
echT PressScience

DOI: 10.32604/EE.2021.017795

ARTICLE

Electricity Demand Time Series Forecasting Based on Empirical Mode
Decomposition and Long Short-Term Memory

Saman Taheri1, Behnam Talebjedi2,* and Timo Laukkanen2

1Department of Mechanical and Energy Engineering, Purdue University, Indianapolis, USA
2Department of Mechanical Engineering, School of Engineering, Aalto University, Espoo, Finland
∗Corresponding Author: Behnam Talebjedi. Email: Behnam.talebjedi@aalto.fi

Received: 08 June 2021 Accepted: 29 July 2021

ABSTRACT

Load forecasting is critical for a variety of applications in modern energy systems. Nonetheless, forecasting
is a difficult task because electricity load profiles are tied with uncertain, non-linear, and non-stationary
signals. To address these issues, long short-term memory (LSTM), a machine learning algorithm capable
of learning temporal dependencies, has been extensively integrated into load forecasting in recent years.
To further increase the effectiveness of using LSTM for demand forecasting, this paper proposes a hybrid
prediction model that incorporates LSTM with empirical mode decomposition (EMD). EMD algorithm
breaks down a load time-series data into several sub-series called intrinsic mode functions (IMFs). For each
of the derived IMFs, a different LSTM model is trained. Finally, the outputs of all the individual LSTM
learners are fed to a meta-learner to provide an aggregated output for the energy demand prediction. The
suggestedmethodology is applied to theCalifornia ISOdataset to demonstrate its applicability. Additionally,
we compare the output of the proposed algorithm to a single LSTM and two state-of-the-art data-driven
models, specifically XGBoost, and logistic regression (LR). The proposed hybrid model outperforms single
LSTM, LR, and XGBoost by, 35.19%, 54%, and 49.25% for short-term, and 36.3%, 34.04%, 32% for long-
term prediction in mean absolute percentage error, respectively.
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1 Introduction

Electric energy production and consumption have increased globally in recent years [1–3];
nevertheless, producing, transmitting, and delivering electrical energy are still complicated and
expensive. To lower the cost of electricity generation and increase ability to satisfy the rising
demand for electric energy, efficient grid management is critical [4–6]. Accordingly, effective grid
management requires accurate demand forecasting [7–9]. Demand forecasting aids system opera-
tors in completing unit commitment and assessing power system stability. Given the fierce compe-
tition in the electricity market, load forecasting can provide valuable information for aggregators
when participating in energy trading and dynamically managing electricity demand [10].
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Many attempts have been made in the past to solve the challenges associated with load
power forecasting (detailed reviews can be found in [11,12]). Inputs, outputs, time intervals,
scale, data sample sizes, and error types have all been considered when classifying load fore-
casting approaches [13]. The accepted load forecasting approaches can be categorized as follows.
Regression or/and multiple regression are still commonly used and effective for long-term (≥1
week to several years ahead) prediction, according to [14]. Machine-learning (ML) and time
series (including the autoregressive moving average (ARMA) and autoregressive integrated moving
average (ARIMA)) [15] are preferred for very short (≤1 h) and short-term (hours or days ahead)
prediction. Meteorological data are the most commonly used independent variables, particularly
incorporated in ML models [16]. In most instances, time series analysis and regressions depend
solely on historical electricity results, with no exogenous variables introduced.

Although ARMA and ARIMA are versatile and simple models, they are linear in nature
and therefore are restricted in performance when dealing with real-world data, which often
exhibit non-linear and temporal patterns [17]. To deal with this uncertainty and variability prob-
lem, non-linear forecasting algorithms should be incorporated. In this regard, previous studies
have highlighted ML models due to their high performance and accuracy [18]. Artificial neural
networks (ANNs) [19,20], Regression-based models [21], support vector machine [22], extreme
gradient boosting (XGBoost) [23], and deep learning are among the most popular ML algorithms
used on the task of demand forecasting. A comprehensive review of learning-based models, their
applications, and performance comparison can be found in [18].

