
Fault Aware Dynamic Resource Manager for Fault Recognition and Avoidance
in Cloud

Nandhini Jembu Mohanram1,2,*, Gnanasekaran Thangavel3 and N. M. Jothi Swaroopan4

1Information and Communication Engineering Department, Anna University, Chennai, Tamil Nadu, India
2Department of Information Technology, Sri Sai Ram Institute of Technology, Chennai, Tamil Nadu, India

3RMK Engineering College, Chennai, Tamil Nadu, India
4Department of Electrical and Electronics Engineering, RMK Engineering College, Chennai, Tamil Nadu, India

�Corresponding Author: Nandhini Jembu Mohanram. Email: nandhiniannauniv.phd@gmail.com
Received: 03 November 2020; Accepted: 16 December 2020

Abstract: Fault tolerance (FT) schemes are intended to work on a minimized and
static amount of physical resources. When a host failure occurs, the conventional
FT frequently proceeds with the execution on the accessible working hosts. This
methodology saves the execution state and applications to complete without dis-
ruption. However, the dynamicity of open cloud assets is not seen when taking
scheduling choices. Existing optimization techniques are intended in dealing with
resource scheduling. This method will be utilized for distributing the approaching
tasks to the VMs. However, the dynamic scheduling for this procedure doesn’t
accomplish the objective of adaptation of internal failure. The scheme prefers jobs
in the activity list with the most elevated execution time on resources that can exe-
cute in a shorter timeframe, but it suffers with higher makespan; poor resource
usage and unbalance load concerns. To overcome the above mentioned issue,
Fault Aware Dynamic Resource Manager (FADRM) is proposed that enhances
the mechanism to Multi-stage Resilience Manager at an application-level FT
arrangement. Proposed FADRM method gives FT a Multi-stage Resilience Man-
ager (MRM) in the client and application layers, and simultaneously decreases the
over-head and degradations. It additionally provides safety to the application
execution considering the clients, application and framework necessities. Based
on experimental evaluations, Proposed Fault Aware Dynamic Resource Manager
(FADRM) method 157.5 MakeSpan (MS) time, 0.38 Fault Rate (FR), 0.25 Failure
Delay (FD) and improves 5.5 Performance Improvement Ratio (PIR) for 25, 50,
75 and 100 tasks and 475 MakeSpan (MS) time, 0.40 Fault Rate (FR), 1.30 Failure
Delay (FD) and improves 6.75 improves Performance Improvement Ratio (PER)
for 100, 200, 300 and 500 Tasks compare than existing methodologies.

Keywords: Cloud computing; fault aware dynamic resource manager; fault
tolerance; makespan; fault rate; failure delay; performance improvement ratio

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2021.015027

Article

echT PressScience

mailto:nandhiniannauniv.phd@gmail.com
http://dx.doi.org/10.32604/csse.2021.015027
http://dx.doi.org/10.32604/csse.2021.015027


1 Introduction

Cloud computing has drastically changed the way web-scale administrators offers types of assistance
and oversee infrastructures. The evasion of in-house infrastructures and the acceleration of time to
advertise are key parts of this development. This interruption has been basically determined by practical
elements derived from the utilization of shared business off-resources arranged in topographically
distributed data centers. However, cloud is advancing past money saving advantages as suppliers are elite
resource types including process or memory-improved occasions, just as GPU. The advancement as far as
execution, along with the range of estimating models, versatility and high-accessibility makes cloud a
serious stage for logical processing. Larger cloud environments are inclined to dissatisfactions, by putting
the client’s application execution in danger. In such situations, the exposed hosts are disturbed during the
provisioning of virtualized resources; this expands the likelihood of failures as depicted. Moreover,
virtualized resources are straightforwardly influenced by failures on the fundamental physical has just a
miss-arrangement or support strategies explicit to the cloud providers. Many parallel distributed
applications expand on top MPI, which follows a course fail-stop semantic that terminates the execution
if there should be an occurrence of host failure cluster.

Failure tolerance (FT) schemes are intended to work on a reduced and static amount of physical
resources. That is, if there is an occurrence of a host failure, customary FT frequently endeavors to
proceed with the execution on the staying accessible working hosts? The methodology permits
safeguarding the execution state and applications to complete without disturbance. For cloud situations,
customary FT arrangements must be updated to use local cloud attributes, for example, the adaptability of
virtual resource management for both, security and recuperation tasks of FT. FT designs for cloud which
additionally requires capacities of FT schemes for a few clients, executing numerous application on
various virtual bunches. For parallel applications actualized with MPI, adaptations to internal failure
arrangements are utilized to handle this issue. The FT arrangements in cloud are principally classified as
proactive and responsive. Proactive FT continually screens the framework to make disappointments
forecast. Then, responsive provisions, performs representations of the framework, that are utilized during
the recuperation cycle. The primary aim in proactive methodologies is to source to classify so as to
sequence the impacts of the failures before they occur. Despite the fact that, classifications may not be
precise, the proactive FT arrangements would not be appropriated when more significant levels of
accessibility are pursued.

