
Improved Metaheuristic Based Failure Prediction with Migration Optimization
in Cloud Environment

K. Karthikeyan1,*, Liyakathunisa2, Eman Aljohani2 and Thavavel Vaiyapuri3

1Department of Computer Applications, Anna University, Regional Campus, Madurai, Madurai, India
2Department of Computer Science, College of Computer Science and Engineering, Taibah University, Madinah, Saudi Arabia

3College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 16278, Saudi Arabia
*Corresponding Author: K. Karthikeyan. Email: adithyakarthi@gmail.com

Received: 21 April 2022; Accepted: 08 June 2022

Abstract: Cloud data centers consume high volume of energy for processing and
switching the servers among different modes. Virtual Machine (VM) migration
enhances the performance of cloud servers in terms of energy efficiency, internal
failures and availability. On the other end, energy utilization can be minimized by
decreasing the number of active, underutilized sources which conversely reduces
the dependability of the system. In VM migration process, the VMs are migrated
from underutilized physical resources to other resources to minimize energy uti-
lization and optimize the operations. In this view, the current study develops an
Improved Metaheuristic Based Failure Prediction with Virtual Machine Migration
Optimization (IMFP-VMMO) model in cloud environment. The major intention
of the proposed IMFP-VMMO model is to reduce energy utilization with maxi-
mum performance in terms of failure prediction. To accomplish this, IMFP-
VMMO model employs Gradient Boosting Decision Tree (GBDT) classification
model at initial stage for effectual prediction of VM failures. At the same time,
VMs are optimally migrated using Quasi-Oppositional Artificial Fish Swarm
Algorithm (QO-AFSA) which in turn reduces the energy consumption. The per-
formance of the proposed IMFP-VMMO technique was validated and the results
established the enhanced performance of the proposed model. The comparative
study outcomes confirmed the better performance of the proposed IMFP-VMMO
model over recent approaches.

Keywords: Cloud computing; energy efficiency; virtual machine migration;
failure prediction; energy optimization; metaheuristics

1 Introduction

Cloud Computing (CC) is a platform that provides on-demand access to computer system resources to
its users while the resources are vigorously provisioned together to meet customer demands [1]. In general,
service providers provide three services to customers such as Software as a Service (SaaS), Infrastructure as a
Service (IaaS), and Platform as a Service (PaaS) through cloud data centers. With increasing volume of
customer demands for the services rendered by data centers, the volume of energy used by such data
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centers also increases simultaneously [2]. Between 2010 and 2040, global power utilization is expected to
increase up to 48% whereas it is 34% increase in case of CO2 emissions. So, service providers have
made multiple attempts to minimize the cost incurred upon energy in data centers owing to laws and
regulations framed by global nations [3]. Further, the service providers are also working on service cost
mitigation followed by increased profit rate. At the same time, consumers also need quality service at a
minimum cost that can be defined via Service Level Agreement (SLA). As a result, it becomes essential
to assess the performance of service delivered to the users in association with target achievements such as
cost mitigation and low power utilization [4]. However, these objectives are challenging to achieve by the
providers who are expected to meet the user’s demands as well.

The optimization of data centers, in terms of energy efficiency, has gained substantial interest in recent
times [5,6]. When cloud data centers work with less number of computing devices excluding optimization, it
may result in high energy dependency [7]. Numerous researches have suggested that the computational
elements of running servers must exhibit maximum capability to increase the energy efficiency. However,
this scenario result in performance degradation. In order to resolve the performance degradation issue that
arose as a result of functioning at maximum capacity, static optimum consumption threshold is described
for all types of resources which is inclusive of bandwidth, processing, etc [8]. But, static threshold
method results in switching off the machines or else the much-needed resources are not considered. In
literature, alternative methods have been proposed, one of which is server consolidation in which the
number of energetic Physical Machines (PM) is reduced by compiling Virtual Machines (VMs) as small
sets of Physical Machines (PMs) or it is achieved through VM migration as well [9]. But, server
consolidation and VM migration methods yield less output from a service user’s perspective whereas the
service provider experiences the energy overhead [10]. It is possible to mitigate energy utilization by
decreasing the number of active, underutilized sources and conversely, it reduces the dependability of the
system. This scenario forms a crucial trade-off between the metrics considered.

