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ABSTRACT

As the number of electric vehicles (EVs) continues to grow and the demand for charging infrastructure is also
increasing, how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.
In other words, reasonably planning the location and capacity of charging stations is important for development
of the EV industry and the safe and stable operation of the power system. Considering the construction and
maintenance of the charging station, the distribution network loss of the charging station, and the economic loss
on the user side of the EV, this paper takes the node and capacity of charging station planning as control variables
and the minimum cost of system comprehensive planning as objective function, and thus proposes a location and
capacity planning model for the EV charging station. Based on the problems of low efficiency and insufficient
global optimization ability of the current algorithm, the simulated annealing immune particle swarm optimization
algorithm (SA-IPSO) is adopted in this paper. The simulated annealing algorithm is used in the global update of
the particle swarm optimization (PSO), and the immune mechanism is introduced to participate in the iterative
update of the particles, so as to improve the speed and efficiency of PSO. Voronoi diagram is used to divide service
area of the charging station, and a joint solution process of Voronoi diagram and SA-IPSO is proposed. By example
analysis, the results show that the optimal solution corresponding to the optimisation method proposed in this
paper has a low overall cost, while the average charging waiting time is only 1.8 min and the charging pile utilisation
rate is 75.5%. The simulation comparison verifies that the improved algorithm improves the operational efficiency
by 18.1% and basically does not fall into local convergence.
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1 Introduction

With the increasingly urgent energy shortage and global warming, EVs with low emissions and
low noise have become a choice for many people to travel [1]. However, compared with traditional
fuel vehicles, EVs do not generally occupy the domestic market. Among them, the lack of battery
endurance of EVs, unreasonable construction and planning of relevant charging supporting Settings
represented by charging stations, inconvenient charging for users and long charging time are all
important constraints [2]. In the future, when the number of EVs increases and users’ charging demand
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increases, the load of EVs will further increase the pressure on the power supply of the distribution
network. Therefore, reasonable planning for the location and volume of charging stations to ensure
the convenience of users and reduce the impact on the distribution network side has become a top
priority in the next development of EV related fields [3].

In recent years, scholars have carried out studies on the problem of siting and capacity determi-
nation of EV charging stations. In establishing the charging station planning model, the literature [4]
established a charging load estimation model based on the actual measured vehicle arrival hotspot
map, fully considered the actual operational constraints of the distribution network, and introduced
a multi-objective planning model. The literature [5] provided an overview of electric vehicles and
charging station design for various configurations. The charging stations are classified according
to the power used, and various optimization algorithms and methods are proposed to obtain the
optimal solution. The literature [6] developed a multi-cycle optimization model for EV charging station
planning based on the mobile refueling location model and verified the effectiveness of the proposed
model by using real traffic flow data of the Korean highway network as an example. The literature
[7] proposed a multi-objective collaborative planning strategy for locating EVCS with a mathematical
model that aims to simultaneously minimize the total annual investment cost and energy loss and
maximize the annual traffic captured by the charging station.

At the level of considerations of the model, literature [8] integrated the cost of multiple, which
includes charging time and location identification, and combines these elements to minimize the
total minimized operating cost as the objective for optimization analysis. The literature [9] considered
constraints in the siting and capacity planning, including parking conditions, land use, traffic density
conditions, user-side requirements, etc., and focuses on quantifying the total cost and convenience
of the user side for the siting and capacity of charging stations. The literature [10] took uncertainty,
qualitative and quantitative factors into account in the siting evaluation and introduces the BN
algorithm as a powerful decision tool for siting and capacity selection in the context of power
management. The literature [11] focused on the location delineation of urban charging stations, the
determination of the power supply range, and the combination of traditional Voronoi diagrams and
real-time traffic flow map information to finalize the implementation plan. The above study contains
many factors affecting charging station planning and provides new ideas for solving charging station
planning problems.