Fault Aware Dynamic Resource Manager (FADRM) presents the enhanced model to the Multi-stage
Resilience Manager so as to help an application-level FT scheme. It influences FT by consolidating the
application-layer checkpoints with a message logs and to deploy the un-coordinated and semi-coordinated
mechanisms. This scheme additionally incorporates a unique FT resource manager. Experimental design
and assessment is completed by utilizing a Sender-Based Message Logger and ULFM (user level fault
tolerant management) augmentation. For parallel applications, Fault Aware Dynamic Resource Manager
(FADRM) is a check pointing service for cloud environments. It empowers application check pointing
and performs relocation on heterogeneous cloud environments. Fault Aware Dynamic Resource Manager
(FADRM) utilizes a unified methodology for the capacity of the checkpoint services. With respect to
applications, a structure is proposed, planned in a framework level and particular point of view, to give
FT in clouds. It performs VM replication to ensure the execution condition of a client, rather than
securing the applications themselves. Proactive FT scheme depends on observing the VMs health status
to act on the off chance when a failure is predicted. The method concentrates on offering a FT scheme as
assistance; so as to safe equal stateful applications against lasting failures for few users, utilizing different
virtual clusters. It is composed of modules to live-relocate VMs, failures classifications and managers.
The details of paper contribution are given below:

216 CSSE, 2021, vol.38, no.2



� To develop a Fault Aware Dynamic Resource Manager (FADRM) for offering the FT with a Multi-
stage Resilience Manager (MRM) in the client and application layers, and simultaneously decrease
the over-head with degrading.

� To secure the application execution considering the clients, application and framework prerequisites.

� To accelerate fault tolerance segments for logical parallel applications deployed with MPI, utilizing
client, application and runtime cloud environment prerequisites.

� To provide Fault Aware Dynamic Resource Manager (FADRM) with high accessibility to the
application that can assist it with the process completion of conveying to clients for the expected
outcomes.

� To minimize MakeSpan (MS) time, Fault Rate (FR), Failure Delay (FD) and improve the Performance
Improvement Ratio (PIR) of proposed system for 25, 50,75 and 100 tasks in comparison with the
conventional methodologies.

The remainder sections of paper are organized as follows: Section 2 details about recent work and
method related to fault identification during resource management in cloud. Section 3 describes the
proposed methodology, workflow, and module work and implementation details. Section 4 discuses about
deployment setup, input parameters, and simulation result with comparative analysis. Section 5
summarizes overall fault tolerant work during dynamic resource allocation with future outcome.

2 Literature Work

In [1] explained dynamic clustering league championship algorithm (DCLCA) dynamic grouping class
title calculation (DCLCA) scheduling strategy for fault tolerance to address cloud task arrangement which
would imitate about the current open asset and decrease the failure of self-sufficient assignments. In [2]
studied about extensive outline of adaptation to non-critical failure related issues in cloud computing;
underlining upon the massive ideas, structural subtleties, and the state-of-art procedures and techniques.
The overview lists a couple of promising strategies that might be utilized for productive solutions and
furthermore, recognizes significant research in this field. In [3] focused on describing the repetitive
failures in traditional Cloud computing environments, investigating the impacts of failures on client’s
applications, and reviewing adaptation to internal failure arrangements comparing to each class of
disappointments. The technique additionally studied the point of view of offering adaptation to internal
failure as a support of client’s applications as one of the compelling way to address client’s dependability
and accessibility concerns. In [4] suffered the issues by utilizing replication and resubmission methods.
At that point it reschedules the undertaking once the disappointment happens to the most elevated
dependability preparing hub as opposed to repeating this task to every accessible hub. In [5] depicted
engineering models which the infrastructure related services are made accessible to the customers in any
event, during the faults making the whole cycle of distributed computing solid and viable.

In [6] communicated to decrease the chance of fault occurrences in the framework by a reasonable
distribution of client work demands among accessible resources. The framework oversees irregular
circumstances that may prompt failure by circulating the approaching position demand dependent on the
reliability of processing of handling hubs, i.e., virtual machines (VMs). In [7] upgraded fault tolerance
approach where a model is intended to endure deficiencies dependent on the dependability of each
process hub (virtual machine) and can be supplanted if the exhibition isn’t ideal. Preliminary test of
method demonstrates that the pace of increment in pass rate surpasses the reduction in failure rate and it
additionally considers forward and in reverse recovery utilizing different programming tools. In [8]
inspected meanings of CPS just as the three previously mentioned computing ideal models and afterward
shed new light on completely established structures. The work likewise reviews on the application level
of Cloud-Fog-Edge Computing in CPS separately and jump into different methods and systems to install

CSSE, 2021, vol.38, no.2 217



large information applications. In [9] explained pro-active approach for fault tolerant dependent on
processing power, memory and network limit to enhance the resources reliability. It estimate the
reliability of each VM based on success ration of job deployment and then schedule the job on highly
reliable VM. In [10] discussed the fault tolerance scheme or cloud environments, evaluate whether this
technique is robust and reliable in cloud.