The current study develops an Improved Metaheuristic Based Failure Prediction with Virtual Machine
Migration Optimization (IMFP-VMMO) model in cloud environment. The major intention of the proposed
IMFP-VMMO model is to reduce energy utilization and maximum performance in terms of failure
prediction. The proposed IMFP-VMMO model primarily employs Gradient Boosting Decision Tree
(GBDT) classification model for effectual prediction of VM failures. At the same time, optimal VM
migration process is also carried out using Quasi-Oppositional Artificial Fish Swarm Algorithm (QO-
AFSA), which in turn reduces energy consumption. The performance of the proposed IMFP-VMMO
technique was validated to confirm the enhanced performance of the proposed model.

2 Related Works

The current section provides a comprehensive survey of existing VM migration and failure prediction
models in cloud environment. Huang et al. [11] presented an allocation system for optimization based on user
requirements from the cloud data center. At first, large number of application requests, raised from mobile
devices and phones, are considered as a set of VM lists from data center which are then submitted to
cloud platform. The proposed method allocates the received VMs to applicable PMs, according to the
current throughput of PMs from the data center and their usage of hardware resources. In line with
dynamic workload, a load of PM that host the VMs might be relatively high. In the study conducted
earlier [12], the authors presented an Enhanced Artificial Bee Colony (E-ABC) approach to reduce the
total energy consumption with limited number of migrations. The proposed method migrates the VMs
from the overloaded host to underloaded host, thus saving energy. Witano et al. [13] presented a neural
network-based VM consolidation algorithm that adoptively selects an effective approach based on cloud
provider, goal priority and environmental parameters. Performance evaluation results and dataset

1642 CSSE, 2023, vol.45, no.2



generation using simulation on real-time PlanetLab VM workload trace infer that adoptive selector can
achieve remarkable outcomes.

Zhou et al. [14] developed a new algorithm called EEOM (Energy Efficacy Optimization of VM
Migration). In line with memory and CPU factors, the proposed method augments three primary phases
such as host location, trigger time, and VM selection. Further, the presented method uses virtualization
process and migrates some of the VMs from over-loaded hosts and medium- and under-loaded hosts. In
literature [15], the authors proposed a New Linear Regression (NLR) prediction system i.e., VM
placement policy and host overload/underload in order to minimize SLAV and EC. The presented
algorithm is capable of predicting CPU consumption. Gholipour et al. [16] developed a cloud resource
management process according to multi-criteria decision-making process. In this method, a joint VM and
container migration process are used simultaneously. The outcomes of the simulation with
ContainerCloudsim simulator confirmed the feasibility of the projected method in terms of prominent
reduction in energy consumption.

3 The Proposed Model

VM migration is performed by starting with one PM and then moving on to another machine. It can be
employed to stack, adjust and achieve PM blame tolerance too. VMs are migrated in order to ensure
sensibility, implementation, and optimum variation in non-critical structural failure. To be specific, it
supports ‘heap-adjusting datacenter’ through migration of VMs from over-loaded servers to under-loaded
servers/PM. In this work, VMM cloud datacenters, energy saving and machine learning based creative
method are concentrated. The unit prepared from cloud condition i.e., Virtual Machine is employed in the
fabrication of cloud foundation with huge volumes of interconnected virtualization datacenters. In this
regard, the benefits of VM migration is mostly offered to the client on web as an on-demand service.

