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ABSTRACT

The use of different energy carriers together, known as an energy hub, has been a hot topic of research in recent
years amongst scientists and researchers. The term energy hub refers to the simultaneous operation of various
infrastructures for energy generation and transfer, which has gained momentum in the form of microgrids (MGs).
This paper introduces a new strategy for the optimal performance of an MG consisting of different energy carriers
for each day. In a smart distribution network (DN), MGs can reduce their own costs in the previous-day market
by bidding on sales and purchases. The sales and purchases bidding problem is challenging due to different
uncertainties, however. This paper proposes a two-stage strategy for making an optimal bid on electricity sales and
purchases with electricity and gas price dependency in the previous-day and real-time markets for an energy hub.
In this model, the MG behavior regarding the electricity and gas energy sales/purchase, the simultaneous effects of
electricity and gas prices, as well as the energy carriers’ dependence on one another are all examined. Due to the
inherent uncertainty in the sources of clean energy production, the probabilistic model and the production and
reduction scenario have been used in the paper to cover this issue. In the proposed grid, energy sales/purchases are
presented in a multi-carrier MG in a two-stage model. This model is solved by using the harmony search algorithm
in MATLAB. Numeric results demonstrate the benefits of this model in reducing energy hub costs of operation.
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Abbreviations

c: Price
po: Energy production
p: Received energy
T: Transferred energy
E: Storage energy
I: Binary variable of storage status
L: Unresponsive demand
M: Charge and discharge energy of storage
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t: Hour
RP: Distributed generation
Pr: Nominal power
R: Irradiation
v: Wind velocity
a, B: Vibal selection parameters
ϕ, δ: Beta selection parameters
η: Units performance
K: Maintenance cost ratio
S: Storage coupling coefficient
σ : Standard deviations
μ: Average value
m: MG numbers
s: Scenario
Pix: Pre-purchase/sale confirmation
P: Energy purchase price
υ: Gas distribution coefficient
Ω: Probability
pv: photovoltaic
wt: Wind turbine
Ru: Restructured units
chp: Combined heat and power
EHP: Electric heat pump
AB: Boiler
ES: Energy storage
Net: Network
char: Charger storage power converter
dischar: Discharge storage power converter
trans: Transformer
e: Electricity
g: Natural gas
h: Heat
tot: Total
p: Input porter
l: Output porter
O: Initial value
stb: Storage energy losses
O&M: Operation and maintenance
ci: Minimum velocity
co: Maximum velocity
ce: Specific radiation point
STAD: Standard situation
RT: Real time
DA: Day ahead
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1 Introduction

Microgrids (MGs) are a controllable set of distributed generation (DG) sources such as wind
turbines, diesel generators, fuel cells, photovoltaic (PV) systems, energy storage systems (ESS) and
loads that can supply electric and, if necessary, thermal power as well. MGs can be operated in
grid-connected or islanded modes [1], and they confer numerous benefits for both the consumer,
as well as the electricity generation companies generating. From the customers’ point of view, an
MG can simultaneously supply electricity and heating, increase confidence within the society and
infrastructure, reduce greenhouse gas emissions and improve life quality simultaneously. From the
electricity companies’ point of view, MG use can reduce the consumer demand and, therefore, decrease
transfer line development facilities, remove peak consumption points and, thus, reduce network
losses [2].

Energy, and electricity in particular, is a major factor influencing the countries’ economic growth
and growth opportunities in nations across the entire planet. Traditionally, meeting the demand
safely requires the expansion of generation and transfer capacities of the power system [3]. Energy
management has long been a fundamental aspect of power systems and has recently gained momentum
in the world of MGs and their technicians and researchers too. Industrial, commercial and residential
consumers are in contact with energy carrier grids such as regional electricity, natural gas, heating,
or cooling systems [4]. Various previous studies have focused on energy infrastructure, but few works
have investigated the combination of these systems together, which confers numerous advantages in
comparison.

One such advantage is the use of combined and flexible properties of these systems. For instance,
natural gas grids can store energy easily and cost-effectively. The electricity system can transfer energy
from long distances with relatively little loss. Therefore, aggregating these two grids and exploiting the
advantage of each will promote system confidence and efficiency and lead to optimal performances
for each as well [5]. Several flexible capabilities in the structure and operation of MGs require a
comprehensive framework for explaining the effects of combining various energy carriers on economic
and technical indicators of energy systems.

In recent years, such a framework has, in fact, been discussed in general to provide a combination
of various energy carriers, conversion and storage to supply the consumer-side load [6]. In [7], an
energy management system was proposed for a grid-connected MG with different renewable energy
sources (RES), at its disposal, including photovoltaic (PV) and, wind turbine (WT) systems, as well as
and a battery energy storage system (BESS). A mathematical model was presented for this PV system
which. This model evaluated the effects of solar irradiation in different days and seasons on the MG
programming.

In [8], a bi-level energy management strategy was proposed to optimize the MG cost of operations
and uncertainty management. This method was tested on a standard system with different scenarios.
In [9], a combined independent MG system comprising a battery, RES such as wind and solar energy
(FC), and an energy storage system (ESS) was introduced. A battery state of charge (SOC)-based
energy management strategy was developed and experimentally implemented to maintain energy
balance in the combined system. In [10], a multi-objective evaluation of the performance of an MCMG
was presented in the presence of technologies, including CAES and P2G storage systems. This model
aimed to minimize operation cost and environmental pollution.

In [11], the MG operation with a focus on ESSs was explored. This paper performed 24-h
scheduling for different units, in which RES fluctuations were examined. In [12], an energy hub system
comprising several parts was used. The electrical energy hub comprised a combined cooling, heating
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and electrical energy system integrated with RES such as WT and PV systems. ESSs were also used
to coordinate and improve confidence in the entire system. The proposed model aimed to examine
the effects of a time-based demand-response (DR) program on reducing operating costs and CO2

pollution.