In [11] described Cluster based Heterogeneous Earliest Finish Time (CHEFT) algorithm to upgrade the
scheduling and fault tolerance mechanism for SWf in exceptionally circulated cloud. This method utilizes
idle time of the provisioned resources for resubmitting failure clustered jobs for fruitful execution of
SWf. In [12] tended to about a model of starting VM fault-tolerant placement for star topological data
centers of cloud frameworks is based on various components, including the service level agreement
violation rate, resource remaining rate, power utilization rate, failure rate, and adaptation to fault tolerance
cost. The service providing VMs are placed by the ant colony algorithms, and the repetitive VMs are put
by the conventional methodologies. In [13] communicated virtual cluster allocation method as per the
VM attributes to decrease the absolute system resource utilization and total energy consumption in the
data center. The determination of the ideal objective PMs is displayed as an enhancement issue that is
understood utilizing an improved particle swarm optimization technique. In [14] investigated this exertion
and produced a top to taxonomy of them. The framework clarified the ontology of faults and fault-
tolerant methods at that point position the current work process management frameworks as for the
scientific classifications and the procedures. The framework characterizes different failure models,
measurements, tools, and support systems. In [15] tended to RT-PUSH a VM fault detector dependent on
timeout and cutoff time for cloud framework running task. The viability of the model is assessed through
progress rate and execution drop rate measurements.

In [16] considered an investigation and assessment is additionally performed relating to the fault tolerance
and fault detection systems. The overview uncovered that versatile and intelligent fault identification issue and
resilience methods can improve the reliability of grid working environments. In [17] explained job scheduling
with fault tolerance in grid computing utilizing ant colony optimization to guarantee that positions are executed
effectively during resource fault? The method is utilized the utilization of resource failure rate, just as
checkpoint-based roll back recovery technique. Check-pointing minimizes the measure of work that is lost
upon fault of the framework by promptly sparing the condition of the framework. In [18] researched to give
a prevalent perception of various QOS based assistance scheduling which worked to upgrade the execution
in fog computing, and moreover review on different fault tolerant based methods associated with fog
computing. In [19] discussed with the comprehension of fault tolerance methods in cloud and examination
with different models on different parameters have been completed. Fault tolerance method is concentrated
with the assistance of programming language brought together for demonstrating language and state
outlines are structured and approved through the concept of limited state machine. In [20] focused on the
standard fault tolerant in cloud computing. Cloud computing is another field of examination contrasted with
different innovations, a ton of exploration works are being completed, particularly in building up an
independent fault tolerance technique.

3 Proposed Methodology

Fault Aware Dynamic Resource Manager (FADRM) is introduced for composed conventions, despite
the fact that the engineering configuration is extensible, and conceivable to help uncoordinated and semi-
coordinated rollback-recovery conventions. The framework used in the FARDM is at application-level,
off programmed and straightforward scheme for recouping applications in the event of failures which
plays out any activity when failure is identified. The scheme utilizes semi-coordinated and uncoordinated
rollback-rollback-recovery conventions. FARDM integrates the application-level checkpoints with a

218 CSSE, 2021, vol.38, no.2



sender-based message logs for discovery and recovery purposes. An effective fault aware based dynamic
resource manager is included, which involves in observing of primary memory utilization for the logger
benefits, permitting and distinguishing when its utilization reaches the boundaries. With this information,
it calls customized designated checkpoints, in an optimistic way, which grants liberating memory
underpins used for the message logs to evade keep down or slow down of the application execution.
FARDM scheme limits the customer’s application layer from failures. It is reasonable the execution
circumstance with a fault aware dynamic resource manager, which manages failure recovery of the
customer’s application execution when fault is perceived. The scheme is described in Fig. 1. The fault
aware dynamic resource manager is made out of sender-based message logs, which integrated with the
application-level uncoordinated and semi-coordinated checkpoints, maintains the application during fault-
free executions. Fault aware dynamic resource manager is appended, which screens and oversees
FARDM resource utilization for FT assurance.

4 Results and Discussion

4.1 Protection

FARDM follows both the uncoordinated and semi-coordinated rollback-recovery conventions. The
application state is spared utilizing application-level checkpoints and the swapped messages are saved in
a sender-based message logs. FARDM explains the development of the Fault Tolerance (FT) in the
application-level to give high accessibility to the client’s applications in a programmed and
straightforward way. The fault tolerance assurance is finished by describing the checkpoints of the
application measures and putting away swapped the messages between measures in a sender-based
message logs, during the application execution

4.2 Application Checkpoints

The checkpoints are obtained from the function-level, the check pointing activity is started by the
application, and henceforth adjustments in the applications source are fundamental for the checkpoint
incantation, despite the fact that the application method remains neutral. The checkpoints incantation is
embedded during regular synchronization of the application measures. The checkpoints stock up
structures containing just vital data to reestablish execution if there should be raised an occurrence of
failures, maintaining a strategic distance from the need to store the specific data.

4.3 Message Logging

During the application execution, messages are put away into a message logs facility, so as to replay
them to the cycles that are failures. The uncoordinated and semi-coordinated conventions have the
preferred position that just fault measures restart execution utilizing the last solid checkpoint accessible,

Figure 1: Process flow of proposed FARDM in the Application-Level

CSSE, 2021, vol.38, no.2 219



permitting different cycles to proceed with their execution, reducing the computing paradigm. After the
cycles are restarted, during the re-execution, they straightforwardly consume messages from the message
logs facility. FARDM in the application-level uses a pessimistic sender-based message logs. For the
uncoordinated methodology, all swapped messages between the application measures are stored. The
semi-coordinated approach store just swapped messages between the application measures that are in
particular hubs.

