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Abstract: Automated segmentation of brain tumors using Magnetic Resonance
Imaging (MRI) data is critical in the analysis and monitoring of disease develop-
ment. As a result, gliomas are aggressive and diverse tumors that may be split into
intra-tumoral groups by using effective and accurate segmentation methods. It is
intended to extract characteristics from an image using the Gray Level Co-occur-
rence (GLC) matrix feature extraction method described in the proposed work.
Using Convolutional Neural Networks (CNNs), which are commonly used in bio-
medical image segmentation, CNNs have significantly improved the precision of
the state-of-the-art segmentation of a brain tumor. Using two segmentation net-
works, a U-Net and a 3D CNN, we present a major yet easy combinative techni-
que that results in improved and more precise estimates. The U-Net and 3D CNN
are used together in this study to get better and more accurate estimates of what is
going on. Using the dataset, two models were developed and assessed to provide
segmentation maps that differed fundamentally in terms of the segmented tumour
sub-region. Then, the estimates was made by two separate models that were put
together to produce the final prediction. In comparison to current state-of-the-art
designs, the precision (percentage) was 98.35, 98.5, and 99.4 on the validation set
for tumor core, enhanced tumor, and whole tumor, respectively.
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1 Introduction

Disease may be described as the uncontrolled, unusual proliferation and division of cells in the body that
occurs in the absence of any growth or growth in the environment. An accumulation of abnormal cell
formation and division in the cerebrum tissue causes it to get worse and this condition is referred to as
brain cancer. In spite of the fact that cerebellar growths are not needlessly abnormal, they are the most
lethal illness [1]. Furthermore, they are the most difficult cancers to treat due to their intricacies. In regard
to brain tumors, the origin of the tumor decides whether it is classified as a primary or metastatic brain
tumor. In contrast to primary brain tumors, which are created from brain tissue cells, metastatic brain
tumors are generated when cells from another part of the body become dangerous and move to the
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cerebrum [2]. Metastatic brain tumors are not as common as primary brain tumors. Primary brain tumors are
created when cells derived from brain tissue cells have malignant tendencies and proliferate. Glanzhiomas
are a kind of cerebrum growth that arises from the glial cells that coat the surface of the brain. They are
not cancerous. Even though they are uncommon, most brain tumor segmentation [3], research is now
limited to these particular kinds of brain tumors, which is a severe constraint.

The term “glioma” refers to a broad range of different types of brain tumors, ranging from low-grade
gliomas such as oligodendrogliomas and astrocytoma to high-grade glioblastomamultiforme (grade IV),
which is the most severe and deadly primary brain cancer in humans. Glanomas are treated using a mix
of surgical, chemotherapy, and radiation treatments, all of which are often used in conjunction with one
another to provide the best results. In regard to segmenting brain tumors such as glioblastomas and
assessing the therapeutic response, Magnetic Resonance Imaging (MRI) is the experimental tool of choice
[4]. MRI is a technology that is often utilized by an experienced radiologist to create a succession of
pictures (Flair, T1, T1, contrast, T2,…, etc.) to detect separate areas of malignancy. This collection of
pictures assists radiologists and other healthcare professionals in obtaining different types of information
about the tumor from the photographs they take (shape, volume, etc.). Manual segmentation in Magnetic
Resonance Imaging (MRI) is a time-consuming process that is mostly dependent on the expertise of the
person doing it [5–7]. The flow diagram of the proposed work is shown in Fig. 1.

3D CNN offer a very efficient that can do real-time dense volumetric segmentation in real-time. The 3D
multi-fiber unit, comprised of a collection of lightweight 3D convolutional networks, is used to lower the
computational burden on the network dramatically. By combining with contextual data, this structure
increases the discriminating power of the entire model to segregate tumors with varying sizes. The output
of the network is then post-processed using a 3D fully linked Conditional Random Field to produce
structural segmentation of appearance and spatial consistency. The SENet module is added to obtain the
important degree of each feature channel automatically through the sample-based self-learning, which can

Figure 1: Flow diagram of the proposed method
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improve recognition accuracy with less network parameters growth. A vehicle re-identification model with
greater local attention is presented. Branches of the model are global and local at the same time.