In [13], a robust operational model and an investment model were proposed for participating in
supplying the power and heating demands of a distribution system-connected MG. The optimization
algorithm decided on the best investment and operation of a combined heat and power (CHP) system,
boiler, PV power generation and BESS. In [14], a stochastic framework was provided for optimally
scheduling MGs by considering the islanded mode. In this approach, different uncertainties were
taken into account and the daily scheduling of resources was determined by considering emergency
conditions.

In [15], two-level stochastic programming was introduced while considering solar and wind
sources, ESS and DR under probable outages of generation units. The uncertainties in the problem
were modeled through scenarios and the intended scenarios were generated by the Monte Carlo
method. Constraints on the participation of units were included in the first stage and constraints on
the units’ optimal distribution and DR were included in the second stage.

In [16], the participation of an aggregator of a hybrid power station comprising WT and
responsiveness loads was enabled to achieve the best presentable bid to the market for maximizing
profits by using risk-based three-stage programming. In [17], a two-storage energy management
strategy was designed for an MG with RES, ESS, residential and industrial loads, which can predict the
stochastic electricity demand and electricity price based on operational uncertainties. In [18], a two-
stage stochastic model was proposed for MG energy source management based on RES generations,
EVs and market price uncertainty.

In [19], a two-stage stochastic framework was presented for short-term MG operation schedul-
ing, including electricity and natural gas grids, composed of an energy hub, RES and ESS, while
considering predicted uncertainties. In [20], a probabilistic optimization model was presented on a
multi-carrier MG. Dispersed generations (DGs) and converters such as transformers, simultaneous
generation converters, boilers, solar and wind power stations, as well as battery and heating systems
were included in the proposed MG.

In [21], a multi-objective distribution problem was solved in an MG, including cost and emission
minimization, while considering DR programs and uncertainty. A probabilistic framework based on
scenarios was considered to overcome the uncertainties in MG optimal energy management. In [22], a
multi-energy MG that could simultaneously provide electric and thermal energy to the customers was
presented to improve energy consumption efficiency. Still, the alternation and uncertainty caused by
the generation of REs such as wind turbines, solar PVs, and thermal loads that depend on electricity
and heat could seriously challenge and complicate the performance of these grids.

In [23], a hydrogen-based CCHP-MG (combined cooling, heating and power microgrid) was
proposed. The proposed grid contained a CHP unit and other energy generation and storage units.
In this grid, the CCHP-MG operator could actively participate in electricity, natural gas and heat
markets. In [24], a Monte Carlo simulation method was used for stochastically modeling the real-time
market price profile.

A new model based on Demand response-based microgrid planning has been proposed in [25].
The novel multi-step model is proposed in [26], in which, in the first step non-cooperative game theory
is applied to illustrate the behavior of the grid, demand response and end-customers. In the second one,
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the optimal amount of energy transmission between the microgrid and the main grid is calculated. In
the third step, the optimal resource placement for energy generation including energy storage systems
based on economic factors is determined. In the final the technologies are proposed based on economic
factors to energy conversion systems that have been studied.

In [27], to achieve the optimal management strategy based on cost factors, an integrated offering
technique model in deregulated power market has been proposed. The novel optimal management
energy system based on electric/thermal power for buildings energy has been proposed in [28]. At
first, this model is applied to one building with multiple energy sources of operation, and in the next
step its applied to multi-building with multi-energy sources. The model of this paper is based upon
mixed-integer linear programming.

A demand-side management system based on game theory approach is proposed in [29]. In this
modeling of the problem, the capacity constraints of sources and loads, environmental factors, and
reliability factors are considered beside demand management. In [30], the dynamic behaviors of grid-
connected microgrid systems were studied. This paper considered and contains two different systems
contains; integrated PV systems and urban wind turbines.

Yet the previous literature has not adequately examined the electricity purchase/sales bid in a
multi-carrier MG while considering the dependency of the electricity and gas grids. Moreover, the
effects of different uncertainties in load and generation have not been investigated on the multi-carrier
cost of MG operation. Since various uncertainties on MG optimal operation directly affect the forward
purchase and forward sales of energy, it is important to investigate an optimal strategy for reducing the
cost of MG operation. Also, in the presentation methods in the articles, the possibility of being located
in local points increases with increasing the number of variables of the desired problem. Therefore, the
proposed classical methods cannot guarantee an optimal answer.

Thus, the present paper presents a probabilistic optimization model for a multi-carrier MG. The
levels of DGs, the electric and thermal loads as well as the electric prices in the previous-day and real-
time markets have uncertainties; therefore, this paper presents a probabilistic converter compatible
with the energy distribution strategy in the multi-carrier MG. The previous-day and real-time markets
are also examined. In the proposed grid, energy sales/purchase bids are presented in a multi-carrier
MG as a two-stage model.

Based on the provided explanations, the most important highlights of this article are:

A) Provide an extended harmonization search optimization algorithm by the local operator
enhancement

B) Provide a two-step strategy to propose the optimal amount of electricity sales despite the
dependence of electricity and gas prices in the market

C) Modeling the uncertainty of renewable units based on scenario generation and its reduction

The rest of the article can be organized in the following sections. In the second part, multiple
microgrid hardware with the presence of related energy is expressed. In the third part, probabilistic
modeling of load and renewable resources is stated. In the fourth section, the problem formulation and
its objective functions and constraints are mentioned. In the fifth section, the developed algorithm of
harmonic search is presented. In the sixth section, the production and reduction scenario is stated to
take into account the uncertainty of renewable sources. In the eighth section, the results and analysis
of the simulation are presented. Finally, the conclusion is stated in the ninth section.
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2 Structure of the Multi-Carrier MG

A multi-carrier MG is defined as interconnected loads and DGs within energy infrastructure.
Multi-carrier MGs are a separate region from the main grid and act in grid-connected or islanded
modes. In this paper, Fig. 1 shows the multi-carrier MG with the electricity and natural gas grid
infrastructure, energy hub system, RES and battery. Here, the energy hub system connects various
resources, e.g., electricity, natural gas as well as electric and thermal loads. The proposed MG is
connected to the upstream electricity and gas grid and can also work in the islanded mode. To facilitate
the operation, a central controller is included in the MG that collects information from each local
controller, e.g., the status of DG and loads and, if necessary, issues commands for optimal operation
of the MG. In fact, this central controller performs the optimal operation of the MG based on
the status of DG, predictswind speed, solar irradiation and loads, and then dispatches the energy
distribution signal to the local controller of each MG. The independent MG operator manages this
central controller.