4.4 Fault Detection, Reconfiguration and Recovery

When, fault identified a component of location is expected to begin the recovery procedure. For the
FARDM in the application-level, it is utilized to identify faults. FARDM executes mistake handler, which
is conventions by the ULFM (user level fault management) recognition scheme to recuperation the
application execution. The brought forth measure, recognizes that it has been re-propelled and load the
checkpoint record. After the checkpoint record is stacked, the factors in the process are set as they were
in the last checkpoint earlier faults. The system proceeds to the right execution line so as to proceed with
the application execution. The messages are expended from the message logs to complete the re-
execution. Then, fault free cycles can proceed with their execution.

4.5 Fault Aware Dynamic Resource Manager

Fault Aware Dynamic Resource Manager (FADRM) presents the enhanced model to the Multi-stage
Resilience Manager so as to help an application-level FT scheme. It influences FT consolidating the
application-layer checkpoints with a message logs to deploy the un-coordinated and semi-coordinated
mechanism. FT security requires resources and it accompanies overhead for the clients applications. The
uncoordinated and semi-coordinated conventions restrict a strategic distance from the restart of the
apparent multitude of uses measures when a failure recognized. In spite of the fact, they require logs to
replay messages to reestablished measures. To reduce fault free overhead, the logs utilizes primary
memory to store measures messages, when enough memory is accessible, as it frequently gives higher
speed access. The accessible memory can quickly ran out because of FT security jobs. The effect of
running out of primary memory can bring about the application execution become slowed down.

FADRM plays out the security of the application execution, storing both: checkpoints, and messages of
the application measures. Despite the fact that there is not control performed in term of the resource usage
during FT safety so as to restrict free memory ran out due to FADRM security jobs; a fault aware dynamic
resource manager is tended to with FADRM. It works at every hub of the application execution. The fault
aware dynamic resource manager continually checks at presently assigned memory of the variety of
records structure utilized for message logging purposes. At the point when it identifies that utilization is
arriving at as far as possible, it triggers a programmed checkpoint invocation, which thus stores the
condition of the application and free and utilized memory supports for logging purposes, giving the
application. FADRM security and simultaneously abstain from obstructing the applications memory
usage. Intermission based checkpoints are not affected and when they are prepared, the memory are
delivered. As the checking is performed simultaneously as the message storage into the message logs, no
extra overhead is predicted. At the point, programmed checkpoint is raised to free the memory utilization.
The application execution period, the memory may run out significance the lost as far as evaluation of the
application execution. The fault aware dynamic resource manager distinguishes it and consequently
invokes a checkpoint formation of every application cycle, when they arrive at the following regular
synchronization point, permitting freeing memory utilization by the logging benefit, along these lines
keeping away from the application deployment stall due to the lacking of main memory.

The FADRM handler for fault identification, reconfiguration and recovery is described. For
straightforwardness, one cycle for each hub is expected, utilizing the uncoordinated convention with a

220 CSSE, 2021, vol.38, no.2



critical sender-based message logs. The hub running P3 comes up failures, and P2 is the principal cycle
which recognizes fault. It is distinguished by ULFM (user level fault mismanagement), causing the
revocation of the worldwide communicator utilizing MPI_Comm_revoke. After the revocation, all
outstanding cycles are informed and they are disappeared the worldwide communicator, taking out the
failure measures utilizing the MPI_Comm_shrink call. Fault identification, reconfiguration and recovery
are continued methods for one failure. Each message is represented as: m(i,j,k) where I = source measure,
j = destination measure, k = transmission order. Finally, cycles generate the communicator utilizing a
powerfully launching cycle of the application. The cycle is re-launching utilizing MPI_Comm_spawn
primal. These tasks are assemblages, subsequently relies upon the MPI library execution and its
presentation are connected on the size of the applications measures.

There is one cycle running for each hub P(0…3), predefined checkpoint invocation are arranged too,
called default checkpoints. The FADRM continually screens n the message logs utilization. During the
application execution, P3 distinguishes that the buffering arrives at as far as possible, henceforth plan a
programmed checkpoint invocation. The checkpoint is done in the following regular synchronization
purpose of the application execution. To explain usefulness of the Sender-Based Message Logger, the
semi-coordinated convention execution is utilized. The logging technique is done as follows: Each cycle
(P1..PN) of the equal application produces m messages, explained as: m (i,j,k), where I = source
measure, j = destination measure and k = is the send grouping number. The message starts a variety of
connected records in the hub unstable memory. The structure permits saving each extrovert message from
the cycles. For instance, P2 first send m (2, 1, 1) to P1, and the logs stores it in linked list of array of the
exhibit V1. When P2 sends m (2, 1, 2), it is likewise included the linked list of array V1, placing the
message in the tail of the linked list etc. for each extrovert message. It is represented that message m (2,
3, 1) and m (2, 3, 2) are not storing in the logs since they are between hub correspondences of hub Ni.
Each time a recovery line is acquired, a memory cleaning is executed. A FADRM is needed to
continually screen FT resource use. For e.g., application cycles might be failures because of high memory
utilization during FT assurance, causing the cycles stall. The activities are performed during the failure
discovery, reconfiguration and recovery. The spawned cycle, recognizes that it has been re-launched and
load the checkpoint record. After the checkpoint record is stacked, the factors in the process are set as
they were in the last checkpoint earlier faults. The cycle hops to the right execution line so as to proceed
with the application execution. The messages are expended from the message logs to complete the re-
deployment. Then, non-failure cycles can proceed with their execution. The proposed FADRM pseudo
code is explained in detail:

Input: Jobs, resource (VM, memory, file size, bandwidth, datacenter) and node

Output: Fault prevented Node (FN), Makespan (MS), Fault Rate (FR), Failure Delay (FD),

Performance Improvement rate (PIR)

Procedure:

Initiate VM;

Allocate the tasks;

Select the available resource;

Apply FADRM method;

Execute the task;

Wait for an expected period of time;

Start function to verify

If a process is running task and node

CSSE, 2021, vol.38, no.2 221



Verify running (node) and task status;

Connect to node

Return node is working condition and task is executed

End function

While tasks running = true do

Wait upto expected time (frequently monitoring)

Executing = verify_running(node) and task status

If (execution /= true) then

F N = neighbor_node identified;

Return F N;

MakeSpan(MS), Fault Rate(FR), Failure delay(FD), Performance ImprovementRate(PIR)

End if

End while

4 Results and Discussions

4.1 Deployment Setup

The deployment setup is executed on Intel Core i5 (7th generation), 8GB RAM of DDR4 500 GB
memory with windows 8 operating systems and CPU 2.70GHz. The proposed algorithm prototype model
is developed JAVA programming languages’, JDK (Java Development Kit) 1.8, NetBeans 8.0.2 and
MSQL 5.6 integrated database.

4.2.1 Input Configurations
The deployment setups are appropriated to execute to the analysis for assessing the proficiency of

proposed methodologies whose input details are given in Tab. 1.

4.2 Simulation Results

This section presents experimental outcomes obtained applying FADRM to give Fault Tolerance in the
application-level. The outcome shows its programmed usefulness and confirms the usefulness of the Fault
Aware Dynamic Resource Manager (FADRM) in real time deployment environments. The deployments
were created in controlled environments utilizing and infusing faults. Executions are estimated in any
event 3 to 5 multiple times, except if it is unequivocally determined in an unexpected way, and
estimations are taken utilizing the time, system devices.

4.2.1 Makespan Time (MS)
Makespan is determined by a virtual machine as total time consumption to finish the complete task as a

fixed schedule. Makespan chooses the resources for the total machine (virtual machine, RAM, bandwidth
capacity, and memory) which pursues finishing all jobs execution.Makespan is described in Eq. (1) and (2)

MakeSpan ¼ max MSrjg
�

(1)

MSrj ¼
X

Ti2hrj EETTirj (2)

222 CSSE, 2021, vol.38, no.2



4.2.2 Fault Rate (FR)
The fault rate (FR) is the proportion of aggregate of failure jobs in the proposed technique to the total

amount of failure tasks in the other scheduling method. The proposed FADRM method will be improved if
the estimation of FR turns out to minimal value other existing method which is derived in Eq. (3).

FR ¼
Pn

0
Total Fault FADRM method

Pn

0
Total existing method

� 100 (3)

4.2.3 Failure Delay (FD)
Failure delay (FD) is explained as the proportion of time deferral or disruption as outcome, because of

fault to-fault free job execution time, mean over the total amount of other existing method of tasks. The FD of
the proposed Fault Aware Dynamic Resource Manager (FADRM) should be minimal of other existing
scheduling methods for the evaluation and estimated which derived in Eq. (4)

FD ¼ TimeFault to fault�free task execution time

Overall Total Task
(4)

4.2.4 Performance Improvement Rate (PIR)
Performance improvement rate (PIR) is characterized as the level of execution improvement (or decrease

in makespan) for the proposed technique with respect to different techniques and is determined utilizing
condition 5

Table 1: Cloud experimental details

Parameters Value

Number of Jobs 10–100 & 50–500

Virtual Machine 15–25

Cloud users 5–10

Brokers 5–10

Processing of virtual resources 10,000–20,000MIPS

Tasks data Size 800,000–900,000 MI

Datacenter 02DC(1-3hosts,-02-2hosts)-05DC(each-03,taols-15 hosts)

File Size 600–1000

RAM 512–2048

Bandwidth 10,000 MBPS

Data Centre VM Xen

No. of Process Machine 4

No. of Running Deployment 60

DC VM Policy Time Shared

DC OS Linux

VM Memory 1,000,000

DC Architecture X86

CSSE, 2021, vol.38, no.2 223



PIR ¼ MakespanðExisitng MethodÞ �MakespanðProposed MethodÞ � 100

MakepanðProposed MethodÞ (5)