The following is the primary contribution of the planned work:

i. The Gray-Level Co-event matrix and the Vantage Point Tree are used to pick the elements of the
picture, and both have great execution and classifier capabilities.

ii. Networks with two segmentations, such as the U-Net and 3D CNN, are proposed for more accurate
and better predictions, respectively.

iii. The 3D CNN technique is used to more correctly separate the enhancing tumor.
iv. The 3D U-Net is employed for the tumor core because it performs better in the sub-region of the

final prediction than the 2D U-Net.

The remainder of the paper is organized as follows: Section 2 analysis the related works involved in the
brain tumor classification. Section 3 describes the proposed CNN model and how the dataset was used to
train and assess the neural network’s performance. Section 4 then analyses the experimental data and
results, including a performance comparison with alternative methodologies. Finally, Section 5 concludes
the key results of the proposed research.

2 Related Works

As stated by Menze et al. [8], the subject of brain tumor segmentation has attracted a large number of
researchers during the last three decades, resulting in an exponential increase in the number of large-scale
published publications concerning brain tumor segmentation throughout this period. The present
circumstance has for some time been believed to be one where the making of a brilliant mind cancer
division system would be an exceptionally desirable solution. More importantly, instead of requiring
professionals to spend time on manual diagnosis, this intelligent segmentation technology reduces the
amount of time required for the diagnosis procedure to a minimum. In this manner, doctors are given the
opportunity to spend more time with their silent over the span of treatment and follow-up. In an attempt
to automate this work performed by the radiologist, several studies have been conducted in the past few
years (i.e., the restriction and division of the whole growth and its subparts). It is possible to classify
these algorithms into two categories: (1) those that computerize the restriction and division of the whole
growth and its subareas [9], and (2) those that do not. The recording of many factors related to the
tumor’s features is required in order for these models to function, whereas generative models require prior
knowledge of the tumor and its tissue and appearance to function. Models that are discriminative [10], on
the other hand, become familiar with the quality of a cancer and how to segment it from physically
commenting on information without the requirement for extra manual preparation (made by radiologists).
The training data required by some algorithms, such as Deep Learning (DL) algorithms, can be rather
substantial. Convolutional Neural Networks (CNNs) exhibited their effectiveness as a feature recognition
and extraction tool. It was thanks to this technique that we were able to make substantial progress in all
computer vision tasks in 2012. When compared to other models, Alexnet a model in view of CNNs
created by Tamilvizhi et al. [11], it was proven to generate the best results in picture categorization.
Among other things, the AlexNet model is a more complex variant of the LeNet5 [12] model (in that it
has a greater number of layers than LeNet5), and a considerable lot of the best models in the PC vision
field are extended forms of the AlexNet model, including ZFNet [13], VGGNet [14], GoogleLetNet [15],
and RestNet [16] to name a few. Many classic Machine Learning (ML) methods have been outperformed
by CNNs in a variety of computer vision applications, including object identification and recognition,
among other things [17–20]. The categorization of brain tumors is a more challenging research problem
to answer than the classification of brain tumors. The following factors are recognized as contributing to
the challenges involved with the situation: The following statements are correct regarding brain tumors:
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In terms of shape, size, and intensity, they are quite diverse; in terms of appearance, tumors from various
disease groups may seem very similar to one another. Among the most frequent forms of pituitary tumor,
glioma, brain tumors, and meningiomas are those that account for the vast majority of occurrences.

Cheng et al. [21] explored the three-class brain tumor classification problem using T1-MRI data and
found that it was difficult to distinguish between them [22]. This was the first large classification study to
use the challenging dataset from fig-share, and it was the first significant classification work to do in the
field of classification. To extract characteristics from the region of interest, the proposed technique relied
on a tumor boundary that was manually drawn around the region of interest. When developing this study,
the authors carried out extensive trials using a broad range of picture features, in addition to a number of
classifier models. A Support Vector Machine (SVM) model was able to get the greatest classification
performance by incorporating Bag-of Words (BoW) characteristics into its design. Experimental
procedures followed a standard five-fold cross-validation technique, which was used for the current study
[23]. Performance measures such as sensitivity, specificity, and classification accuracy were measured and
compared to one another. Ismael and Abdel-Qadar [24] devised a categorization method based on
statistical data acquired from photographs using a Discrete Wavelet Transform (DWT) and a Gabor filter,
which they applied to the images. They were then employed in the training and classification of a Multi-
Layer Perceptron (MLP) classifier, which was then applied to the data to category. A prior research
project had used the fig-shared dataset, and this was the first time the approach had been tried on it. For
the training and validation sets, it was chosen to divide the database images into two groups of 70% and
30%, respectively, to establish a training set and a validation set.