3.1 Failure Prediction Module

Prediction model, in machine learning, is used to forecast the participation of different data incidences. It
performs the assignment based on the outstanding infrastructure that is applied to retrieve novel data. The
presented GBDT classification is a failure prediction method for logical work process in which proactive
adaptation for non-critical failure is considered. The failure effect of work process assignment, on cloud
asset amid implementation, is minimized by ML technique. The failed VM is then repositioned to a new
region so as to spare the asset. [17]

Here, the data is provided with n samples and m features,D ¼ fðxi; yiÞgni¼1, whereas xi 2 Rm and yi 2 R,
the forecasts in the GBDTmethod, ŷi, is determined as a tree-based additive ensemble method, ’ðxiÞ includes
K additive function, fk , which are demonstrated as follows

ŷi ¼ ’ xið Þ ¼
XK
k¼1

fk xið Þ; fk 2 F (1)

whereas F ¼ ff ðxÞ ¼ wqðxÞg is a group of Classification and Regression Trees (CART) in which qðxÞ maps
all the input feature x to one of the T leaves from the tree by weighted vector, w 2 RT :

To provide the function determined above, GBDT technique reduces the following regularization
objective function [18]:eL ¼

X
i

l yi; ŷið Þ þ
X
k

� fkð Þ (2)
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Here, lðyi; ŷiÞ implies the loss function of ith instance between the forecasted value ŷi and target value yi,

and �ðfkÞ ¼ cT þ 1=2k Wk k2 signifies the regularized element. This element discourages all kth tree, fk
denotes the over-fitting with hyperparameter k, the regularized parameter penalized the weighted vector
w, and c denotes the term which penalizes the tree in further leaf development. In order to approximate
the loss function, a second-order Taylor expansion function is utilized as follows.

L ðtÞ ’
Xn
i¼1

l yi; ŷið Þ þ gift xið Þ þ 1

2
hif

2
t xið Þ

� �
þ � ftð Þ (3)

While the tree is trained from an additive approach, all the iteration indices of the trained procedure are

represented through t. Therefore, L tð Þ signifies the tth loss of the trained procedure. At this point, it can also

determine the gradient, gi ¼ @
ŷðt�1Þ
i

lðyi; ŷðt�1Þ
i Þ, and hessian, hi ¼ @2

ŷ lðyi; ŷðt�1Þ
i Þ based on the determined loss

function. To provide the derived gradient and hessian so as to yield ðxÞ, an optimum weight of the leaf j is
calculated using the formula given below.

w�
j ¼ � Gj

Hj þ k
(4)

whereas Gj ¼
P

i2I gi and Hj ¼
P

iE hi refers to the entire summation of gradient and hessians to the data
sample index i.e., Ij. But, in order to effectually calculate the optimum weight w�

j , it can greedily
maximize the subsequent gain score to search for optimum splits in the leaf node during all the iterations
as given below.

Gain ¼ 1

2

G2
L

HL þ k
þ G2

R

HR þ k
� ðGL þ GRÞ2

HL þ HRð Þ þ k

" #
� c (5)

At this point, L and R denote the sum of gradient and hessians which depend upon certain indices of left
and right children of the provided leaf nodes, IL and IR, correspondingly. Minkowski distance, one of the
uniqueness measures that is increasingly used in recent years, is measured by adding the difference
between two data focus to the extent that each machine is concerned. The distance between two
concentrations such as resilience and settled edge esteems are described below.

md i; jð Þ ¼
X

mij � mjk

�� ��� �1=q
(6)

The intention to select Eq. (6) is to make the presented algorithm adaptable, because Naïve Bayes
classification is a fast predictor as per the literature. The underlying motive behind the selection of GBDT
classification is that it has high predictive performance with less computation time. So, it is used in cloud
architecture that mainly necessitates the earlier prediction of VM failure.

3.2 VM Migration Optimization Module

VM approach is the most commonly employed approach in CC to actualize these three services in
addition to VM migration processes that have been employed in supporting virtualized CC datacenters.
The primary objective of offering cloud services is to reduce the energy consumption of data centers.
VM, at the source host, is stopped after every condition of the source host is replaced with an objective
or purpose host. Then, the working of VM is resumed at objective host. Fig. 1 illustrates the processes
involved in VM migration under cloud environment. This migration process has two imperative
parameters which are explained herewith.