Central 
microgrid 

control 

Central 
control of 

gas 
network 

Upstream 
network 

Energy 
hub 

Energy 
hub 

wind

Battery

PV

Figure 1: Multi-carrier MG

2.1 Energy Hub
The energy hub system facilitates the conversion of energy carriers. The energy hub connects

various energy sources such as electricity and natural gas, and different loads (e.g., electricity and
heating) to one another. The hub comprises a transformer, boiler and simultaneous electricity and
heat generator, receives natural gas and electricity from the upstream grid as the input and supplies
the consumers’ demanded electricity and heating as the output.
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3 Probabilistic Load, Electricity Price and RES Modeling
3.1 Load Modeling

Herein, electric and thermal loads are modeled as follows Eq. (1) by using a normal distribution
function with a mean equal to the baseline load in each period and a standard deviation (SD) of 5%
of the baseline load [20].
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3.2 Electricity Price Modeling in the Previous-Day Market and Real-Time Market
The statistical analysis shows that the general distribution logic is the most appropriate model

and confirms the proposed strategy in the analysis. Thus, the log-normal distribution function with
the mean equal to the baseline electricity price in a certain interval and the SD of 5% of the baseline
price is used for modeling the electricity market in Eq. (2) [25]:
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3.3 Electricity Price Modeling in the Previous-Day Market and Real-Time Market
Two distribution functions are applied to model the uncertainties in the wind and solar units. The

output power of the wind generator depends on the wind speed with zero fuel costs. The wind speed
changes in real-time, which highlights the importance of a probabilistic model. The literature usually
uses the Weibull normal distribution function for wind speed (Eq. (3)).
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The output power from the wind farm in any interval is calculated via the wind power-wind speed
curve that expresses in Eq. (4) [20,21]:
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 0 ≤ vt ≤ vci

or ≤ vt ≥ vco

Pwt
r .

v2
t − v2

ci

v2
r − v2

ci

vci ≤ vt ≤ vr

Pwt
r vr ≤ vt ≤ vco

(4)

The power generated from a solar unit differs with solar irradiation that depends on various
factors such as environmental conditions, time, day, month, season and orientation of the solar
plant towards solar irradiation. Herein, solar irradiation is modeled via a beta distribution function,
expressed in Eq. (5).

f (Rt) = 	 (ϕ, ξ)

	 (ϕ) .	 (ξ)
· R(ϕ−1)

t · (1 − Rt)
ξ (5)
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The solar generator of the output power belongs to solar irradiation; therefore, output power
modeling needs solar irradiation modeling. The output power of the solar station as a function of
irradiation in any interval of the irradiation-power curve is calculated in Eq. (6) as:

RPpv (Rt) =
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4 Problem Formulation

This section deals with the proposed strategy (sales and purchase) in the previous-day and real-
time energy market in stochastic conditions. The proposed strategy refers to the amount of energy
purchased or sold in the previous-day market. Based on different uncertainties in the predicted system
data, it is challenging to find an optimal approach to dealing with this. In the proposed model,
electricity and gas can be exchanged between the proposed multi-carrier MG and the upstream grid,
which plays a major role in the energy market by accessing real-time data. The price-setting entities
make their bids (including the electricity sales/purchase and hourly price) the previous day to the
distribution system operator.

The bids to the distribution system operator are based on the previous-day market price, and
generation and consumption predictions are based on the prediction data. After settling the market
with the distribution system operator, generation and consumption may vary due to the stochastic
nature of the variables; thus, the consumer must actively participate in the real-time market to balance
loads in real-time. Note that the prices in this secondary market differ from the previous-day market.
Since the size of the multi-carrier MG is smaller than the grid, it is assumed as a price-receiving entity.
In the proposed model, based on the information in the previous-day market such as the predicted
electric and thermal load, RES generation, electricity and gas price in the previous-day market, the
program is simulated once, and the price function and the optimal amounts of energy sales and
purchase in the previous-day market are obtained. Then, first-stage variables such as the optimal
energy sales and purchase in the previous-day market are assumed as second-stage parameters. In the
second stage, the real-time market model is simulated based on various uncertainties such as electric
and thermal loads, RES and real-time market price to strike an energy balance and settle the market
each hour.

The main resources include uncertainty, previous-day price, real-time price, RES and loads. Due
to the six types of uncertainty in the proposed problem, this paper uses stochastic optimization. Thus,
to examine the effect of uncertainty on the MG operation strategy, a Monte Carlo simulation is
performed to generate random scenarios. By using scenario reduction methods (Kantorovich distance-
based backward reduction), the scenarios generated by each parameter are reduced to three scenarios
in order to reduce the computational load.