Fault Aware Dynamic Resource Manager (FADRM) presents enhancements model to the Multi-stage
Resilience Manager so as for helping the application-level FT scheme. Tab. 2 displays with MTCT(Min–
min based time and cost exchange of) [01], MINMAX [01], ACO (Ant colony optimization) [01]
NSGAII [01], and DCLCA (dynamic clustering league championship Algorithm) [01] existing techniques
on MakeSpan (MS) time, Fault Rate (FR), Failure Delay (FD) and Performance Improvement Ratio (PIR)
for 25, 50, 75 and 100 Tasks. Where, FADRM method is evaluated DCLCA method for fault tolerance
awareness to address cloud task deployment which should replicate the current accessible resource and
minimize the premature fault of autonomous tasks. However, the dynamicity of accessible cloud resource
isn’t viewed as when integrating on scheduling choices. Where, Fault Aware Dynamic Resource Manager
(FADRM) influences FTM consolidating the application-layer checkpoints with a message logs to execute
the uncoordinated and semi-coordinated conventions. The scheme additionally incorporates a unique FT
resource manager. The deployment and resources of proposed method is finished utilizing a Sender-Based
Message Logger and ULFM (user level fault management) augmentation. For parallel applications,
proposed a checkpointing services for cloud environments. Based on tabular result, Fault Aware Dynamic
Resource Manager (FADRM) reduce on 157.5 MakeSpan (MS) time, 0.38 Fault Rate (FR), 0.25 Failure
Delay (FD) and improves 5.5 Performance Improvement Ratio(PIR) for 25, 50, 75 and 100 tasks
compare than existing methodologies.

According to Figs. 2–5, Fault Aware Dynamic Resource Manager (FADRM) performs MakeSpan (MS)
time, Fault Rate (FR), Failure Delay (FD) and improves the Performance Improvement Ratio(PIR) for 100,
200, 300 and 500 Tasks compare than existing methodologies. Fault Aware Dynamic Resource Manager
(FADRM) is estimated with MTCT [01], MINMAX [01], ACO [01] NSGAII [01], and DCLCA [01]
existing methodologies. Fault Aware Dynamic Resource Manager (FADRM) is evaluated with MTCT
[01], MINMAX [01], ACO (Ant colony optimization) [01] NSGAII [01], and DCLCA [01] existing
methodology. Where, nearest competitor is DCLCA [01] that is presented for fault tolerance awareness to
address cloud task deployment which should replicate the current accessible resource and minimize the
premature fault of autonomous tasks. However, the dynamicity of accessible cloud resource isn’t viewed
as when integrating on scheduling choices. Where, Fault Aware Dynamic Resource Manager (FADRM)
influences FTM consolidating the application-layer checkpoints with a message logs to execute the
uncoordinated and semi-coordinated conventions. The scheme additionally incorporates a unique FT
resource manager. The deployment and resources of proposed method is finished utilizing a Sender-Based

Table 2: MakeSpan (MS) time, Fault Rate (FR), Failure Delay (FD) and Performance Improvement Ratio
(PIR) for 25, 50, 75 and 100 Tasks

25 50 75 100

Technique MS FR FD PER MS FR FD PER MS FR FD PER MS FR FD PER

MTCT 850 0.49 0.29 27 1300 0.40 0.33 40 2200 0.30 0.42 52 3100 0.25 0.65 75

MAXMIN 800 0.45 0.27 29 1100 0.35 0.32 43 1900 0.28 0.40 59 2500 0.23 0.45 80

ACO 750 0.40 0.25 33 900 0.34 0.33 51 1750 0.27 0.35 64 2000 0.21 0.40 85

NSGA-II 610 0.37 0.23 35 800 0.32 0.28 53 1570 0.24 0.30 72 1700 0.20 0.37 90

DCLCA 570 0.31 0.20 38 750 0.30 0.26 60 900 0.23 0.28 80 1000 0.18 0.35 94

FADRM 490 0.25 0.17 41 600 0.25 0.23 65 700 0.21 0.25 90 800 0.16 0.32 98

224 CSSE, 2021, vol.38, no.2



Message Logger and ULFM (user level fault management) augmentation It is conceivable to see, that the
time and memory utilization becomes because of the accessibility of the resources, and when a
checkpoint is taken, the memory buffers are delivered. NSGA-II [01] is addressed to interpret the
adaptation of fault tolerance issues. The NSGA-II method depends on the Pareto predominance
relationship, giving no particular optimal outcome. However, a lot of results are not subject on to each
other during dynamic resource changes. ACO [1] represented intelligent optimization technique for
dealing with the approaching mapping tasks and resources. It is arbitrary optimization search approach
that will be utilized for assigning the mapping tasks to the VMs. However, the dynamic scheduling for
this method isn’t a need in accomplishing the objective of fault tolerance. Max-Min [01] is resource
distribution and scheduling method which is utilized in cloud and in grid computing to reduce the
MakeSpan, cost and maximizes benefit and resource usage. This is finished by choosing a task in the task
list with the highest execution time on a resource that can deploy it inside a minimum time period. But, a
Max-Min technique endures with the production of higher makespan; poor resource utilization and
unbalance load issues. MTCT [01] explained for multi-target work process scheduling to help fault
recovery in cloud. The MTCT method was evaluated by use of various true logical work processes with
organization measure. MTCT technique is significant for genuine work process when both of the two
optimization targets are impressive. But, being a multi-objective algorithm, the MTCT is inherently
inclined to improve thought into different parameters.