In [25], the authors described how to use a CNN-based DL model to the problem of brain cancer
classification in an effective manner. In contrast to manually subdividing tumor areas, using CNN-based
classifiers offers the benefit of providing a totally automated classification method that eliminates the
need for human subdividing. Using data from brain MRI scans, a CNN architecture was built by Pashaei
et al. [26] for the purpose of extracting characteristics from the data. Each of the model’s five learnable
levels had a filter with a pixel size of 3 � 3 pixels, and all layers contained filters with the same pixel
size as the model. According to the CNN model, the accuracy of classification was 81 percent in this
case. A classifier model from the area of extreme learning machines was used to increase the performance
of the machine by merging CNN features with the model (ELM). According to this study, memory
measurements for the class of pituitary tumors were extraordinarily high. However, recall measurements
for the class of meningioma were fairly low. This demonstrates that the discriminating capacity of the
classifier has significant limitations. Afshar et al. [27] were able to improve the accuracy of brain tumor
classification by modifying the CNN design to include a capsule network (CapsNet). CapsNet took use of
the spatial connectivity that existed between the tumor and its surrounding tissues. Although this was
true, there was only a modest improvement in overall performance. F-measure is an external quality
metric usable for quality assessment activities. It leverages the principles of accuracy and recall in
information retrieval [28,29]. The clustering technique quality, which could be quantified using the F-
measure criterion, was compared. F-measure is an external quality metric suited for quality assessment
activities [30]. When extracting the skin lesion, the presence of texture-enhanced dermoscopic pictures
with uneven texture patches is a limitation. As a result, a 2D Gaussian filter was used to smooth the data
[31]. Meta-heuristic are an iterative generation processes that may lead a heuristic algorithm by diverse
responsive notions for exploring and exploiting the search space [32].

Jie et al. [33] classified brain tumors using capsule networks using a Bayesian technique. To enhance
tumor identification outcomes, a capsule network was employed instead of a CNN, since CNNs might
lose critical spatial information. The Bayes Cap framework was suggested by the team. They utilized a
benchmark brain tumor dataset to validate the proposed model. Water molecules in our bodies are
normally scattered at random. MRI works by aligning the protons in hydrogen atoms using a magnetic
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field. A radio wave beam then hits these atoms, causing the protons to spin in a specific way and release small
signals that the MRI device picks up. MRI pictures may be generated from these data and then analyzed
further. Images of the brain may be generated using this technology. These images might be utilized to
determine and analyse the tumor’s shape and size, as well as to determine the best course of therapy for
the brain tumor. In a patch-based approach is given in Brain Tumor Analysis and Detection Deep
Convolutional Neural Networks (BTADCNN), which addresses the challenge of brain tumor detection in
MRI. MRI images are separated into N patches, which are subsequently rebuilt from the individual
patches. In the next step, the center pixel label of each patch is calculated using a CNN model that has
been previously trained. When all patches have been projected, the total results are added together. Due
to the restricted resolution of MR images in the third dimension, each slice is split into a variety of axial
views to get the highest possible resolution. The architecture processes each individual 2D slice
sequentially, in which every pixel is connected through various MR modalities such as Fluid Attenuation
Inversion Recovery (FAIR), Diffusion Weighted Image (DWI), T1 and T1-contrast, spin–spin relaxation,
and image modalities such as numerous segmentation methods using CNN.

In [34], an accurate and automated categorization technique for brain tumors has been established in
Brain Tumor Classification using CNN (BTCCNN), which distinguishes between the three pathogenic
kinds of brain tumors (glioma, meningioma, and pituitary tumor). The deep transfer learning CNN model
is used to extract features from the brain MRI images, which are then fed into the solution. To categorize
the extracted features, well-known classifiers are employed. Following that, the system is subjected to a
thorough examination. When evaluated on the publicly accessible dataset from fig-share, the suggested
method outperforms all other comparable methods in terms of classification accuracy. By constructing
three Incremental Deep Convolutional Neural Network models that were used for entirely automated
segmentation of brain tumors, from beginning to end. These models differ from earlier CNN-based
models in that they use a trial and error technique to identify the suitable hyper-parameters rather than a
guided strategy to find the appropriate hyper-parameters. Furthermore, ensemble learning is employed to
develop a more efficient modelling system. The test of preparing CNN models was tackled by fostering a
one-of-a-kind preparation technique that considers the most affecting hyper boundaries by bouncing and
laying out a rooftop to these hyper boundaries to speed up the preparation cycle and reduce the training
time. In a study titled Brain Tumor Classification and Segmentation Using a Multiscale CNN
(BTCSMCNN) [35], MRI images of three types of tumors were analysed over three different views:
coronal, sagittal, and axial views. Pre-processing of the pictures was not necessary to eliminate skull or
spinal column components from the data. Using publicly available MRI images of 3064 slices from
233 patients, the approach’s performance is compared to that of previously published classical deep
learning and machine learning approaches.