4.1 First-Stage Objective Function
There are six sources of uncertainty in the proposed multi-carrier MG: previous-day and real-

time prices, solar and wind generations, as well as electric and thermal loads. The proposed grid
presents energy sales/purchases in a multi-carrier MG as a two-stage model. In the first stage, the MG
presents the hourly energy purchase and sales to the distribution system operator without considering
uncertainties. After settling the market, the MG programs generation for day-ahead MG operation
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is based on deterministic parameters. In the second stage (real-time operation), by considering the
confirmed previous-day sales and purchase bids, the MG operator uses the resources to balance the
generation and consumption due to uncertainties. In fact, this stage precedes the real-time market
settlement in each hour; therefore, the units’ level of generation, ESS charge/discharge and energy
sales/purchase in the real-time market are optimized. This model is a mixed-integer linear problem,
in which the objective function and constraints of the proposed multi-carrier MG are modeled for
24 h in each scenario. In this model, the objective function is to minimize the energy sales and purchase
costs as well as maintenance costs of the equipment. The minimization objective function is modeled
as Eq. (7) [20]:

OF :
∑

s

�t,s ·
∑

t

[
ρDA (t, s) · PDA

e (t, s)
] + ρg (t, s) · Pg (t, s) + Co&m (t, s) (7)

where the first term is the energy purchase costs or sales profit in the previous-day market per hour.
The second term is the natural gas purchase cost to supply the gas fuel-consuming units that are in
charge of supplying electricity and heating to the MG. The final term is the equipment maintenance
costs modeled in Eq. (8) as follows:

Co&m (t, s) = PCHP
e (t, s) KCHP

o&m + PAB
h (t, s) KAB

o&m + PWT
e (t, s) KWT

o&m + PNet
e (t, s) Ktran

o&m + Es (t, s) KES
o&m (8)

In Eq. (8), each units’ maintenance cost is calculated by multiplying the generation of each unit
by the maintenance cost coefficient per hour.

4.2 Problem Constraints
The following equations show the MG equipment conversion/generation equation. In this MG,

energy conversion is performed by a transformer modeled in Eq. (9). The generated energy by the
simultaneous generation converter and the boiler is presented in Eqs. (10) and (11), and depends on
the purchased gas and equipment efficiency. The heating system is formulated in Eq. (12) [20]:

Ptrans
e = PNet

e (t, s)ηtrans (9)

PCHP
l (t, s) = Pg (t, s)ηCHP

l v (t, s) l ∈ {e, h} (10)

PAB (t, s) = Pg (t, s)ηAB (1 − v (t, s)) (11)

PEHP (t, s) = PEHP
i (t, s)ηEHPCo (12)

Battery modeling is formulated in Eq. (13) such that Eq. (14) prevents simultaneous battery
charge/discharge. In Eq. (12), for sustainable use of the battery, the amount of energy at the first and
last moments of the day must be equal, as shown by Eq. (15):

M (t, s) = [E (t, s) − E (t − 1, s)] × (
ηchI ch (t, s) + ηdisIdis (t, s)

)
(13)

Ich (t, s) + Idis (t, s) = 1 (14)

El (1, m) = El (24, m) (15)

Eq. (16) presents the electric and thermal load balance that must hold for each scenario in each
hour. (16) shows that the electric load and electricity required for supplying the heating system can
be supplied by the upstream grid, CHP generator, wind and solar power stations and battery. Based
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on Eq. (17), the thermal load can be supplied by the CHP generator, absorption chiller and heating
system.

Loade (t, s) + PEHP
i (t, s) = PNet

e (t, s) α (t) + PCHP
e (t, s) + PWT (t, s) + PPV (t, s) + M (t, s) (16)

Loadh (t, s) ≤ PCHP
h (t, s) + PAB

h + PEHP
h (17)

The upper and lower bounds of each unit, e.g., transformer capacity, CHP generator, boiler,
heating system, ESS and the battery charged/discharged energy, are in Eqs. (18)–(23):

Ptrans
min < Ptrans

e (t, s) < Ptrans
max (18)

PCHP
min < PCHP (t, s) < PCHP

max (19)

PAB
min < PAB (t, s) < PAB

max (20)

PEHP
min < PEHP (t, s) < PEHP

max (21)

Emin < E (t, s) < Emax (22)∣∣MES (t, s)
∣∣ < MES (23)

Eq. (24) models the input gas coefficient to the CHP generator and the boiler.

0 ≤ v (t, s) ≤ 1 (24)

4.3 Electricity Price Dependence on Gas
The high sensitivity of the previous-day and real-time electricity prices to gas supply was

demonstrated vividly in the winter of 2014. Although this electricity price follows the natural gas
price model, their relative dependence must be the starting point for creating proper interdependence
models; still, the real-time market electricity price depends on many other factors, a few of which can be
measured by available data; e.g., natural gas price in the real-time market, the effect of gas pipe capacity,
load model deviations and load responsiveness, RES penetrability and previous-day market electricity
price, each somehow affecting the real-time market electricity price. Finally, to determine how various
factors affect future and real-time electricity prices in the mentioned periods, the correlation coefficient
of electricity prices and different factors are calculated in each local hub. The carriers’ price dependence
is demonstrated with Eq. (25), in which the y-axis shows the previous-day and real-time market prices.
The x-axis shows the load prediction error, wind prediction error, natural gas price or previous-day
electricity price.

y = β1x + β2 (25)

Coefficients 1β and 2β denote the best line for carrier dependencies.

4.4 Second-Stage Objective Function
In this stage, the first-stage variable (the forward purchase/sales of electricity) is placed in the

second-stage objective function as a constant parameter (first term), and the electricity shortage/sur-
plus is traded on the real-time market (second term). In this stage, all the uncertainties are taken into



EE, 2022, vol.119, no.6 2691

account and the MG operator can sell the forward purchased surplus electricity on the market in
real-time. Eq. (26) shows the second-stage objective function.∑

s

�t,s ·
∑

t

[
ρDA (t, s) · PDA

e (t, s)
] + ρRT

g (t, s) · PRT
g (t, s) +

∑
t

ρRT
e (t, s) · PRT

e (t, s) + CRT
o&m (t, s) (26)

All the constraints mentioned above, except Eqs. (27) and (28) which have been changed, hold.
Thus, in this stage, the electricity purchased in Eq. (27) changes, as the result of which the electricity
load balance is altered based on Eq. (28).