1644 CSSE, 2023, vol.45, no.2



Down Time: Downtime denotes the time in which the VMs’ service cannot be reached. The migration
process ensures that the VMs do not face much downtime.

Migration Time: It refers to the entire amount of time required for migration of VMs from source to the
purpose hub with no control on its accessibility. Virtualization is the real idea of CC and it has obtained
significance from mainstream CC environment.

QO-AFSA technique is explained in a typical manner to determine an optimum solution in the model
within constraints. Cloud service providers focus mainly upon minimizing the energy utilization of
servers from the failed VMs. The heuristic i is optimized with a concern to settle for unique workload
target choice while the energy utilization is assumed based on the selection of VMs. The method
presented in this study helps in energy saving through migration of VMs to the ideal target with
particular edge.

Through natural simulation of swarming, preying and random behaviors of fish, AFSA completes the
process of finding the optimum solution. Artificial Fish (AF) swarming process is composed of location
Xiði ¼ 1; 2; 3 . . . :;NÞ of the fish swarming, the population size ‘N’ of fish swarming, the crowd factor d
of the fish swarming, the Yc ¼ f ðxiÞ food concentration of the existing location of fish swarming, the step
size of the fish swarming, the visual of the fish swarming, the try-number of the fish swarming, the
maximal amount of iterations, and the distance between fish Xi and Xj i.e., dij ¼ Xi � Xj

�� ��. [19].

Figure 1: The proposed Virtual Machine migration process in cloud environment
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Prey Behavior: This is a primary behavior in FSA in which Artificial Fish (AF) arbitrarily chooses a
position Xj in the fields of vision and compares the food concentration of existing positions Xi and Xj.
When the Yj food concentration of the arbitrary location is lesser than the Yi food concentration of the
existing location, Xj position is re-elected. Till the selection number is higher than the try-number of AF,
and no location with high concentration, than the existing location, iterations are done. Then, the arbitrary
behavior is implemented as shown in the following equation.

Xi t þ 1ð Þ ¼ Xi tð Þ þ step � X j tð Þ�X i tð Þ
X j tð Þ�X i tð Þ

�� �� � randðÞ (7)

Swarm Behavior: This is an important fish survival model and is utilized for cooperative foraging and
avoiding the enemy. It comprises of two essential conditions for aggregated behaviors such as one is closer to
the center of fish group and next is the lower crowding degree of fish group. With regards to the position Xj

and number nf of each fish in the field of vision, the central location Xc ¼
Pnf

j¼1 Xj=nf can be defined, and the
concentration Y is evaluated. Fig. 2 depicts the steps involved in AFSA.

When the crowding degree nf =N � d of the existing fish population and the concentration Y of the
central location are higher than Y, the scenario indicates that the central location Xc is superior and not
crowded. So, cluster behavior is implemented or else foraging behavior is implemented as given below.

Xiðt þ 1Þ ¼ XiðtÞ þ step � Xc � XiðtÞ
Xc � XiðtÞk k � rand (8)

Follow Behavior: AF observes the fish with the field of vision, defines the Yj optimum food
concentration and their location Xj which are closer to the location. When Yj is higher than the
concentration Yi of the existing location and density nf =N � d of the existing fish, then the scenario
denotes that the superior location of Xj can follow pursuit behavior or else foraging behavior too.

Figure 2: Steps in AFSA
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Xiðt þ 1Þ ¼ XiðtÞ þ step � XjðtÞ � XiðtÞ
XjðtÞ � XiðtÞ

�� �� � rand (9)

Random Behavior: It is a default behavior in fish swarming. In AF visual field, the arbitrary election of
orientation for migration can avoid the fish which exhibits low efficacy and local optimal since these two
characteristics are highly advantageous for global optimal. The formulation is shown below.

Xiðt þ 1Þ ¼ XiðtÞ þ visual � rand (10)

Metaheuristics generally create the primary solution on an arbitrary basis from the searching range;
when the primary solution is distant from the global optimum solution, the convergence speed of
population can be developed slowly and is trapped into local optimum solution. In order to bypass this
difficulty, QO-AFSA technique is developed in which the arbitrary solution is placed at distant position
from the global optimum solution compared to opposite solution which has 50% chance.