Of all the ML algorithms in the field, deep neural network (DNN) algorithms provide better
learning capability, mainly when dealing with data with non-linear behavior [24–26]. Compared
to other ML algorithms, the better performance of DNN models is shown in several studies
[27–29]. For example, Dedinec et al. [30] made up a deep neural network to anticipate the building
electricity demand. Their results show an 8.6% improvement in mean absolute percentage error
compared to shallow multilayered perceptron networks. Deep neural network networks, in essence,
increase the strength of ANNs by deepening their layers through stacking several layers. Stacking
different layers can be done differently by creating multiple classes of DNNs with different
configurations and characteristics. Three major classes of DNNs are (I) autoencoders that are
developed to learn features and reduce dimension of big datasets [31]; (II) convolutional neural
networks, which are used for image recognition, classification, etc. [32]; and (III) long short-term
memory (LSTM) units, which is capable of learning order dependence in sequence prediction
problems [33].

LSTM has recently been the focus of increased attention for load forecasting problems as it
can fit with highly complex and non-linear datasets. LSTM is tested against a publicly available
dataset of residential meters in [34]. Results showed that LSTM outperforms rival ML algorithms
in the challenge of short-term load forecasting for individual residential households. LSTM
algorithm is used to train a dynamic model and generate predictions for impulsive loads in [35].
Marino et al. [36] explored two LSTM-based architectures: 1) regular LSTM and 2) LSTM-
based Sequence to Sequence. Both approaches were tested on a benchmark data collection with
one residential customer’s electricity usage data. Multiple configurations of LSTM are discussed
in [7], and the best architecture along with optimized hyperparameters are proposed for load
forecasting. A hybrid load prediction model is built on LSTM and XGBoost algorithms in [37].
The learning procedure of LSTM in time series forecasting consists of extracting patterns from
past observations to estimate the underlying temporal relationships. Nevertheless, in real-world
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situations, a single LSTM cannot guarantee accurate electricity load forecasts due to model
under-fitting, misspecification, or overfitting, as discussed in [34].

Hybrid structures combining classical statistical methods and LSTMs have achieved impor-
tant accuracy outcomes in a variety of fields [38]. These hybrid systems use error series modeling,
ensembling, stacking, or signal processing to increase LSTM’s performance. Khashei et al. [39,40],
and Zhu et al. [41] suggested hybrid systems that produce the final prediction via joint modeling
of time series and residuals. To improve the effectiveness of coping with instabilities, signal
processing techniques such as empirical mode decomposition (EMD) is often used in combina-
tion with LSTM networks [42,43]. EMD may well be applied to non-linear and non-stationary
processes since it is dependent on the local characteristic and temporal dependencies of the data.
Zhang et al. [44] forecasted land surface temperature using LSTM coupled with signal empirical
mode decomposition (EMD). Their findings indicated that when EMD and LSTM are combined,
the hybrid combination outperforms a single LSTM configuration in terms of accuracy and
robustness. EMD divides the original data into multiple stable sub-series, allowing it to be fed
into an LSTM. Although the combination of EMD and deep learning methods for data series
prediction has been widely studied in several fields, few studies have combined and used EMD
and LSTM methods for demand forecasting. This study aims to improve LSTM architecture
performance for electricity demand forecasting problems by proposing a hybrid system using
EMD. Based on the above discussion, the major contributions of this paper can be summarized
as follows:

• A step-by-step framework is developed based on EMD to extract the intrinsic signals of
electricity demand profiles (Section 2).

• A hybrid demand forecasting model is proposed based on empirical mode decomposition
and LSTM network in order to resolve the limitations of single LSTM, catch related
uncertainties, and improve forecasting efficiency (Section 3).

• A systematic analysis of parameters affecting demand forecasting results has been per-
formed in Section 3. Multiple forecasting horizons (short, medium, and long-term), as well
as various error functions (root mean squared error, mean absolute error, coefficient of
determination, and mean absolute percentage error), are considered to evaluate the model
accuracy. The proposed model is also compared with other state-of-the-art ML models
such as XGBoost and logistic regression. To the best of our understanding, this is the
first comprehensive study that considers various forecasting horizons and multiple accuracy
metrics simultaneously (Section 4).

2 Mode Decomposition of Electricity Demand Profiles

In this section, the dataset used in this study is discussed, along with its characteris-
tics and attributes. Then, data decomposition into several sub-series using the empirical mode
decomposition (EMD) technique is explained.