PRT
e (t, s) = PRT

e (t, s) + PRT
e (t, s) (27)

Loade (t, s) + PEHP
i (t, s) = PNet

e (t, s) + PCHP
e (t, s) + PWT (t, s) + PPV (t, s) + M (t, s) (28)

Based on Eq. (27), the total electricity purchased from the grid is the sum of the electricity
purchased from the previous-day market and the real-time market.

5 Harmony Search Algorithm

The harmony search algorithm (HSA), also known as the soft computing algorithm or evolu-
tionary algorithm, is inspired by the formation and performance of an orchestra to look for the
optimal solution, or simply put, the best coordination between the factors involved in leading a
process. Musicians in an orchestra play musical pieces, the best combination of which creates the
best final product. Likewise, HSA looks for optimal coordination when examining the result of
components’ performance and looks for the best path in solving optimization problems, with which
the computational cost functions can then be reduced by [25]. The stages of the HSA are:

• Determining the problem and algorithm parameters
• Initially determining the harmony memory
• Generating a new harmony
• Updating the harmony memory
• Examining the algorithm stop region

1) In the first stage, the optimization problem is determined in Eq. (29):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Minmize : {f (x) , x ∈ X}
st
g (x) ≥ 0
h (x) = 0

(29)

Here, f (x) is the objective function, h(x) is the equality constraint function and g(x) is the
inequality constraint function. Moreover, x is a set of decision variables, and xi and X are the set
of possible values of each decision variable. Furthermore, xiL ≤ xi ≤ xiU , where xiU and xiL are
the upper and lower bounds for each decision variable. The HSA parameters are specified in the first
stage and include the harmony memory size (HMS), harmony memory considering rate (HMCR),
pitch adjustment rate (PAR) and the number of improvisations (NI) or the algorithm stop region. The
HM is where all the solution vectors are stored. HMCR and PAR are parameters used to improve the
solution vector in the third stage.
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2) Initial determination of the HM

In this stage, the HM matrix is randomly generated with a large number of solution vectors and
is filled based on the HMS, that shows in Eq. (30) [15]:

HM =

⎡
⎢⎢⎢⎢⎢⎣

x1
1 x1

2 · · · x1
N−1 x1

N

x2
1 x2

2 · · · x2
N−1 x2

N
...

...
...

...
...

xHMS−1
1 xHMS−1

2 · · · xHMS−1
N−1 xHMS−1

N

xHMS
1 xHMS

2 · · · xHMS
N−1 xHMS

N

⎤
⎥⎥⎥⎥⎥⎦ (30)

3) Generating a new harmony based on improvisation

A new vector x′ = (
x′

1, x′
2, . . . , x′

N

)
is generated based on three rules (memory requirements, pitch

adjustment and random selection) and is called the improvisation vector. The value of the first decision
variable ×11 for the new vector is selected from any value in the HM range. The values of the other
variables are selected similarly. HMCR is the selection rate of a value from the previously calculated
values stored in the HM and HMC-1 is the rate of the random selection of a value from the range of
possible values, That Presented in Eq. (31):

x′
i ←

{
x′

i ∈ {
x1

i , x2
i , . . . , xHMS

i

}
(HMCR)

x′
i ∈ Xi (1 − HMCR)

}
(31)

HSA selects the value of the decision variable from the entire range of possible values. The
obtained solutions from the memory requirements are tested to determine whether this pitch adjust-
ment is more appropriate or not, which is done using the PAR parameter, which is defined in Eq. (32):

x′
i ←

{
Yes, Pr (PAR)

No, Pr(1 − PAR)

}
(32)

If the decision for pitch adjustment is Yes, ‘xi is replaced in Eq. (33):

x′
i ← x′

i ± rand() × bw (33)

where bw is the audible bandwidth and () rand is a random number between 0 and 1. In the third
stage, HM requirements of pitch adjustment are applied on each variable of the new harmony vector
by selective selection.

4) Updating the HM

If the new harmony vector x′ = (
x′

1, x′
2, . . . , x′

N

)
is better than the worst harmony vector in the

HM based on the selected objective function, the new harmony will be placed inside the HM and the
worst harmony is discarded from the HM.

5) Checking the stop area

If the stop area, i.e., the maximum number of improvisations, is satisfied, calculations end;
otherwise, Stages 3 and 4 are reiterated. The flowchart of the proposed algorithm is shown in Fig. 2.
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Figure 2: Flowchart of harmony search Algorithm

6 Scenario Generation

LHS is a group sampling method. Since the Weibull distribution function of each stochastic
variable is known, the sampling stratification is done with the sampling delay mean to ensure the
integrity of sampling data and increase the volume of data. For each uncertain parameter, the Weibull
distribution should be classified into several parts. Herein, the LHS method is adopted for scenario
generation, as shown below:

Step 1: Determining the number of scenarios and, then, dividing the probability distribution of
each uncertain parameter into N levels;

Step 2: Selecting the mean value from the probabilistic distance [(i − 1)/N, i/N] where 1 ≤ i ≤ N;

Step 3: Calculating the values of the sample of wind speed, solar irradiation, electricity price and
electric charge based on the inverse cumulative distribution function.