Fault Aware Dynamic Resource Manager (FADRM) continually screens the memory accessibility, and
in this specific case, plays out no activities, since it recognizes that there is sufficient memory for the logs,
prioritizing server performance for the FT security. When the deployment without the Fault Aware Dynamic

Figure 2: MakeSpan(MS) time for 100, 200, 300 and 500 Tasks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 0.65 0.63 0.61

0.45 0.43
0.39

0.45 0.44

0.32

0.45
0.4

0.35

0.51 0.48 0.46
0.41

0.32
0.27

0.39
0.32

0.37

0.21

0.11
0.07

100 Tasks

200 Tasks

300 Tasks

500 Tasks

Figure 3: Failure Ratio (FR) for 100, 200, 300 and 500 Tasks

CSSE, 2021, vol.38, no.2 225



Resource Manager (FADRM) begins utilizing SWAP memory zone of the framework, the Performance
improvement rate (PIR) definitely drops, making the entire application crash. Simultaneously, Fault
Aware Dynamic Resource Manager (FADRM), hopefully invoke the checkpoints, and after their
execution, the memory buffers that is utilized for the logger facility. It is delivered for permitting the
constant execution of the application by the principle memory accessible for the application measures.
The scenario is intended to utilize the low resource cluster and an application with high FT resource
request, to imagine the conduct of the application with and without the Fault Aware Dynamic Resource
Manager (FADRM). It is one reason for a few checkpoints creation by the dynamic resource manager, so
as to proper deployment, and conveys the application results. FADRM doesn’t involve in the user
characterized checkpoint schedule, permit the user the control of the checkpoint schedule. However, it
might perform hopeful checkpoints, to free resource for the application. So as to maintain a strategic
distance from free memory ran out due to FADRM assurance task. Fault Aware Dynamic Resource
Manager (FADRM) is tended to with FT. It deals with every hub of the application execution. FADRM
continually checks the as of now distributed memory of the variety of records structure utilized for
message logging purposes. Proposed scheme permits the application to proceed with the execution.
According to graphical results, Fault Aware Dynamic Resource Manager (FADRM) minimizes on
475 MakeSpan (MS) time, 0.40 Fault Rate (FR), 1.30 Failure Delay (FD) and improves 6.75 Performance
Improvement Ratio (PIR) for 100, 200, 300 and 500 tasks than conventional methodologies.

5 Conclusion

The article presented Fault Aware Dynamic Resource Manager (FADRM) for enhancing the model to
the Multi-stage Resilience Manager so as to help an application-level FT scheme. It influences FT

Figure 4: Failure Delay (FD) for 100, 200, 300 and 500 Tasks

28 29 32 34 39 4141 43
52 55

61 66
52

60 63
71

81

93

76 80 84 87 89
97

0

20

40

60

80

100

120

MTCT MAXMIN ACO NSGA-II DCLCA FADRM

100 Tasks

200 Tasks

300 Tasks

500 Tasks

Figure 5: Performance Improvement Rate (PIR) for 100, 200, 300 and 500 Tasks

226 CSSE, 2021, vol.38, no.2



consolidating the application-layer checkpoints with a message logs to deploy the un-coordinated and semi-
Coordinated mechanisms. FADRM use the FT to application-level, off programmed and straightforward
systems for recovery applications if there should arise an occurrence of faults which plays out any
activity when fault is identified. The scheme utilizes semi-coordinated and rollback-recovery conventions.
FADRM integrates application-level checkpoints with a sender-based message logs for discovery and
recovery purposes. FADRM is included, which plays out the observing of principle memory usage for the
message logs, permitting distinguishing when its utilization is arriving at a limit. With this information, it
invokes modified designated checkpoints, in an optimistic way, which grants cradle memory upholds
used for the message logs for preventing the slowdown stall of the application deployments. FADRM
gives novel mechanisms in the application-layer; allowing users to derive only the essential confirm
information for their applications.

Besides, a Fault Aware Dynamic Resource Manager (FADRM) is fit to FTM, which screens FT
resources usage and perform activities when the utilization arrives at limits. Proposed FADRM minimizes
157.5 MakeSpan (MS) time, 0.38 Fault Rate (FR), 0.25 Failure Delay (FD) and improves 5.5
Performance Improvement Ratio (PIR) for 25, 50, 75 and 100 tasks and 475 MakeSpan (MS) time,
0.40 Fault Rate (FR), 1.30 Failure Delay (FD) and improves 6.75 improves Performance Improvement
Ratio (PIR) for 100, 200, 300 and 500 Tasks compare than existing methodologies.

In future, Fault Aware Dynamic Resource Manager (FADRM) can be applied in fog computing
environments. Where, there are hues number faults are found in nodes and routes during data
transmission. Once, resource is updated dynamically then there is not fully control on data transmission
reliability.

Acknowledgement: The authors like to thank the Doctoral panel members from Anna University, Chennai,
for their important info and input. Interim, the authors like to extend out their generous gratitude to the in-
charge of Research Center, RMK Engineering College too for yielding the assets.

Funding Statement: The authors have not received explicit funding for this research work.

Conflicts of Interest: The creators proclaim that they do not have any conflicts of interest to report with
respect to the current study.

References
[1] A. Latiff, M. Shafie, S. H. H. Madni and M. Abdullahi, “Fault tolerance aware scheduling technique for cloud

computing environment using dynamic clustering algorithm,” Neural Computing and Applications, vol. 29,
no. 1, pp. 279–293, 2018.