Tumor class imbalances are another typical problem. Using data augmentation techniques, this problem
is frequently solved by resizing or rotating existing images. Currently, the majority of deep learning
algorithms incorporate tumor area classification [36]. However, the network does not know the
anatomical location of the tumor region. Images are segmented by breaking them into component
segments or regions, which allows for the identification of edges and objects in the images. This splitting
is performed on the basis of the image’s pixel properties [37]. Partitioning may be used to separate pixels
with similar forms and colours or to group pixels with similar colours and shapes together. Medical
imaging relies heavily on image segmentation, which is a common practice. The treatment of disorders of
the brain is often considered the most complex. Every year, around 350,000 new cases of brain tumor are
recorded globally, and the Five year survival rate for individuals diagnosed with a brain tumor is just
36% [38]. A benign (noncancerous) brain tumor may be malignant (cancerous). Four levels of severity
have been established by the WHO for brain tumors. Neurosurgeons often prescribe surgery to treat brain
tumors. On the other hand, in the late stages of tumor growth, various procedures such as radiation and
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chemotherapy are often advocated, because the only approach to diagnose is to try to kill or block the
proliferation of malignant cells. Because brain tumors have a high fatality rate, early detection is
important for appropriate treatment.

3 The Proposed Hybrid Feature Extraction for Brain Tumor Classification (HFEBTC)

3.1 Grey Level Co-Occurrence Matrix (GLCM)

One of the most common methods for obtaining texture information is the co-occurrence of Grey Levels
Matrices [39–42]. An image is represented by a GLCM matrix, which contains the frequency value of the
brightness difference between one pixel and its surroundings that occurs in the image. According to the
GLCM, the direction q is represented by an angle of (0, 45, 90, and 135). The distance (d) between two
pixels specifies the amount of space between them. Fig. 2 depicts a clear definition of direction and
distance in terms of arrows.

A reference pixel is the center pixel that contains the sign (x). Pixels 1, 2, 3, and 4 and pixel (x) is the
same, which means that the distance between them is d = 1. q = 0 is represented by the first pixel, q = 45 is
represented by the second pixel, q = 90 is represented by the third pixel, and q = 135 is represented by the
fourth pixel. It is necessary to know how far and in which direction you intend to glance before we can
calculate GLCM. The following step is to design the matrix framework that will be used in the paper.
The grey degree intensity range of the picture is represented by the framework matrix in this image. This
framework matrix will now be populated with information about the pixels in the picture that are close to
each other. After the occurrence matrix has been filled, the upsides of every element in the matrix are
standardized by separating the all-out number of components in the lattice by the absolute number of
elements in the matrix. Because the total of all elements in the surrounding matrix equals one,
normalizing each component of the matrix can be thought of as a probability function for each member in
the nearby matrix [43–46]. The objective is to include all GLCM’s features under a single scope.

3.2 Vantage Point Tree (VPT)

As a result, Vantage Point Trees (VPTs) are created by employing absolute distances between data points
from randomly chosen centers to recursively separate the data points (VPTs) [47–52]. At the end of each
cycle, these centers, which are referred to as Vantage Points (VPs), divide the data focus and thus around
half of them are inside the edge and the other half are outside of the threshold. This offers a framework
in which tree neighbours are more likely than not to be spatial neighbours, making the search for them
more efficient [53–60]. Fig. 3 portrays a model vantage point tree for a 2D arrangement of focuses,
which can be utilized to show the idea. Coming up next are the actions to take: The root hub is relegated
to all places in the request wherein they are got. From that point forward, a Vantage Point (R) is chosen
indiscriminately (Fig. 3a). The edge is determined and thus the focuses are separated into two equivalent
segments (a = 5). d (Point; V P) focuses relocate to the youngster hub on the left (P, S Q), while the
leftover focus moves to the kid hub on the right (U, T, V W) (Fig. 3b). The right youngster hub is