6.1 Scenario Reduction
To create knowledgeable choices withinside the existence of uncertainties, threat control issues of

electricity utilities can be simulated through multistage stochastic packages. These packages utilize a
hard and fast bevy of situations (or potential realizations), as well as taking into consideration the
corresponding changes to the version of the multivariate random statistics procedure, e.g., electric
demand, stream flows to hydro units, the output of production in intermittent clean sources, fuel
and electricity prices. To show the involved uncertainty, the number of scenarios is demanded
while, reduction scenario approaches are often used because of computational complexity and time
limitations. This work suggests a novel model for to recursive backward scenario reduction is possible
regarding next-day scenarios to generate wind power. Therefore, a set of the initial scenario set is
determined by the following algorithm and assigns new probabilities to the stored scenarios. The
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output is planned to assist production scheduling of power systems employing intermittent type clean
energy sources.

Backward scenario reduction is a positive method for reducing the number of scenarios. This
technique provides a set of scenarios to estimate their primary set.

Considering ξs (S = 1, 2, . . . , Ns) as different Ns scenarios with the probability, probabilities and
DTs,s· as the paired distance of the scenarios, the following steps should be followed:

Step 1: Take S as the primary set of scenarios and DS is the set of scenarios that should be elimi-
nated. The primary DS is zero. Calculate the distance of all the scenario pairs:

DTs,s· = DT (ξs, ξs) , S, S′ = 1, 2, . . . , Ns while; DTs,s· =
√∑ (

V s
i − V s

i

)2 · V s
i , the vector of unspecified

parameters in scenario s.

Step 2: For any scenario k, DTk (r) = minDTk,s, S′, k ∈ s and S′ �= k, r are the scenario criteria
with minimum distance from scenario k.

Step 3: Calculate PDk(r) = prob(k) × DTk(r), k ∈ s and select d in it PDd = minPDk, k ∈ S .

Step 4: S = S − {d} , DS = DS + {d} , prob (r) = prob (r) + prob (d).

Step 5: Repeat Steps 2–4 to eliminate the intended number.

7 Simulation and Results
7.1 The Studied System

A multi-carrier MG is a system that boosts energy flexibility. To respond to different forms
of demands, the multi-carrier MG is equipped with energy converters, generators, and ESS. Fig. 1
illustrates the structure of a multi-carrier MG. Each multi-carrier MG comprises small-scale energy
sources, several demands and a battery. The small-scale energy sources include PV and wind power
stations, a boiler, CHP generator, transformers and a heating system. Table 1 lists the technical
specifications of the equipment in this MG.

Table 1: Technical specifications of the MG elements [20,21]

Elements Maintenance
coefficient ($/kWh)

Performance (%) Max. capacity
(kW/kWh)
Elements

El Th 

Trans 0/012 92 – 92 1000
Simultaneous generator
of electricity and heat

0/03 80 40 40 300

Boiler 0/012 85 85 – 600
PV 0 95 – 95 50
Wind 0/02 90 – 90 50
Heat system 0/01 – – – 450
Battery 0/01 – – – −20/20
Battery size 0/02 95/90 – – 100
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7.2 Case Studies and Results
In this simulation, the number of scenarios for each parameter is reduced to three scenarios by

using the introduced method. The data of electric and thermal loads, wind and solar generations,
previous-day electricity price, and real-time electricity price for the three scenarios are presented in
Figs. 3 and 4.

Figure 3: Electric load curve

Figure 4: Thermal load curve
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The electricity and natural gas prices for the three scenarios are given in Fig. 5.

(A) Scenario 1

(B) Scenario 2

Figure 5: (Continued)
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(C) Scenario 3

Figure 5: Electricity price for three scenarios for previous-day and real-time modes

Solar and wind units’ generation for each scenario is depicted in Figs. 6 and 7.

Figure 6: Power generated by the wind power station
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Figure 7: Power generated by the solar power station

The simulation results are presented and discussed in this section. The bidding strategy problem
in the multi-carrier MG is applied to implemented on the proposed grid. Seven modes are considered
to evaluate the model.

Mode 1. Purchase and sales strategy with previous-day and real-time electricity price uncertainty

Mode 2. Purchase and sales strategy with all the uncertainties in previous-day and real-time
electricity price, electric and thermal loads as well as RES generation

Mode 3. Effect of previous-day electricity price variation on the purchasing and sales strategies
with all the uncertainties in the paper

Mode 4. Effect of RES power station (wind and solar) on the purchasing and sales strategy with
all the uncertainties in the paper

Mode 5. Effect of battery capacity on the purchasing and sales strategy with all the uncertainties
in the paper

Mode 6. Effect of gas price on the purchasing and sales strategies, with all the uncertainties in the
paper

Mode 7. Effect of uncertainties on the cost of MG operation

Mode 1: Here, the proposed strategy is applied to a multi-carrier MG. Fig. 8 compares the cost
of MG operation in the previous-day and real-time market with previous-day and real-time market
electricity price uncertainty. Based on Fig. 8, the cost of operation is considerably reduced for the dual
participation model compared to the model, in which it participates only in the previous-day or real-
time markets. The cost of MG operation is severely increased if it participates in the real-time market
due to the high electricity price, compared to participating in the previous-day market. The comparison
of optimal MG operation with/without participation in the previous-day market shows that the cost
of MG operation is reduced by about 5.2% with dual participation, compared to participation only in
the real-time market.
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Figure 8: Cost of MG operation with uncertainty in the previous-day and real-time electricity price

Mode 2: To demonstrate the importance of the proposed strategy for a multi-carrier MG and using
the proposed strategy for MG operation by considering previous-day and real-time market electricity
price, the electric and thermal load and RES generation (solar and wind) are simulated in mode 2.