Currently, several algorithms have been applied to the location and capacity planning of charging
stations. The literature [12] used an immune clone selection algorithm, which performs a search for
the lowest annual cost of the charging station, to arrive at a siting and capacity solution. The literature
[13] established a multi-objective charging station planning problem,and combines the hybrid particle
swarm optimization (HPSO) algorithm with the entropy-based technique for order preference by
similarity to the ideal solution (ETOPSIS) method to solve such a problem.

In summary, as a hot issue, the siting and capacity planning of EV charging stations has received
much attention from scholars both at home and abroad. However, at present, the existing charging pile
location and capacity planning schemes are not studied in depth when considering the distribution
network side. They only consider the constraints of the distribution network side, such as the upper
limit of capacity constraints, and do not quantitatively consider the access of EVs to the power
distribution network side. The influence of the access of EVs on the power quality of the distribution
network side is not quantitatively considered; in addition, many existing models only target benefits,
only seek the minimum cost and ignore the needs of the user side, such as waiting time, average
charging time, etc. On the other hand, the current algorithms suffer from low operational efficiency,
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poor convergence, and tend to fall into local optimal solutions, and even some improved algorithms
do not take into account these shortcomings.

With the objectives of reducing the construction and maintenance costs of charging stations,
improving the convenience of EV owners and maintaining the safety and stability of the power system,
this paper analyses and quantifies three types of costs, including the construction and maintenance
costs of charging stations, the distribution network losses of charging stations and the economic losses
on the EV user side, and proposes a model for siting and capacity planning of EV charging stations
in conjunction with the distribution network constraints. Secondly, to address the problems of low
efficiency and insufficient global search capability of existing algorithms, this paper introduces the
principle and characteristics of the simulated annealing immune particle swarm algorithm and details
how to solve the optimal solution for charging station siting and capacity selection using the designed
model and related algorithms, where the service area corresponding to each charging station can be
divided by a Voronoi diagram. Finally, the optimal number and location of charging stations and the
corresponding number of charging posts in each charging station are determined using a district in
Tianjin as an example, and the solution solved by the simulated annealing immune particle swarm
algorithm is compared with the conventional algorithm.

Compared to existing studies on the siting and capacity of charging stations, this paper transforms
some difficult to calculate cost losses into quantitative economic losses, the model covers more
comprehensive factors, and the use of the simulated annealing immune particle swarm algorithm
makes the optimal solution finding process more efficient and accurate. The use of the simulated
annealing immune particle swarm algorithm makes the process of finding the optimal solution more
efficient and accurate.

2 Quantification of Uncertainty

In order to ensure the comprehensiveness of the designed model, some variables that cannot be
directly calculated, such as the queuing time loss during charging and the potential loss caused by grid
harmonics, are quantified and incorporated into the model using statistical methods [14,15].

2.1 Quantification of Distribution Network Measurement Loss
2.1.1 Harmonic Losses at the Distribution Network Side

In the economic loss analysis on the distribution network side, the simplified EV charging model
can be generally used in order to facilitate the analysis of the harmonics of the charger. The battery
charging duration is set to 300, so the charger output voltage Uo and output current I0 can be regarded
as constant during one or a few working frequency cycles, so the output power can also be regarded
as constant. The equivalent circuit structure of the EV charging model is shown in Fig. 1.

The losses caused by harmonics are mainly affecting the service life of lines, transformers,
capacitors, inductors, etc. [16]. For a specific charging station, the harmonic situation generated by
the distribution network is directly related to the number of charging pile units connected. For a
transformer, the model for the evaluation of its service life under the effect of harmonics is as follows.

Le = Le0 exp
[
−B

(
1
T0

− 1
T ′′

)] (
E
E0

)−N

(1)

where Le is the actual service life, Le0 is the design service life, T0 is the room temperature, T ′′ is the
temperature under harmonic action, which can be determined by the specific average temperature of
the transformer in use in the charging station is substituted.
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Figure 1: Equivalent model of the uncontrollable charger

For each charging station i, the economic loss of the transformer aging due to harmonics:

Me =
ei∑

k=1

(
Pek

Le

− Pek

Le0

)
× T (2)

where Pek is the price of the first k transformer and T is the evaluation time.