2.1 Data Characteristics
To help utilities quantify coincident peaks for demand forecasting purposes, the California

Energy Commission provides four years of historical load data at a 1-hour resolution [45]. The
dataset includes aggregated demand information for 2018, 2019, 2020, and 2021 (January−April),
thereby containing 29,160 samples. Fig. 1 shows the demand profile between January and April
of 2021. Fig. 2 illustrates the demand’s probability density function, which provides additional
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context for the data’s average and standard deviation. Tab. 1 summarizes the data characteristics
and their associated attributes.

Figure 1: Demand profile between January and April of 2021

Figure 2: Demand’s probability density function

Table 1: Data characteristics

Number of samples 29160
Average 22404.60
Standard deviation 2412.40
Minimum 15865.08
Maximum 30066.20
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2.2 Empirical Mode Decomposition
Empirical Mode Decomposition (EMD) is often desirable to decompose a signal, which is

produced by multiple sources, in a way that approximates the contribution of each component.
Fourier decomposition is a well-established mathematical technique for separating a signal into
its components based on the frequency of fluctuations [46]. However, whenever a signal is non-
stationary, such as when the signal mechanism varies with time, the right decomposition method
to use is not obvious [47]. Empirical mode decomposition (EMD) is an alternative to Fourier
decomposition in which the components of a signal are not constant in frequency over time, as
would be the case if the signal generator is dynamic. EMD differs from theoretical decomposition,
such as one relying on the Fourier Transform. As a result, it has several benefits when interacting
with complex real-world signals, which are often nonstationary (i.e., not oscillating at the same
frequency throughout time). EMD is mathematically expressed as follows:

x(t)=
J∑
j=1

cj(t)+ rj(t) (1)

where x(t) is the original data, j denotes the index for the number of samples in the original
dataset, cj(t) shows the jth intrinsic mode function (IMF), and rj(t) denote the residues. IMFs
are constructed based on the local maxima, minima, and mean. Tab. 2 defines the protocol of
extracting an IMF from a signal.

Table 2: Protocol for extracting an IMF from a signal

Algorithm: Empirical mode decomposition

Step1: Find all the extrema’s positions (x′(t)).
Step2: To acquire the signal envelope going through the minima (emin(t)) and maxima
(emax(t)), interpolate between all the minimums and maximums, respectively.
Step3: Calculate the average using m(t)= (emin(t)+ emin(t))/2.
Step4: To attain the oscillating signal, subtract the mean from the signal s(t)= x′(t)−m(t).
Step5: If the obtained signal satisfies the stopping criteria, it is classified as an IMF
(s(t)= c(t)); otherwise, set x′(t)= s(t) and repeat Step 1.

The step criterion (SC) for the final step is the gap in normalized squares of two consecutive
iterations, which can be expressed as:

J∑
j=1

||sj−1(t)− sj(t)||2
s2j−1(t)

≤ SC (2)
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SC is usually placed empirically in the range (0.2–0.3). It is taken to be 0.25 in this study.
Step 1–Step 5 is conducted for the representative dataset. Per Step 1, the extreme positions are
calculated and shown in Fig. 3.

Figure 3: Positions of maximums and minimums associated with the representative dataset

For Step 2 and Step 3, the interpolation of maximum points, minimum points, and mean of
those extrema envelopes are demonstrated in Fig. 4.

Figure 4: Minimum, maximum, and mean envelopes of the representative dataset

Next, oscillating signals are extracted based on the formula in Step 4 and then checked
according to Step 5 to decide whether they have the potential to be regarded as IMFs. An IMF
potential candidate oscillating signal is depicted in Fig. 5 to clarify the point.

The original dataset is decomposed into a variety of oscillatory modes or IMFs by repeating
this method. Six IMFs are extracted from the original dataset, which is depicted in Fig. 6.
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Figure 5: Potential IMF signal extracted from the original dataset

Figure 6: Intrinsic mode functions (IMFs) extracted from the historical load dataset
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3 General Structure of the Proposed Method

In this section, the mathematical basis of the machine learning algorithms and the per-
formance metrics used in the assessment process are presented. We then look at the general
framework of the proposed method.

3.1 Long Short-Term Memory (LSTM)
A persistent limitation of classical neural networks is their inability to represent the temporal

dependencies of operational datasets. To address this problem, recurrent neural networks (RNNs)
are created. As shown in Fig. 7, a recursive framework enables RNNs to forecast a series of
potential values using previously observable inputs while retaining knowledge over many time
horizons.