Fig. 9 compares the cost of MG operation in dual participation mode with the uncertainty in all
previous-day and real-time market parameters. Based on Fig. 9, each cost of operation is increased in
the dual participation mode compared to participating only in the previous-day market, due to a rise in
electric and thermal loads and a reduction in DG prediction. Compared to the single participation in
the real-time market, it has been reduced due to the expensive electricity price in the real-time market.
This mode reveals that the cost of operation has increased during dual participation compared to Mode
1 due to having a more realistic model with different uncertainties. This difference in costs could seem
unreasonable at first; however, due to uncertainties in DG and energy price, the MG tends to purchase
energy from the previous-day market due to the low electricity price, while it tends to sell energy at a
higher price on the real-time market.
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)

Figure 9: Comparison of the cost of MG operation in dual participation mode with the uncertainty in
all previous-day and real-time market parameters
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Figs. 10 and 11 display the average purchased/sold energy on the previous-day market and the
energy exchanges on the real-time market to compensate for the imbalance. In Fig. 11, the image of a
clock is used to display the forward sales/purchases on the previous-day market, as well as the energy
sales/purchase on the real-time market to compensate for load imbalance. A binary variable is used to
see whether the forward sales/purchase of energy in the first stage was cost-effective or not, denoted by
0 (no) and 1 (yes). Based on the following two figures, in the first stage, the MG tended to sell energy at
1, 2, 3, 5, 6, and 23–24 due to the low consumption and high generation, but generation or economic
profit from the real-time purchase was impossible for the MG. This could be because, appraising and
considering maximum generation for RES units on the previous day, less energy was generated on the
real-time market due to uncertainty.

After second-stage analysis and examining the defined binary variable (confirmation of sales or
purchase on the previous-day market), it is concluded that the MG should sell the surplus electricity in
the real-time market due to the high electricity price. Evidently, the MG operator had decided to sell
energy in the forward sales and purchase strategy at 4, while it needed to purchase a small amount of
electricity from the upstream grid, even at that hour in the real-time market. At 7–9, 11–15, 17, 19, and
20–22, the MG operator decided to purchase electricity from the upstream grid, which is acceptable at
most hours, and even purchase a small amount of electricity from the grid to supply the surplus load
on the real-time market. The rejection of the forward electricity purchase at 10 and 18 is notable; the
operator has realized in the real-time stage that the electricity price has been reduced on the real-time
market and found it cost-effective to purchase all the electricity on the real-time market.

Finally, it is concluded that the MG operator should forward purchase electricity at peak hours
due to the uncertainties; however, it should not forward sell any electricity and, instead, sell the surplus
electricity on the real-time market. Forward purchase of surplus electricity is more optimal than a little
forward purchase to overcome the uncertainties because it is possible to sell the forward-purchased
surplus electricity on the real-time market.

Figure 10: Average energy (purchased/sold) on the previous-day market and energy exchanges on the
real-time market
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Figure 11: Average energy (purchased/sold) on the previous-day market and energy exchanges on the
real-time market

Mode 3: Fig. 12 and Table 2 show the effect of variations (increases/decreases) in the previous-day
electricity price on the cost of MG operation. Evidently, if the previous-day market electricity price
has a declining trend, the cost of MG operation is reduced when participating only in the previous-day
market; in this case, it is cost-effective for the MG operator to forward purchase on the previous-day
market.

Figure 12: Effect of electricity price variations in the previous-day, real-time and dual participation on
the cost of MG operation
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Interestingly, in this mode, the final cost of participation in the real-time market alone is more
than the other two modes. Overall, if the electricity price remains unchanged, the costs of operation
in the previous-day and real-time markets also remains unchanged. If the electricity price increases
by 10%, then the cost of operation only in the previous-day participation model or dual participation
slightly increases. Nevertheless, if the electricity price gradually increases by 20% and above, the cost of
operation in the previous-day participation model rises, while it decreases during dual participation. By
raising the electricity price up to 30% on the previous-day market, the cost of operation increases only
when participating in the previous-day market; however, in the dual participation model, the changes
were not significant; the cost of operation is still higher when participating only in the real-time market.
The declining trend of the operation cost with a >30% rise in the previous-day electricity price in the
dual participation model is notable, which is due to the sale of electricity on the previous-day market,
only to then purchase it in the real-time market.

Based on Fig. 12, the minimum 50% rise in the electricity price in the previous-day market has
led to an exponential elevation in the cost of operation in the previous-day market, but a reduction
in the cost of dual participation. In this model, the operation cost of dual participation is less than
participation only in the real-time market. It is shown that when the electricity price is increased by
100% in the previous-day market, to reduce the cost of MG operation, a very little amount of energy
should be purchased from the previous-day market and the maximum amount of energy from the
real-time market.

Table 2: Scenario of the percentage of changes in electricity prices compared to Mode 2 on the
previous-day market

Scenario Electricity price changes Operation costs ($)

RT DA&RT DA

1 −50% 547/8721 431/3794 406/6590
2 −30% 547/8721 473/2795 440/7312
3 −20% 547/8721 494/1735 457/4609
4 −10% 547/8721 515/1937 474/1613
5 0% 547/8721 535/5298 490/8398
6 10% 547/8721 546/1913 507/5003
7 20% 547/8721 545/0163 524/118
8 30% 547/8721 541/5598 540/8028
9 50% 547/8721 533/3108 574/1011
10 100% 547/8721 512/3133 657/3025

Mode 4: Fig. 13 depicts the effects of RES (wind and solar) power station capacity on the cost of
operation; the more the capacity of the RES power station increases, the more the cost of operation
would decrease. The notable point in this scenario is that, by increasing the RES units’ capacity by 10
times, the cost of MG operation will greatly decrease. Based on Table 3, with this extent of RES power
station installation, there is no need to participate in the previous-day market and the consumer can
trade all the required energy on the real-time market.
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Figure 13: Capacity of RES power station in previous-day, real-time and dual participation on the cost
of operation

Table 3: Effect of RES power station capacity

Scenario Operation costs ($) Renewable power plant
capacity change coefficient

RT DA&RT DA

1 593/938 577/0783 572/895 0
2 570/841 556/1308 531/637 0/5
3 547/8728 535/5319 490/8398 1
4 502/2383 494/3118 410/6963 2
5 457/1622 452/0738 332/7513 3
6 412/8873 409/6016 256/5412 4
7 369/448 367/0828 182/9038 5
8 160/1258 160/1271 −176/811 10