Similarly, it is assumed that Mx, Mc and Ml are the economic losses under the harmonic effects of
line and capacitor inductance, respectively, which are calculated as:

Mx =
xi∑

k=1

(
Pxk

Lx

− Pxk

Lx0

)
× T (3)

Mc =
ci∑

k=1

(
Pck

Lc

− Pck

Lc0

)
× T (4)

Ml =
li∑

k=1

(
Plk

Ll

− Plk

Ll0

)
× T (5)

where, Pxk, Pck, Pck are the prices of the k transformer, xi, ci and li are the number of lines and the
number of capacitive inductors in the i charging station, respectively (as shown in Fig. 1, the number
of capacitive inductors is generally equal).

2.1.2 Load Operation and Voltage Deviation Effects

The ratio of the standard deviation of the load to the mean value of the load is the load
fluctuation rate, which indicates the degree of load dispersion per unit average load. The greater the
load dispersion, the greater the standard deviation, and the greater the load volatility, i.e., the greater
the load volatility; on the contrary, the smaller the load volatility, the smoother the load [17,18]. The
formula for calculating the average load volatility is as follows:

fbi = 1
D

N∑
i

Si

χ i

yi (6)

where fbi is the average load fluctuation rate of the access point of the charging station; N is the number
of nodes in the distribution network; Si is the load standard deviation of the node i; χ i is the node i]



EE, 2023, vol.120, no.2 371

load average value; yi indicates whether the node i has a charging station, if there is a charging station,
it is 1, otherwise it is 0.

If the location or capacity of the charging station is not reasonable, the node voltage deviation
may be too large when the charging load is connected on a large scale, which will lead to a sharp drop
in the node voltage of the distribution network. The voltage deviation of each node after the charging
station is connected is:

fpi = |Vi − Vi0|
Vi0

(7)

where fj is the voltage deviation of the node j; Vj is the node after adding the charging load j voltage.

2.2 Charging Queuing Time Loss
In this paper, we use the queuing theory idea to calculate the time loss of EV users waiting in line

for charging at charging stations.

Assuming that the charging process of EVs at charging stations belongs to a multi-service station
model, the corresponding average queuing time in a day can be calculated as:

ti =
i∑

i=1

Hi

(
j∑

j=1

Nijq

)
(8)

where q is the daily fast charging probability of a bicycle; For each charging station i, Nij is the charging
demand from i to demand point j. The charging time expectation Hi is:

Hi = s · ps+1 · p0

δs! (s − p)
(9)

where p0 is a fixed value indicating the probability that all charging posts are idle, δ is the number of
days admitted to the charging station, p is the charging station service intensity, s is the number of
total charging posts.

p0 =
[

s−1∑
k=0

(sp)
k

k!
+ (sp)

s

s! (s − p)

]−1

(10)

From the queuing time occupied per unit day, the total queuing loss cost can be calculated:

h22 = 365 · qa · t1 (11)

3 Charging Station Planning Modeling
3.1 Charging Station Siting and Capacity Determination Objective Function

In determining the siting and capacity model for charging stations, the common interests of
multiple parties need to be considered. Fig. 2 shows the total cost analysis [19].

Based on the above analysis, the model is proposed or established as follows. Refining the total
cost, the objective function is:

min S =
N∑

i=1

(s1i + s2i + s3i + s4i + s5i + s6i + s7i) (12)

Among them, the initial investment construction cost of charging equipment of the charging
station (s1i) and the later maintenance cost to ensure the charging station can operate normally (s2i)
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belong to the construction and maintenance cost of the charging station; the total charging cost of user
(s3i) and the additional loss cost of users annual charging (s4i) belong to the EV user side economic loss;
the remaining part is the distribution side loss, including the distribution side network loss (s5i), the
distribution side economic loss due to harmonics (s6i), the economic loss due to load fluctuation and
the economic loss due to voltage shift on the distribution side (s7i).