[2] K. Priti and P. Kaur, “A survey of fault tolerance in cloud computing,” Journal of King Saud University-Computer
and Information Sciences, vol. 32, no. 10, pp. 1–12, 2018.

[3] R. Jhawar and V. Piuri, “Fault tolerance and resilience in cloud computing environment,” Computer and
Information Security Handbook, 2nd Edition, J. Vacca (ed.), Morgan Kaufmann 2013, pp. 165–181, 2017.

[4] A. Eman, M. Elkawkagy and A. El-Sisi, “A reactive fault tolerance approach for cloud computing,” in 13th Int.
Computer Engineering Conf. (ICENCO). IEEE, pp. 190–194, 2017.

[5] J. K. R. Sastry, K. Sai Abhigna, R. Samuel and D. B. K. Kamesh, “Architectural models for fault tolerance within
clouds at infrastructure level,” ARPN Journal of Engineering and Applied Sciences, vol. 12, no. 11, pp. 3463–
3469, 2017.

[6] A. Hamid, C. Pahl, G. Estrada, A. Samir and F. Fowley, “A fuzzy load balancer for adaptive fault tolerance
management in cloud platforms,” in European Conf. on Service-Oriented and Cloud Computing. Cham:
Springer, pp. 109–124, 2017.

CSSE, 2021, vol.38, no.2 227



[7] M. Bashir, M. Kiran, I. U. Awan and K. M. Maiyama, “Optimising Fault Tolerance in Real-Time Cloud
Computing IaaS Environment,” in 2016 IEEE 4th Int. Conf. on Future Internet of Things and Cloud
(FiCloud). IEEE, pp. 363–370, 2016.

[8] X. Zhanyang, Y. Zhang, H. Li, W. Yang and Q. Qi, “Dynamic resource provisioning for cyber-physical systems in
cloud-fog-edge computing,” Journal of Cloud Computing, vol. 9, no. 1, pp. 1–16, 2020.

[9] C. T. Jonathan and G. C. Hua, “Resource reliability using fault tolerance in cloud computing,” in 2nd Int. Conf. on
Next Generation Computing Technologies (NGCT). IEEE, pp. 65–71, 2016.

[10] G. Sam and A. Bhardwaj, “Efficient fault tolerance on cloud environments,” Int. Journal of Cloud Applications
and Computing (IJCAC), vol. 8, no. 3, pp. 20–31, 2018.

[11] K. Vinay and S. M. D. Kumar, “Fault-tolerant scheduling for scientific workflows in cloud environments,” in
IEEE 7th Int. Advance Computing Conf. (IACC). IEEE, pp. 150–155, 2017.

[12] Z. Wei, X. Chen and J. Jiang, “A multi-objective optimization method of initial virtual machine fault-tolerant
placement for star topological data centers of cloud systems,” Tsinghua Science and Technology, vol. 26, no.
1, pp. 95–111, 2020.

[13] L. Jialei, S. Wang, A. Zhou, S. A. P. Kumar, F. Yang et al., “Using proactive fault-tolerance approach to enhance
cloud service reliability,” IEEE Trans. on Cloud Computing, vol. 6, no. 4, pp. 1191–1202, 2016.

[14] P. Deepak, M. A. Salehi, K. Ramamohanarao and R. Buyya, “A taxonomy and survey of fault-tolerant workflow
management systems in cloud and distributed computing environments,” in Software Architecture for Big Data
and the Cloud. Morgan Kaufmann, pp. 285–320, 2017.

[15] S. Sampa, B. Sahoo and A. K. Turuk, “RT-PUSH: a VM fault detector for deadline-based tasks in cloud,” in Proc.
of the 3rd Int. Conf. on Communication and Information Processing, pp. 196–201, 2017.

[16] H. Sajjad and B. Nazir, “Fault tolerance in computational grids: Perspectives, challenges, and issues,”
SpringerPlus, vol. 5, no. 1, pp. 1–20, 2016.

[17] I. Hajara, A. E. Ezugwu, S. B. Junaidu and A. O. Adewumi, “An improved ant colony optimization algorithm with
fault tolerance for job scheduling in grid computing systems,” PLoS One, vol. 12, no. 5, pp. e0177567, 2017.

[18] R. M. Sri and P. Chawla, “A survey on QOS and fault tolerance based service scheduling techniques in fog
computing environment, ” in 7th Int. Conf. on Reliability, Infocom Technologies and Optimization (Trends and
Future Directions)(ICRITO). IEEE, pp. 365–372, 2018.

[19] T. Z. Rampratap, “Modeling for fault tolerance in cloud computing environment,” Journal of Computer Sciences
and Applications, vol. 4, no. 1, pp. 9–13, 2016.

[20] R. Archana, “A survey of fault tolerance in cloud computing,” International Journal of Arts, Science and
Humanities, vol. 6, no. S1, pp. 98–104, 2018.

228 CSSE, 2021, vol.38, no.2


	Fault Aware Dynamic Resource Manager for Fault Recognition and Avoidance in Cloud
	Introduction
	Literature Work
	Proposed Methodology
	Results and Discussion
	Results and Discussions
	Conclusion
	flink7
	References