Mode 5: Fig. 14 and Table 4 present the effect of battery capacity on the cost of operation. Based
on this scenario, by increasing the battery capacity, the system operator will have more flexibility in
selling/purchasing energy in all three modes (participation in previous-day market, participation in
day-ahead market and both), which eventually reduces the cost of MG operation.
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Figure 14: Effect of battery capacity in previous-day, real-time and dual participation on the cost of
operation

Table 4: Effect of increasing the battery capacity on the cost of MG operation

Scenario Operation costs ($) Converter power (kV) Battery power (kWh)

RT DA&RT DA

1 549/9428 537/6078 493/4338 0 0
2 548/9375 536/5838 492/1697 10 50
3 547/8735 535/5319 490/8390 20 100
4 546/8263 534/5206 489/5109 30 150
5 545/8108 533/5153 488/2788 40 200
6 544/8443 532/5078 487/0966 50 250
7 543/9458 531/558 485/9123 60 300
8 540/8133 528/0439 481/6819 100 500
9 531/7411 515/7596 470/7729 250 1000

As an example, the ESS performance in the main model is illustrated in Fig. 15. The battery
performance shows that the MG tends to charge in non-peak hours, while energy discharge is done to
supply loads in peak hours when the electricity price is high. Also, the effect of increasing natural gas
price is presented in Table 5 for the operation cost.
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Figure 15: ESS performance in the main model

Table 5: Effect of increasing natural gas price on the cost of operation

Scenario Operation costs ($) Electricity price changes

RT DA&RT DA

1 547/8708 535/5318 490/8412 1
2 609/7918 597/4508 552/7613 2
3 671/7111 659/3706 614/6786 3
4 795/5509 783/2078 738/1212 5
5 918/2653 902/9928 856/1811 7
6 1064/528 1028/483 978/5911 10

Mode 6: In Table 6 and Fig. 16, it is observed that the electricity price depends on the gas price
on the previous day and in real-time; by increasing the gas price, the electricity prices also rise, thereby
increasing the total cost of MG operation.

Mode 7: In this model, the effect of uncertainty on the MG cost in the dual participation model is
studied based on Table 6. Evidently, the absence of uncertainty in RES generation has unrealistically
decreased the costs.

In Scenario 1, the importance of RES and battery uncertainty on the cost of MG operation is
greater than in the other modes. If uncertainty is not included, the real cost of MG is underestimated
unrealistically due to assuming maximum RES generation. Therefore, considering RES uncertainty
even with low capacity in MG operation is inevitable. However, in the model that does not consider
load uncertainty, the cost of operation is markedly increased compared to Scenario 1, which could
partly be due to considering uncertainty in RES generation. In Scenario 3, the effect of disregarding
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uncertainty on price has increased the cost of operation compared to Scenario 2. Comparison of
Scenarios 2 and 3 reveals it is due to the greater importance of considering load uncertainty and,
to a lesser extent, disregarding price uncertainty, which has further increased the costs in the MG.
Uncertainty is considered in all cases in Scenario 4, in which compared to Scenario 3, the cost of
operation is slightly reduced. The important conclusion is that the simultaneous operation of several
energy carriers, e.g., electricity and gas, greatly mitigates the effects of electricity price variations on
the cost of MG operation; in fact, the effects of electricity price uncertainty have diminished, whether
regarding the previous-day market or the real-time market.

Table 6: Effect of uncertainties on the cost of MG operation

Scenarios

Number 1 2 3 4
Loads √ √ √
Renewables √ √ √
Energy price √ √ √
Operation costs ($) 482/12 519/38 528/28 529/69

Figure 16: Electricity price to gas price in the previous-day, real-time and dual participation

8 Conclusion

Energy hubs play a mediating role in the entire interplay of energy resources, like that of an
electrical energy retailer, with the difference being that the manager owns the equipment within the
hub. By using the existing electricity and gas sources to purchase energy, CHP equipment and heating
furnaces for energy conversion, greater infrastructural problems can obe overcome while those hubs
can simultaneously maximize profits.
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Electric and thermal energies are at the hub output, able to be sold, of which generates revenue for
that hub. Electrical energy is supplied from the power pool market, and yet prices in the pool market
inherently have uncertainties. Thermal energy is supplied by CHP gas units and the heating furnace.
The price of this carrier is assumed to be constant due to the minor price fluctuations in the gas grid.
The thermal energy generated by gas can also be assumed as having a constant price with acceptable
variation in accuracy.

The electrical energy is purchased from the electrical energy market at a variable price, but sold
to the consumers at a constant price. This is why selecting a proper price for selling electrical energy
to maximize the profit and keep the customers is of utmost importance. This paper performed the
simultaneous economic dispatch optimization of carriers’ energy for electric and hydraulic systems in
a setting with uncertainties on the previous-day and real-time markets in a multi-carrier MG.

In this model, the energy management system of the multi-carrier MG bided on energy sales/pur-
chases to the distribution system operator to participate in the previous-day market. Decision-making
was defined as follows: How much energy should the hub manager purchase from the electrical energy
market and the gas grid per hour, so that it can make the maximum profit by using the purchased
carriers and the existing gas units? The bidding price should also be included in the decision variables.
Finally, a developed optimization algorithm based on harmony search was employed to solve the
problem. Based on the results, by increasing the electricity price in the real-time market, the cost of
MG operation was markedly reduced due to energy sales. Furthermore, the simultaneous operation
of several energy carriers, e.g., electricity and gas, considerably mitigated the effects of uncertainties
on the cost of MG operation. Future work will try to focus on the storage system and demand-side
management for the cost. Also, the pollution target function should be considered as a target.
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