Figure 2: Total construction and operation cost of charging station

3.2 Investment and Maintenance Costs
The investment and construction costs of charging stations (s1i) include the purchase and instal-

lation costs of equipment for charging stations, the land price of the site, and infrastructure costs.

s1i = aei + bmi + cm2
i + di (13)

where for each charging station i, ei is the number of transformers to be purchased, mi is the number
of chargers to be purchased; a and b are the price of each transformer and charger, respectively; c is
the equivalent investment factor for the cost of associated equipment such as transmission lines, di is
the cost of land and infrastructure.

The operation and maintenance costs of the charging station (s2i) include the repair and mainte-
nance costs of the equipment, the refurbishment costs, and the salary costs of the personnel. This part
of the cost is characterized by high randomness and uncertainty, which is difficult to quantify directly,
so it is usually expressed as the ratio η of s1i (usually taken as 10%–20%), i.e.,

s2i = s1iη (14)

In the model of this paper, in addition to the construction and maintenance costs for the investors
of charging stations, the usage costs on the user side of EVs also need to be considered.

3.3 User-Side Economic Expenditure
For charging stations i, the annual charging cost of their users is

s3i = p · Qi · 365 (15)
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where Qi is the average of the charging demand in a day for the users covered by this charging station,
and p is the charging tariff per unit load. Usually, this part of the demand and the cost it generates is
a fixed value determined by the demand side.

In contrast, the additional loss cost of charging per year for the user (s4i) is related to the siting
and capacity setting scheme and consists of two main components.

s4i = h1 + h2 (16)

One of them is the cost of idle power loss incurred by the user during the charging journey:

h1 = 365 · p ·
∑

Li

g
(17)

where
∑

Li is the sum of the distances from all charging demand points to the charging station within
the service area of the charging station i, g is the distance traveled per unit of electricity of the EV.

The cost of time lost by the user h2 includes the time lost on the road and the time lost waiting in
line at the charging station.

h2 = h21 + h22 (18)

h21 = 365 · qa ·
∑

Li

v
(19)

where qa is the user’s travel time value; v is the average speed of the EV h22 can be calculated by solving
the above queueing theory method.

3.4 Distribution Network Side Cost Loss
The main adverse impact factors of EV charging load on the distribution network are shown in

Fig. 3.

Figure 3: Source of distribution network loss caused by EV charging

When EVs are charged and EV charging posts are interactively coupled with the distribution
network, especially when charging stations are connected to the distribution network on a large scale,
they will have a non-negligible impact on the local distribution network, thus causing certain cost
losses, such as network loss, harmonic pollution, current and voltage fluctuations, etc.

Network loss related power:

Ppw =
N∑
i

N∑
j

GijUiUjcosδij (20)
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where Ppw denotes the power loss of the distribution network; N is the total number of nodes; for any
two nodes i and j, Ui and Uj are the node i and node j respectively voltage, Gij is the conductance
between nodes i, j; δij is the power angle difference between nodes i, j.

From the power loss formula of the distribution network, the network loss at the distribution side
can be quantified as

s5i = 365 · tCD · p · Ppw (21)

where tCD is the total charging time of the charging station during the day; p is the tariff per unit load
volume.

The final distribution-side economic loss under the influence of harmonics is

s6i = Me + Mx + Mc + Ml (22)

The economic loss caused by load volatility and voltage excursion is

s7i = fbi · Rbi + fpi · Rpi (23)

where fbi is the evaluation index of load fluctuation severity, fpi is the evaluation index of voltage out-
of-limit severity of node i.