Figure 2: GLCM’s direction and distance
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managed first, trailed by different kids. Arbitrarily chosen VPs (U = 4) are chosen. This is trailed by a shift of
all focuses that are d (Point; V P) to the left youngster hub (T) and a shift of the rest of the right (V W)
(Fig. 3c). From that point onward, the left kid hub is taken care of along these lines. One of the VPs is
picked aimlessly (P a = 6). Following that, all focus that d (Point; V P) shifts to the left youngster hub
(S), and the rest of to the right kind hub (Q) of the tree (Fig. 3d). When the intensities of adjacent pixels
(I(ui) and I(vj)) are identical, the weighting function has a maximum weight of 1, indicating that the
pixels are equally important. It is a free parameter that acts as a length scale for similarity.

Consider the metric space (½�1; 1�d, dist) (d ≥ 1) with a max-distance function in Eq. (1).

distðu; vÞ ¼ max
1 � i � d

jui � vij (1)

Moreover, it is necessary to describe the criteria for selecting the thresholds. It is self-evident that
Ih � Ih�1 and, additionally, a point x is saved in the left subtree of Th if dist (x; xTh) ≤ sh. This gives in
Eq. (2).

Ih ¼ Ih�1 \ BshðxThÞ; h � 1 (2)

where BshðxThÞ is a metric ball of radius sh and center, xTh, that is in Eq. (3),

Figure 3: Vantage point tree construction
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BshðxThÞ ¼ fx 2 v : distðx; xThÞ � sh (3)

3.3 3D CNN

The 3D CNN is an array of three-dimensional CNNs that makes use of a multifibre unit, as shown in
Fig. 4, in conjunction with dilated weighted convolutions, to extract feature properties at various scales
for volumetric segmentation [61,62]. Pre-processing: Before the data is sent into the network for training,
it is upgraded using a variety of approaches to improve its quality (mirroring, rotation, and cropping).
Training: The model was prepared with a fixed size of 128 � 128 and an revised loss function, which
incorporated both the focused loss with the generalized loss. Inference: According to the interference, the
MRI information was zero-cushioned and thus the first 240 240 155 voxels were changed over to 240
240 160 voxels, a profundity for which the organization had the option to part appropriately. Whenever
the information is prepared for induction, we send it through the prepared organization, which then, at
that point, makes likelihood maps for us. The outfit then, at that point, utilizes these guides to create the
last gauge in light of the information.

Mathematical expression of the output value γ at position (x, y, z) on the jth feature map in the ith 3D
convolutional layer can be written in Eq. (4).

cij;xyz ¼ ReLU ¼ bðiÞj þ
XM ði�1Þ

m¼1

XU ðiÞ�1

u¼0

XV ðiÞ�1

v¼0

XW�1

w¼0

wðiÞ
jm; pqr c

ði�1Þ
m;ðxþpÞðyþqÞðzþrÞ

 !
(4)

where ReLU(�) represents elementwise ReLU function; bðiÞj is the shared bias for jth process region; wðiÞ
jm; uvw is

the (u, v, w)th data of the 3D filter for jth process region at ith layer related with the mth process region in the
(i−1)th layer.

Tensor operations may be used to explain simply the link between two neighbouring layers (in this case
from (i−1) th to ith, as given in Eq. (5).

cðiÞ ¼ rðW ðiÞcði�1Þ þ bðiÞÞ (5)

where cðiÞ and cði�1Þ are the output and input for the ith layer; r (�) represents the activation function
performing element wise;

Figure 4: Architecture of 3D CNN
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Loss function is used in back propagation to figure out the training loss. Categorical Cross-entropy was
our method of choice. The loss function has to be reduced in order to train the FCN. Stochastic Gradient
Descent (SGD) is the most frequent approach for optimizing a model; however it is simpler to become
stuck in the gradient trough. As a result, we use the Adam, a method for optimizing the learning rate.

This is the loss function, which is defined as the mean squared error between a 3D-prediction CNN’s and
the ground truth of the training dataset in Eq. (6).