Figure 7: Schematic of a standard RNN structure (packed and unfolded in time)

RNNs are used to hope that utilizing historical data can help do more reliable load fore-
casting, even with a long-term time series. An activation function (a) determines the interaction
between the output vector (Y) and the input vector (X). Typical RNNs, on the other hand, are
unable to learn long-term temporal dependencies due to a phenomenon known as the vanishing
gradients problem, which is discussed in detail in [48]. To address this problem, the LSTM unit
is integrated into RNNs, converting them from normal to deep recurrent neural networks.

Hochreiter et al. presented LSTM as one of the deep learning strategies to increase the
efficiency of standard RNNs in 1997 [49]. The training of LSTM is focused on the fact that it
remembers previous states and can be prepared for tasks including state or memory recognition.
Using this method, the LSTM network will solve problems related to gradient vanishing and
bursting in standard RNN training phases. The LSTM, as seen in Fig. 8, is made up of memory
cell mode blocks in which the flowed signal is controlled by an input gate, a forget gate, and an
output gate. Each of these gates has its own set of computational relationships and functions,
and the method of computing each vector at time t is shown below:

ft = σ(Wlf lt+Wmfmt−1 + bf ) (3)

it= σ(Wlilt+Wmimt−1 + bi) (4)

ot= σ(Wlolt+Wmomt−1+ bo) (5)

at= tanh(Wlalt+Wmamt−1 + ba) (6)

ct = ct−1∅ft+ it∅at) (7)
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where σ is the logistic sigmoid function, ft, it, ot, ct, and at, denotes forget gate, input gate, output
gate, memory cell, and hidden vector, respectively. Wl∗ = (Wlf +Wli+Wla+Wlo), and Wm∗ =
(Wmf +Wmi+Wma+Wmo), represent trainable weights of the respective gates while bf , bi, bo,
and ba are output biases. Lastly, the operator ∅ defines the Hadamard product [50].

Figure 8: Principle architecture of the LSTM network

3.2 Performance Indices
Evaluating the performance of models using different metrics is an integral part of any

forecasting. While there are multiple metrics, accuracy is mostly adopted to assess the quality of
a model, including mean absolute error (MAE), root mean square error (RMSE), mean absolute
percentage error (MAPE), and coefficient of determination (R2).

In this research, the model dataset is separated into two sections by proportions of P percent
as the training set and (1-P) percent as the cross-validation (CV). Random subsampling is used to
split the dataset into training and test sets. Data points are expected to be chosen from the same
probability distribution. We next choose the P percent of these samples at random for the training
set and the remaining (1-P) percent for the assessment test. We utilize different P values to test
the generalizability of the ML models over different forecasting time periods. For example, P= 95
implies that 5 percent of the data (1,458 samples out of 29,160) is linked with CV; consequently,
the relevant forecasting horizon is about (1,458/8,760) = 2 months.

MAE = 1
N

N∑
i=1

|ei| (8)

Root mean square error (RMSE)

RMSE =
√√√√ 1
N

N∑
i=1

e2i (9)

Mean absolute percentage error (MAPE)

MAPE = 1
N

N∑
i=1

∣∣∣∣
ei
yi

∣∣∣∣.100 (10)
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and coefficient of determination (R2)

R2 = 1−
∑N

i=1 e
2
i∑N

i=1 (yi− ȳ)2
(11)

where N, yi, ŷi, ȳ and ei denote the number of samples, observations, predictions, the mean of
observations, and the error between the observations and the predictions, respectively. The MAE
measures the mean of the error or bias, while the RMSE measures the standard deviation of
the error or variance [51]. The smaller values of these metrics indicate the higher accuracy of the
model. The major drawback of the MAE and RMSE is their inability to take into account the
magnitude of observations. To solve this issue, the MAPE is introduced, measuring the mean of
the absolute values of percentage errors. The MAPE values lower than 10% mean highly accurate
forecasts, 11% to 20% mean good forecasts, 21% to 50% mean reasonable forecasts, and values
more than 50% mean inaccurate forecasts [51]. The R2 measures the squared ratio of the residual
sum to the total deviations sum with values between 0 and 1 in which values close to 1 imply
higher accuracies and vice versa.