The above model considers the operation efficiency of the charging station, the loss of the
distribution network side, and the convenience of charging from the perspective of the whole society. In
this model, variables with high uncertainty such as user queuing time and harmonic loss are modeled
and quantified as specific values, which can be optimized by changing the location and capacity of the
charging station, and added to a specific model to find a comprehensive optimal solution.

4 Constraint Setting on the Distribution Network Side

In the siting and capacity planning of charging stations, relevant constraints need to be considered.

4.1 Equation Constraints

PFDZ = PCDZ + Ui

N∑
j=1

Uj

(
Gij cos θij + Bij sin θij

)
(24)

QFDZ = QCDZ + Ui

N∑
j=1

Uj

(
Gij cos θij + Bij sin θij

)
(25)

The above equation constraints can be interpreted as the tidal constraints of the charging station
at the distribution network side Eq. (24) is the active power tidal constraint, PFDZ and PCDZ are the
active power of the generator and charging station at grid node i. Eq. (25) is the reactive power tidal
constraint, QFDZ and QCDZ are the reactive power of the generator and charging station at grid node i,
Gij and Bij are the reactance and susceptance between nodes i and node j, respectively; θij is the voltage
difference angle between nodes i and node j [20].

4.2 Inequality Constraints
(1) Substation capacity constraint:

Si ≤ Si max (26)

where Si is the EV charging capacity load case; Si max is the load capacity constraint that each load in
the charging station, such as transformer, can withstand.
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(2) The maximum charging power constraint of EVs allowed to be connected to the distribution
network:

N∑
i=1

PCi ≤ Pmax
C (27)

where for each charging station i, PCi is the charging power of charging station i; Pmax
C is the total

maximum charging power reserved for EVs in this area.

(3) Feeder maximum current constraint:

Iij ≤ Iij max (28)

Iij is the current of the feeder in the distribution network during charging, Iij max is the maximum
current flowing through the distribution network to keep it stable.

(4) Capacity constraint of charging station access point:

Pcij ≤ Pj max (29)

where Pcij is the charging power of the charging station i connected to the grid node j; Pj max is the
maximum access power allowed by the grid node j, which is mainly determined by the load at node j
and the transmission capacity of the line where it is located [21].

5 Model Solving Approach
5.1 Weighted Voronoi Diagram Algorithm

In the plane, there is a set of points where each vertex Pi (i = 1,2, . . . ) is expanded in all directions
according to a certain speed until they intersect at the plane, thus generating multiple regions, and
finally generating a region division graph as shown in Fig. 4. Its mathematical definition can be
described as

Vorl = 1, 2, · · ·, L(Hb) = {u ∈ Vor(Hb)d(u, Hb) � d(u, Hl)} (30)

Figure 4: Method of generating Voronoi diagram

After the Voronoi diagram related program runs, V(pi) is a certain region finally generated by pi,
u is any point within the plane V(pi), d(u, pi) and d(u, pl) represent the geometric distances between
u and pi, pl, respectively. Eventually, within the region V(pi) generated by each vertex pi, the distance
between any point u and pi is less than the distance between u and other regions, and the dashed line
in the figure is the dividing line between different regions V(pi).
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Because different charging stations have different capacities, it is necessary to introduce a weight
value to determine their specific responsible range, i.e., a weighted diagram is needed. Assuming that
the corresponding weight value of each point pi is λi, Eq. (30) can be changed to:

Vorl = 1, 2, · · ·, L(pi) =
{

u ∈ V(pi)

∣∣∣∣d(u, pi)

λi

� d(u, pl)

λj

}
(31)

The weights λi of charging stations i can be calculated by Eq. (32), where Sc is the reference capacity
and Qi is the capacity of the re-charging station.