LðW ; b=DÞ ¼ 1

n

Xn
k¼1

X12
l¼1

ðytruthkl � ypredkl Þ2 (6)

where D is the trained data set fxk ; ykg, represents the quantity of samples, and l signifies the efficient
properties vector of the component index. The optimal parameters fW 	 and b	g may be derived by
minimizing the loss function, which is the inverse of the loss function in Eq. (7),

fW 	; b	g ¼ argminfW ;bgfLðW ; b=DÞg (7)

In DNN-based techniques, a recurring problem is how to limit the fitting that occurs as a result of the
DNN’s exceptional approximation capacity.

3.4 3D U-Net

Our group’s subsequent model is a 3D U-Net variety that contrasts with the ordinary U-Net engineering
in that the ReLU initiation work is subbed with flawed ReLUs, and case standardization is utilized rather than
bunch standardization. The model is worked from the beginning on our dataset and has the comparative
design (Fig. 5). During the pre-handling stage, assemble the data important to diminish the size of the
MRI cut. Following that, we resample the pictures as well as the generally heterogeneous information’s
middle voxel space, after which we perform z-score standardization on the subsequent information. With
regard to preparing the organization, we utilize a 128 × 128 × 128 voxel input fix size and a cluster size
of 2 to accomplish the best outcomes. A few information increase procedures (gamma amendment,
reflecting, and revolution) are applied to the information during runtime to stay away from over fitting
and further develop the model’s division exactness while staying away from over fitting. During the
induction stage, it utilizes a fix-based technique in which each fix covers a large portion of its size and
the voxels nearest to the middle are given a higher load than those farther away.

For each image, the posterior probability of voxel i with label l computation can be written in Eq. (8).

pðyi ¼ l=ðMiÞÞ ¼ efylðMiÞPK
k 0¼1 e

fyk0 ðMiÞ
(8)

where fyið�Þ is the CNN computation function, Mi is the patch of the voxel i and k’ is the class number.

The weighted cross-entropy loss function is written as follows in Eq. (9).

Loss ¼ �
X
i

logðpðyi ¼ groundtruth=X ðMiÞÞÞ (9)

Since the cross-entropy between the actual distribution q and the estimated distribution p is-P
i
qðyiÞlogðpðyi=X ðMiÞÞÞ and the actual distribution q(yi) is 1 for ground truth and 0 otherwise. The

component extraction phase of the image classification process was the initial step. The element
extraction technique utilized was Gray Level Co-event matrix surface element extraction, which was a
dim level co-event grid surface element extraction strategy. The GLCM qualities that were utilized were
relationship, divergence, homogeneity, differentiation, and energy points (0, 45, 90, and 135). Fig. 6
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shows an example of four original MRI images given with the GLCM and VPT. Then it is segmented to
detect the brain tumor from the training image. Fig. 6e shows that the proposed method achieves the
average dice scores of 18.80, 3.92, and 23.80 for tumor core, Enhanced tumor, and Whole tumor,
respectively. With the assistance of VPTs, we can track down the closest neighbors’ files (of the test
highlight vectors) and concentrate their names on their marks. This data is utilized to compute the
probability of each mark showing up at every framework position in light of the information. Following
that, the mark probabilities are interjected in a straight design all through the whole picture. In regard to
tumor enhancement, the experimental results, both qualitative and quantitative, indicate that CNN is more
effective at segmenting the tumor. Compared to other methods, however, the U-Net is more accurate in
terms of tumor core segmentation. However, in regard to finding the entire tumor segmentation on its
own, both networks outperform equally well when the expectations are taken into consideration.
Consequently, only U-output nets were used to generate the most recent ensemble forecasts for the three
regions: We considered the output of both networks to be equal in terms of (1) Tumor Core (TC), (2)
Enhancing Tumor (ET), and (3) Whole Tumor value (WT).

4 Performance Evaluation

Fig. 7 and Tab. 1 show the comparison of precision in percentage of Enhanced Tumor for the proposed
method HFEBTC with the existing methods of “Brain Tumor Analysis and Detection Deep Convolutional
Neural Networks” (BTADCNN), “Brain Tumor Classification using CNN” (BTCCNN) and “Brain Tumor
Classification and Segmentation Using a Multiscale CNN” (BTCSMCNN). In the proposed method, the
precision for Enhanced tumor is 98.51%, which is much higher than the previous existing methods such
as 95.952%, 96.785%, and 96.436%.

