long short term memory (LSTM)
algorithm has tried to exhibit moderate performance with accy, precn, and recal of 99.42%, 97.85%, and
98.90% respectively. In addition, the RF-NML model has resulted in reasonable outcomes with accy,
precn, and recal of 98.50%, 97.26%, and 98.12% correspondingly. But, the HMFS-SDLCAD model has
outperformed other methods with maximum accy, precn, and recal of 98.86%, 98.79%, and 99.07%
correspondingly.

Fig. 13 demonstrates a comparative Fscore and MCC examination of the HMFS-SDLCAD model with
existing models. The figure indicated that the RF, SVM, MLP, and DNN models have shown poor
performance with lower values of Fscore and MCC. Next, the LSTM model has tried to exhibit moderate
performance with Fscore and MCC of 98.34% and 98.26% respectively. Then, the RF-NML model has
resulted in reasonable outcomes with Fscore and MCC of 98.59% and 98.11% respectively. However, the
HMFS-SDLCAD model has outperformed other methods with maximum Fscore and MCC of 98.93% and
98.85% respectively. The above mentioned results and discussion reported that the HMFS-SDLCAD
model has accomplished effectual outcomes over other methods.

Figure 12: Accy, precn, and recal analysis of HMFS-SDLCAD technique with existing algorithms
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4 Conclusion

In this study, a new HMFS-SDLCAD model has been developed to recognize the occurrence of
cyberattacks in the IoT environment. At the preliminary stage, data pre-processing is carried out to
transform the input data into useful format. Then, the SSOPSO algorithm is utilized to elect features. In
addition, the WOA with SBiGRU model is utilized for the identification and classification of
cyberattacks. The experimental analysis of the HMFS-SDLCAD model is validated using benchmark
dataset and the results are assessed under several aspects. The simulation outcomes pointed out the
improvements of the HMFS-SDLCAD model over recent approaches. Thus, the HMFS-SDLCAD model
can be employed for effectual identification of cyberattacks in the IoT environment. In future, feature
reduction and outlier removal approaches can be included to enhance the classifier outcomes.
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