λi =
√

Sc

Qi

(32)

From the above principle, each charging station is regarded as a certain point on the two-
dimensional plane, and weighted by capacity, the charging stations with more charging posts and
larger capacity are given higher weight values, and the corresponding weighted map is generated to
finally arrive at the area responsible for each charging station, within which, according to the proximity
principle, the total cost of the corresponding charging demand point going to the relevant charging
station is smaller than the total cost of going to other charging stations.

5.2 Simulated Annealing Immune Particle Swarm Algorithm
Given that the siting and capacity determination of charging stations has the characteristics of a

complex model and many variables, the traditional PSO algorithm has the problem of low efficiency,
and may not be able to guarantee the search for the global optimal solution, thus causing certain
economic and time losses.

Therefore, the immune algorithm is a stochastic search algorithm with jumping characteristics. In
this algorithm, the optimal search problem of charging station siting is considered as the antigen and
the feasible solution as the antibody, and the two interact with each other to obtain the final solution,
and the antibody diversity is used to regulate itself, so that the particle population always maintains
diversity and keeps the excellent particles with high adaptability, and iterates with the excellent particles
saved by screening, so that the overall quality of the population particles is optimized, and the
algorithm computing efficiency is enhanced, and the speed of the optimal search is improved, and
finally the local convergence is effectively avoided.

In addition, it can be fused to join the simulated annealing algorithm and perform a collaborative
search. SA algorithm has a strong ability of sudden jump, when the particle generates a new solution,
the algorithm will judge the new solution according to the relevant acceptance criterion concerning
the solid annealing process, so as to decide whether to update and optimize, in this way, the algorithm
will not mention staying at the original local optimal solution, but will continue to search until finding
the global optimal solution. At the same time, this cooling behavior likewise enhances the ability to
determine the optimal solution, thus preventing the problem of missing the optimal solution due to
particle swooping behavior.

In summary, the immune algorithm and the simulated annealing algorithm can be used simul-
taneously with the traditional particle swarm algorithm to improve the particle swarm algorithm for
data processing work.

5.3 Algorithm Specific Steps
The specific steps of the EV charging pile siting and capacity planning using the Voronoi diagram

and simulated annealing immune particle swarm algorithm together can be described in Fig. 5.
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Figure 5: Flow chart of the model solving algorithm

(1) The initialization of the model data is done by inputting the known parameter variables from
the second part of the model.

(2) The upper limit of the total number of charging stations Nmax and Nmin is predicted according
to the constraints Eqs. (33) and (34) and the number of charging stations in this range is used as a
cyclic variable, N = Nmin as the initial value and thus as the initial value for iteration, with N = N + 1
for each iteration.

Nmin =
[

Q
Smax

]
+ 1 (33)

Nmax =
[

Q
Smin

]
(34)

(3) The weights of each area are calculated using (32), and then the graph method considering
the weights is used to divide the range situation responsible for each charging station and generate a
specific area division graph from it.

(4) Initialization of algorithm parameters. This part can be divided into initialization of the basic
particle swarm algorithm parameters, including the setting of the particle swarm dimension (each
solution objective such as the horizontal and vertical coordinate positions of charging stations and
the number of charging posts as one dimension), setting of the initial position x and initial velocity v
under this dimension, particle swarm size μ, the maximum number of iterations tmax, learning factor
c1, c2, inertia factor ω, etc.; initialization of parameters of the fused immune algorithm, including
population size, suppression radius δ, weight coefficient, etc.; initialization of the fused simulated



378 EE, 2023, vol.120, no.2

annealing algorithm, including cooling start temperature T0, cooling start temperature Tl, annealing
rate α and setting the calculation accuracy ε.

(5) Calculate each cost and the total cost of each scheme for different number of charging stations,
and use the total cost as the adaptation degree of the particle.

(6) The particle’s own and global extremes are updated according to the criterion. The fitness of
each particle is compared with the individual extreme values, where the smaller value is the better
fitness value.