According to this method, the optimum N individuals are chosen from the population that contains N
arbitrary individuals and the opposite solution of these individuals [20]. Assume that
X ¼ ðX1;X2; . . . ;XDÞ refers to the point from D-dimension space, and their opposite point is
XOBL ¼ ðXOBL

1 ;XOBL
2 ; . . . ;XOBL

D Þ which is computed using Eq. (11); their quasi-opposite point

XQOBL ¼ XQOBL
1 ;XQOBL

2 ; . . . ;XQOBL
D

� 	
is calculated by Eq. (12).

XOBL
d ¼ lbd þ ubd � Xd (11)

XQOBL
d ¼

lbdþubd
2 þ randð0; 1Þ � ðXOBL

d � lbdþubd
2 ÞXd ,

lbdþubd
2

XOBL
d þ randð0; 1Þ � ðlbdþubd

2 � XOBL
d ÞXd � lbdþubd

2



(12)

Here Xd; XOBL
d , and XQOBL

d stand for dth dimensional of X , their opposite point XOBL, and their quasi-
opposite point XQOBL correspondingly. Also, lbd and ubd illustrate the dth dimensional of lesser boundary lb
and upper boundary ub correspondingly.

QO-AFSA technique focuses on energy utilization. The purpose of utility capacity is to increase VM
arrangement by reducing the energy utilization as described herewith. Low estimation of energy
utilization helps in reduced consumption.

ECi ¼ min energyideal machine;i þ energyrunningmachine;i
� �

(13)

4 Performance Validation

The current section shows the performance of the proposed IMFP-VMMO model in terms of failure
prediction and VM migration optimization. Tab. 1 provides the clear overview in terms of failure
prediction outcomes accomplished by IMFP-VMMO model and other existing models [21–23]. The
experimental values imply that the proposed IMFP-VMMO model achieved effectual outcomes than all
other models.

Fig. 3 demonstrates a brief overview on accuracy analysis results achieved by IMFP-VMMOmodel and
other recent models. The figure indicates that fuzzy classifier model demonstrated ineffectual prediction
outcome with a low accuy of 86.12%. Followed by, k-nearest neighbor (KNN) model achieved a slightly
enhanced performance with a moderate accuy of 90.47%. At the same time, Naïve Bayes (NB) classifier
accomplished near optimal accuy value of 97.41%. However, the proposed IMFP-VMMO model attained
better results with a maximum accuy of 98.78%.
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Fig. 4 illustrates the brief sensy, specy, precn, and Fscore analysis results accomplished by the proposed
IMFP-VMMO algorithm and other recent methods. The figure shows that fuzzy classifier method
demonstrated ineffectual prediction outcomes with low sensy, specy, precn, and Fscore values such as
93.35%, 89.75%, 89.95%, and 93.39% respectively. Next, KNN model attained a slightly enhanced
performance with moderate sensy, specy, precn, and Fscore values such as 89.34%, 86.98%, 92.84%, and
86.32% respectively. Simultaneously, NB classifier accomplished near optimal sensy, specy, precn, and
Fscore values such as 96.11%, 97.23%, 97.17%, and 97.89% respectively. But, the proposed IMFP-
VMMO algorithm surpassed all other models and achieved maximum sensy, specy, precn, and Fscore

values such as 98.26%, 98.02%, 98.42%, and 99.12% respectively.

Tab. 2 and Fig. 5 shows the migration level performance achieved by IMFP-VMMO model under
varying number of failed VMs. The results infer the enhanced migration level of IMFP-VMMO model.
For instance, with 10 failed VMs, the proposed IMFP-VMMO model offered a migration level of 2. At
the same time, with 20 failed VMs, IMFP-VMMO methodology obtained a migration level of 3. Along
with that, with 40 failed VMs, IMFP-VMMO system attained a migration level of 8. Moreover, with
50 failed VMs, the proposed IMFP-VMMO algorithm achieved a migration level of 9.