3.3 Decomposition-Based Long Short-Term Memory
Due to the uncertainty associated with load profiles, a single model is often insufficient to

predict the electricity demand. Ensembling is a process of merging at least two ML algorithms to
minimize bias/variance and maximize the learner’s accuracy, precision, and robustness. Stacking is
a heterogeneous ensembling that merges base learners in parallel, and then their predictions are
fed as inputs to a meta-learner to form a new set of forecasts. Diversity of the base learners can
be provided by using different learners, different hyper-parameter settings, different feature subsets,
or different training sets. Herein, LSTM networks with the same hyper-parameters are adopted as
base learners to exploit data deeply and learn order dependencies. However, the non-stationarity
and stochasticity feature of meteorological variables still makes it challenging for LSTM networks
to effectively recognize the pattern and provide high accuracy and robustness. To provide the
requisite diversity and tackle the non-stationarity issue, two solutions are proposed in this paper
based on mode decomposition and Dagging.

EMD decomposition technique is utilized to transform the non-stationary dataset into a series
of relatively simple and stationary subsets. Therefore, a set of LSTM networks can be stacked in
which each model only requires to focus on the frequency band components of a single subset,
which can improve the overall performance of the stacked model. Moreover, Dagging technique
is adapted to split the sizable non-stationary dataset into smaller equal-sized separate subsets and
make it easier for the network to deal with the dataset’s temporal dependencies. Therefore, a set of
LSTM networks can be stacked in which each model only requires to focus on the corresponding
subset, which can improve the overall performance of the stacked model. Fig. 9 illustrates the
proposed stacking-based LSTM for accurate DLR forecasting based on mode decomposition and
Dagging.
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Figure 9: General structure of the proposed method

3.4 XGBoost Algorithm
XGBoost stands for extreme Gradient Boosting. Gradient boosting is a division of ML

algorithms that works based on sequential learning techniques. This technique adds new models
to improve the errors made by existing models. Models are added sequentially till no more
improvements can be obtained. When all of the models are tuned, a highly accurate generalization
model is obtained on the task. The hallmark of GB is its ability to strike the optimal balance
between model sophistication and generalization performance. There are multiple GB architectures
developed in previous studies. Compared to the other implementations of gradient boosting,
XGBoost is a well-established and fast algorithm [52]. A detailed description of the XGBoost
algorithm is out of the scope of this work, and interested readers are referred to [53] for further
details.

3.5 Logistic Regression
Logistic regression (LR) was originally developed as a modified version of linear regression

for classification problems. As opposed to linear regression, a logistic model computes a weighted
total of the input features; however, instead of outputting the raw data like regression, it outputs
a logarithm of the logistic value between zero and one. This gives LR the ability to fit with
non-linear data. Here, we used an LR inspired by the study of [35].

4 Simulation Results

In this section, simulation results regarding the hybrid LSTM with Empirical Mode Decom-
position (EMD), single LSTM, XGBoost algorithm, and logistic regression (LR) are provided.
The studied data are the California ISO dataset which includes aggregated electricity demand
from 2018 to 2020 and 2021 (January−April). Tab. 3 shows the model accuracy based on the
model performance criterion discussed in chapter 2.4 for different time horizons. The studied time
intervals for model evaluation are 24 h, 48 h, one week, and one month. The simulation results
prove the superiority of the hybrid LSTM + EMD comparing to the single LSTM, LR, and
XGBoost in terms of accuracy (model correlation coefficient and error). Results prove that in all
prediction models, accuracy decreases from short-term to long-term prediction time horizons. For
instance, in Hybrid LSTM + EMD, model root means squared increases from 278,76 to 423.22
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and MAPE increases from 9.52 to 1,852, which correspond to 51% and 100% increase in RMSE
and MAPE while the prediction time interval rises from 24 h to 1 month. On the other hand,
the model determination coefficient also decreases 8.2% for Hybrid LSTM + EMD by increasing
the prediction horizon from 24 h to 1 month. This fact is also true for other cases. For short
term-load prediction (24 h) and long-term (1 month) electricity load prediction, the maximum
determination coefficient (R2) of 92.2% and 84.5% can be accomplished by Hybrid LSTM +
EMD, respectively. Tab. 4 shows the difference (changes) in model evaluation criterion for Hybrid
LSTM + EMD for different time horizons with respect to the Single LSTM, LR, and XGBoost.
It is clear from Tab. 4 that the XGBoost algorithm is the closest method to the Hybrid LSTM +
EMD in terms of accuracy since there is the least amount of percentage changes of simulation
error and correlation coefficient. The average changes in model RMSE compared to the Hybrid
LSTM + EMD is XGBoost: −6.93, LR:−15.52, and single LSTM: −11.26 and the average
changes in model determination coeffcinet is XGBoost: 4.58, LR: 26.72, and single LSTM: 22.72
where the minimum absolute changes in model error and determination coefficient is for XGBoost
indicating it performs better compared to other machine learning algorithms. Fig. 10 visualizes
the mean absolute percentage error of the different prediction methods, including the proposed
Hybrid LSTM + EMD. In all cases, the MAPE of the proposed method is less than others,
which shows that the Hybrid LSTM + EMD outperforms the other studied ML algorithms for
electricity load prediction.