(7) Compare whether the global extremes are less than the computational accuracy ε for x
consecutive generations. If the condition is met, the process of simulated annealing is performed with
gbest as the initial solution; otherwise, immune memory is performed directly and a memory bank is
generated.

(9) Particle update. According to the introduction of linearly decreasing inertia weight update,
M+N particles are randomly selected from the memory library to form a particle population for
immune conditioning, and N particles are selected to form a new generation particle population.

(10) The convergence condition is judged. If the conditions are met, the data processing work is
completed and the global optimal solution and location are output, at this time the obtained scheme
is the three cost integrated optimal site selection and capacity planning scheme. Otherwise, return to
Step (6) to iteratively update the particles again.

6 Case Analysis
6.1 Example Scenario

A street in Tianjin is selected as the planning object: The region covers an area of 63 km2 and is
estimated to have a total volume of about 9,500 EVs in 2022. It is assumed that the average driving
speed of EVs is 35 km/h, and the one-day fast charging probability is 0.05. Each fast charging takes 15
min to be fully charged, the charging power is 96 kW, the consumption of 15 kW·h of electricity per
100 km, and the maximum range of a single driving is 160 km.

Given the large area of the area under study, a large number of car ownership, and the complex
distribution of car charging demand load, 34 road network nodes are delineated in this area, and the
specific location and load of each point are shown in Fig. 6 (the numbers marked at the nodes in the
figure indicate the normalized load size).

Figure 6: Street traffic density

For the distribution system, the IEEE33 node system is selected, and its distribution system wiring
is shown in Fig. 7. The reference voltage and reference power are 12.66 kV and 10 MVA, respectively.
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Figure 7: IEEE33 node power distribution system topology

6.2 Analysis of Charging Station Location and Capacity Results
According to the above data, the simulated annealing-based immune particle swarm algorithm

is used to solve the problem, and the number of algorithm populations is set to 50, the number of
iterations is 300, the learning factor is set to 2, the range of inertia weights is set to [0.2 1.2], and the
immune algorithm in α = β = 0.5; δ = 0.5; γ = 0.8; the simulated annealing process parameters are
set to: T = 100; T0 = 0.01; K = 0.9.

The relationship between the number of charging stations and the total cost is shown in Fig. 8. It
can be seen that: when the number of charging stations is 7, the total annual social cost is the smallest,
which is 209 million. At this point, the total investment and maintenance cost is �100.6 million, of
which the initial construction cost is �91.5 million and the later maintenance cost is �9.1 million.
The cost on the user side and the cost on the distribution network side are �75.2 million and �33.2
million, accounting for 36% and 16% of the overall proportion, respectively.

Figure 8: Relationship between number of charging stations and total cost

The grid straight line is generated from the Fig. 9, the service area is divided into boundaries with
the lowest cost for the demand point to go to the corresponding charging station in the respective area.
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Figure 9: Optimal scheme and service area division of charging station

The corresponding station numbers and the respective number of charging posts configured for
each charging station are shown in Table 1.

Table 1: Charging station list and corresponding charging pile configuration

Serial number Site number Number of charging piles

1 1 123
2 2 152
3 3 119
4 4 96
5 6 143
6 6 83
7 7 125

Based on the above siting and capacity setting of charging stations, indicators such as the average
queue length and average stay time of each charging station can be calculated as shown in Table 2.

Table 2: Operation indexes of each charging station

Charging station
number

Average team
length (m)

Average stay
time (h)

Average waiting
time (h)

Charger idle ratio

1 14.05 0.52 0.02 24.98%
2 10.20 0.52 0.02 29.80%
3 14.81 0.52 0.02 24.83%
4 10.70 0.53 0.03 27.28%
5 18.54 0.51 0.01 24.50%
6 10.73 0.51 0.01 30.52%
7 9.85 0.53 0.01 28.07%
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From Table 2, it can be seen that the average waiting time of customers at 7 charging stations does
not exceed 1.8 min, the charging stations provide better service to customers, and the highest charger
idle ratio is only 28.07%, i.e., the chargers of charging stations utilization rate reached 71.93% or more.
The resources of the charging station are better utilized on the basis of satisfying the customers with
high-quality services.