Table 1: Comparative analysis results of IMFP-VMMO method and other existing approaches

Methods Accuracy Sensitivity Specificity Precision F-Score

IMFP-VMMO 98.78 98.26 98.02 98.42 99.12

Naïve Bayes Algorithm 97.41 96.11 97.23 97.17 97.89

KNN Algorithm 90.47 89.34 86.98 92.84 86.32

Fuzzy Classifier Algorithm 86.12 93.35 89.75 89.95 93.39

Figure 3: Accuy analysis results of IMFP-VMMO technique and other existing approaches
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Figure 4: Comparative analysis results of IMFP-VMMO technique in terms of (a) Sensy, (b) Specy, (c)
Precn, and (d) Fscore

Table 2: Migration level analysis results of IMFP-VMMO method under distinct number of failed VMs

No. of failure VM Migration level

10 2

20 3

30 6

40 8

50 9

CSSE, 2023, vol.45, no.2 1649



Tab. 3 and Fig. 6 show the detailed Energy Consumption (ECM) examination results achieved by the
proposed IMFP-VMMO model and other existing models under distinct number of failed VMs. The table
values highlight that IMFP-VMMO model produced the least ECM values under all number of failed
VMs. For instance, with 5 failed VMs, IMFP-VMMO model obtained a low ECM of 891 KWh, whereas
Artificial Bee Colony (ABC) with Bat Algorithm (BA) named ABC-BA, ABC, BA, Particle Swarm
Optimization (PSO), and Dynamic Adaptive Particle Swarm Optimization (DAPSO) models demanded
high ECM of 1131 KWh, 1259 KWh, 2292 KWh, 2462 KWh, and 1528 KWh respectively. Along with
that, with 15 failed VMs, the proposed IMFP-VMMO technique obtained a low ECM of 1825 KWh,
whereas ABC-BA, ABC, BA, PSO, and DAPSO models reached superior ECM values such as
2179 KWh, 2419 KWh, 3679 KWh, 4769 KWh, and 2419 KWh correspondingly. Simultaneously, with
30 failed VMs, the proposed IMFP-VMMO approach attained a low ECM value of 2646 KWh, whereas
ABC-BA, ABC, BA, PSO, and DAPSO models required high ECM values such as 3000 KWh,
4457 KWh, 3169 KWh, 4231 KWh, and 3608 KWh respectively. Concurrently, with 40 failed VMs, the
proposed IMFP-VMMO model demanded the least ECM of 1584 KWh, whereas ABC-BA, ABC, BA,
PSO, and DAPSO algorithms required high ECM of 1853 KWh, 4344 KWh, 3254 KWh, 4726 KWh,
and 4330 KWh correspondingly.

A comprehensive Success Rate (SUR) analysis was conducted between IMFP-VMMO model and other
recent models and the results are shown in Tab. 4 and Fig. 7. The figure implies that the proposed IMFP-
VMMO model obtained effectual outcomes with maximum SUR. For instance, with 10 testing VMs, the
proposed IMFP-VMMO model exhibited a high SUR of 99.28%, whereas ABC-BA, ABC, BA, PSO,
and DAPSO models portrayed the least SUR values such as 97.87%, 70.77%, 47.89%, 78.86%, and
19.38% respectively. Then, with 20 testing VMs, the proposed IMFP-VMMO model exhibited a high
SUR of 92.24%, whereas ABC-BA, ABC, BA, PSO, and DAPSO models accomplished the least SUR
values such as 86.61%, 49.65%, 29.94%, 35.92%, and 56.69% respectively.