Figure 5: Architecture of 3D U-Net
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Fig. 8 and Tab. 2 show the comparison of precision in percentage of Tumor core for the proposed method
HFEBTC with the existing methods of “Brain Tumor Analysis and Detection Deep Convolutional Neural
Networks” (BTADCNN), “Brain Tumor Classification using CNN” (BTCCNN) and “Brain Tumor
Classification and Segmentation Using a Multiscale CNN” (BTCSMCNN). In the proposed method, the
precision for tumor core is 98.353%, which is much higher than the previous existing methods such as
92.567%, 94.666%, and 97.822%.

Fig. 9 and Tab. 3 show the comparison of precision in percentage of Tumor core for the proposed method
HFEBTC with the existing methods of “Brain Tumor Analysis and Detection Deep Convolutional Neural
Networks” (BTADCNN), “Brain Tumor Classification using CNN” (BTCCNN) and “Brain Tumor
Classification and Segmentation Using a Multiscale CNN” (BTCSMCNN). In the proposed method, the
precision for whole tumor is 99.409%, which is much higher than the previous existing methods such as
93.571%, 97.902%, and 98.755%. When we were attempting to category brain tumors, we compared the

Figure 6: Feature selection of GLCM and VTP along with segmentation for the brain tumor
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performance of our technique to all other methods that were previously available. Tabs. 2 and 3 provide a
variety of comparisons based on categorization precision as a metric. The comparison reveals that our
technique is superior to any other method currently in use. The suggested technique produced the best
results for the tumor core, with 99.409 percent precision. This is to demonstrate how effectively our
strategy works despite having a minimal amount of training data compared to previous studies. Because it
is utilized in all other works, the table solely displays accuracy as a performance parameter. All measures
suggest that the planned work is superior to what is already being done. F-Score values for the enhanced
tumor, tumor core and whole tumor are 98.46, 98.29 and 99.40 respectively. Even though the tasks of
segmenting brain tumors have been sped up, future research will still face some challenges. We found
that the medical images of brain tumor segmentation had an average sparsity of 70% during the study.
Better performance can be achieved by utilising the sparse characteristic of the input image in the
algorithm or hardware implementation in order to save time spent on invalid computation.

Figure 7: Tumor Type: Enhanced tumor

Table 1: Parameter: Precision (%) for enhanced tumor

Data Chunk BTADCNN BTCCNN BTCSMCNN Proposed HFEBTC

1 95.78 96.81 96.34 98.37

2 96.18 96.3 96.53 98.05

3 96.3 96.61 97.02 98.93

4 95.16 96.87 97.07 98.12

5 95.95 97.38 96.03 98.1

6 95.88 96.49 95.59 98.38

7 96.19 96.95 96.21 98.43

8 96.36 96.36 96.46 98.95

9 95.16 96.83 96.67 98.9

10 96.56 97.25 96.44 98.87
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Figure 8: Tumor Type: Tumor core

Table 2: Parameter: Precision (%) for tumor core

Data Chunk BTADCNN BTCCNN BTCSMCNN Proposed HFEBTC

1 92.78 94.54 98.58 97.86

2 92 94.64 97.95 98.77

3 92.34 94.19 98.31 98.71

4 92.38 95.26 97.21 98.51

5 93.58 94.59 97.87 97.86

6 92.26 94.69 97.8 98.59

7 93.48 94.88 97.59 97.82

8 92.15 94.12 98.36 98.56

9 92.2 94.5 97.48 98.51

10 92.5 95.25 97.07 98.34

Figure 9: Tumor Type: Whole tumor
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5 Conclusion

In the proposed method, the feature extraction of GLCM and VPT was described, as well as the
ensemble of two networks. In regard to the challenge of segmentation in biomedical images, both of
these networks are frequently used to solve it. The brain tumor ensemble successfully distinguishes brain
tumors from normal brain tissue in MRI scans with high accuracy, outperforming forecasts from a wide
range of other advanced algorithms. Using a technique known as variable assembling, we aggregate the
model’s outputs to achieve the best possible results. The proposed ensemble provides a therapeutically
beneficial and automated method for developing brain tumor segmentation for disease planning and
patient care that is both efficient and effective. In the proposed method, the precision in percentage for
enhanced tumor, tumor core and whole tumor are 98.51%, 98.353% and 99.409% respectively which is
much higher than the existing methods. Thus, with these three models, we performed the most state-of-
the-art models in terms of precision. As a perspective of this research, we intend to further more
experiments on the other parameters like sensitivity, specificity, and F-score.
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