6.3 Comparison of Different Algorithms
In order to compare the advantages of using the SA-IPSO algorithm, this paper compares the

SA-IPSO algorithm with the PSO algorithm and the IPSO algorithm and obtains their respective
convergence curves and operating results.

From Fig. 10, it can be seen that, in terms of convergence speed, the curves derived from the
SA-IPSO and IPSO algorithms obviously converge faster than those corresponding to the PSO
algorithm, indicating that the addition of the immune algorithm can improve the convergence speed
and operational efficiency; it falls into the local optimum earlier The curves obtained by the SA-IPSO
algorithm basically do not fall into the local optimum.
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Figure 10: Comparison of convergence curves of different algorithms

The final optimal solution results, number of iterations, solution time, and global optimal finding
capability using different algorithms for data processing are shown in Table 3. The results show that, in
terms of the integrated cost, the resulting optimal scheme has the lowest integrated total cost, followed
by IPSO; among them, the scheme corresponding to SA-IPSO has the lowest total cost even though
the number of charging posts is significantly more than that of IPSO, indicating that the scheme
corresponding to this algorithm significantly saves the user of usage costs and economic losses on
the grid side. This shows that the inclusion of two hybrid algorithms allows the site-setting solution
with a low total cost and high user convenience not to be missed because it stays in the local optimal
solution or the example swoops too fast, etc.

Table 3: Comparison of three optimization algorithms

Algorithm SA-IPSO IPSO PSO

Quantity of charging pile 841 802 895

(Continued)
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Table 3 (continued)

Algorithm SA-IPSO IPSO PSO

Number of iterations required to reach the optimal
solution

32 38 46

Time to fall into local optimum Basically not 18th iteration 12th iteration
Combined total cost/billion 2.09 2.12 2.20
Solution time/s 1.67 1.71 2.04

Furthermore, the SA-IPSO algorithm and IPSO algorithm with the addition of the immunization
algorithm significantly reduce the solution time, with the SA-IPSO algorithm even reducing 18.1%
of the time compared to the conventional PSO algorithm. This further illustrates the improvement in
computing efficiency by introducing a hybrid algorithm.

7 Conclusion

This paper addresses the problem of siting and capacity determination of charging stations. Firstly,
the construction and operation costs of charging stations are analysed, the consumption costs on the
EV user side are derived by combining the queuing theory, and the cost losses on the distribution
network side are quantified from various perspectives such as network loss and harmonics; using the
above three perspectives combined with the distribution network constraints, a model for siting and
capacity allocation of EV charging stations with the lowest total cost as the objective is derived. The
model is then solved using the simulated annealing immune particle swarm algorithm combined with
the Voronoi diagram algorithm for the number and location of charging stations in the target area, the
number of charging posts in the stations and the area each charging station is responsible for; finally,
the following conclusions are drawn by simulating an example of a region in Tianjin.

(1) The siting model proposed in this paper can reduce the construction and maintenance costs of
charging stations while reducing the economic losses to EV owners and improving the power quality
of the distribution network. In this paper, the average charging waiting time of EV owners is less than
1.8 min and the utilisation rate of chargers reaches 75.5%; while the total cost is as low as 209 million
RMB, the economic losses such as harmonics and network losses on the distribution network side
only account for 16% of the total cost.

(2) The SA-IPSO algorithm proposed in this paper is based on the PSO algorithm and introduces
an immune algorithm to improve the convergence speed and solution efficiency of the algorithm; it
introduces a simulated annealing algorithm to improve the ability of the algorithm to jump out of
the local optimum, and compared with the traditional PSO algorithm, SA-IPSO reduces the required
solution time by 18.1% and basically does not fall into local convergence.
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