Figure 5: Migration level analysis results of IMFP-VMMO method under distinct number of failed VMs
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Table 3: ECM analysis results of IMFP-VMMO technique and other existing algorithms under distinct number
of failed VMs

Energy consumption (KWh)

No. of failure
VM

IMFP-
VMMO

ABC-BA
algorithm

ABC
algorithm

Bat
algorithm

PSO
algorithm

DAPSO
algorithm

5 891 1131 1259 2292 2462 1528

10 1018 1287 2349 3537 4174 2518

15 1825 2179 2419 3679 4769 2419

20 2249 2462 3353 4500 3537 2702

25 1089 1301 2363 2745 3523 2504

30 2646 3000 4457 3169 4231 3608

35 2405 2787 3721 4273 4769 4471

40 1584 1853 4344 3254 4726 4330

Figure 6: ECM analysis results of IMFP-VMMO technique under distinct number of failed VMs

Table 4: SUR analysis results of IMFP-VMMO technique and other existing algorithms under distinct number
of testing VMs

Success rate (%)

No. of testing
VM

IMFP-
VMMO

ABC-BA
algorithm

ABC
algorithm

Bat
algorithm

PSO
algorithm

DAPSO
algorithm

10 99.28 97.87 70.77 47.89 78.86 19.38

20 92.24 86.61 49.65 29.94 35.92 56.69

30 98.93 93.65 45.78 42.96 29.24 53.87

40 98.58 94.70 21.49 62.32 50.71 36.28

50 90.13 84.50 41.20 67.25 59.15 36.98
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Tab. 5 and Fig. 8 provide an overview on the Failure Rate (FR) analysis results accomplished by IMFP-
VMMO method and other existing approaches under distinct number of testing VMs. The table values
highlight that the proposed IMFP-VMMO model produced the least FR value under all testing VMs. For
instance, with 10 testing VMs, IMFP-VMMO algorithm obtained a minimal FR of 0.72%, whereas ABC-
BA, ABC, BA, PSO, and DAPSO models reached high FR values such as 2.13%, 29.23%, 52.11%,
21.14%, and 80.62% correspondingly. Followed by, with 30% testing VMs, the proposed IMFP-VMMO
model obtained a low FR of 1.07%, whereas ABC-BA, ABC, BA, PSO, and DAPSO approaches
achieved high FR values such as 6.35%, 54.22%, 57.04%, 70.76%, and 46.13% correspondingly.
Simultaneously, with 50 testing VMs, the proposed IMFP-VMMO system obtained the least FR of
9.87%, whereas ABC-BA, ABC, BA, PSO, and DAPSO models reached high FR values such as 15.50%,
58.80%, 32.75%, 40.85%, and 63.02% respectively.

From the detailed results and discussion, it is clear that the proposed IMFP-VMMOmodel accomplished
the maximum performance in terms of failure prediction and VM migration optimization.

Figure 7: SUR analysis results of IMFP-VMMO technique under distinct number of testing VMs

Table 5: FR analysis results of IMFP-VMMO technique and other existing algorithms under distinct number
of testing VMs

Failure rate (%)

No. of testing
VM

IMFP-
VMMO

ABC-BA
algorithm

ABC
algorithm

Bat
algorithm

PSO
algorithm

DAPSO
algorithm

10 0.72 2.13 29.23 52.11 21.14 80.62

20 7.76 13.39 50.35 70.06 64.08 43.31

30 1.07 6.35 54.22 57.04 70.76 46.13

40 1.42 5.30 78.51 37.68 49.29 63.72

50 9.87 15.50 58.80 32.75 40.85 63.02
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5 Conclusion

In this article, a novel IMFP-VMMO model has been developed for minimizing the energy utilization
and maximum failure prediction performance in cloud environment. The proposed IMFP-VMMO model
uses GBDT classification model for effectual prediction of VM failures. In addition, optimal migration of
VMs is also carried out using QO-AFSA technique which in turn reduced the energy consumption. The
performance of the proposed IMFP-VMMO technique was validated while the comparative study results
inferred that the proposed IMFP-VMMO model is superior to other recent approaches. Thus, IMFP-
VMMO technique can be used as an effectual tool for failure prediction and VM migration optimization
in cloud environment. In future, hybrid deep learning models can be applied to improve VM failure
prediction performance in cloud environment.
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