Table 3: Hybrid and single LSTM load forecasting accuracy

Algorithm Time horizon RMSE MAPE R2 MAE

Hybrid LSTM + EMD 24 h 278.76 9.52 0.9221 560.67
48 h 313.44 11.03 0.9022 871.69
1 week 399.18 13.56 0.8626 1139.23
1 month 423.22 18.58 0.8457 1674.78

Single LSTM 24 h 311.46 14.69 0.8329 763.67
48 h 380.20 18.38 0.8193 1001.02
1 week 423.76 24.13 0.7922 1339.34
1 month 476.66 29.17 0.7672 1966.54

Logistic regression (LR) 24 h 344.06 20.69 0.7553 763.67
48 h 392.11 23.38 0.7426 1013.55
1 week 444.36 27.13 0.6590 1315.38
1 month 486.32 28.17 0.6386 2001.03

XGBoost 24 h 299.12 18.76 0.9108 655.61
48 h 342.15 21.02 0.8892 1044.44
1 week 421.19 24.11 0.8232 1563.29
1 month 456.05 27.32 0.7912 2011.45
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Table 4: Changes in model evaluation criterion for Hybrid LSTM + EMD with respect to other
ML algorithms for different time horizon

Algorithm Time
horizon

Model evaluation
critrion

% w.r.t single
LSTM

% w.r.t
LR

% w.r.t
XGBoost

Hybrid LSTM
+ EMD

24 h RMSE −10.50 −18.97 −6.81
MAPE −35.19 −53.99 −49.25
R2 10.71 22.08 1.24
MAE −26.58 −26.58 −14.48

48 h RMSE −17.55 −20.06 −8.39
MAPE −39.99 −52.82 −47.53
R2 10.12 21.49 1.46
MAE −12.92 −14.00 −16.54

1 week RMSE −5.80 −10.17 −5.32
MAPE −43.80 −50.02 −43.76
R2 8.89 30.90 4.79
MAE −14.94 −13.39 −27.13

1 month RMSE −11.21 −12.97 −7.20
MAPE −36.3 −34.04 −31.99
R2 10.23 32.43 6.89
MAE −14.84 −16.30 −16.74

Figure 10: Mean absolute percentage error of different electricity load prediction methods (pro-
posed method: Hybrid LSTM + EMD)

Fig. 11 illustrates the original (measured) electricity load data and predicted electricity load
values for hybrid LSTM + EMD and single LSTM for different time intervals (40 to 700 h).
The smaller the difference between the measured and predicted data, the higher the accuracy of
the prediction and the model. As it is clear from the graphs, less simulation error can be found
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in hybrid LSTM since the target and predicted values are closer. Fig. 12 shows the original and
predicted data for the proposed method and other state-of-the-art machine learning algorithms
such as LR and XGBoost for 70 h time horizon. As it turns out, there is a greater correlation
between the predicted data from the proposed method and the measured data, which indicates
the higher accuracy of the proposed method than other machine learning algorithms.

Figure 11: Original and predicted data of proposed LSTM + EMD and single LSTM algorithm
for different time intervals: (a) 48 h; (b) 1 week; (c) 1 month

Figure 12: Original and predicted data of proposed LSTM + EMD and other state-of-the-art
machine learning algorithms
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5 Conclusion

Load forecasting is critical for a variety of applications in modern energy systems. Nonethe-
less, forecasting is a difficult task because electricity load profiles are tied with uncertain, non-
linear, and non-stationary signals. To address these issues, long short-term memory (LSTM),
a machine learning algorithm capable of learning temporal dependencies, has been extensively
integrated into load forecasting in recent years. To overcome the shortcomings of single LSTM,
capture relevant uncertainties, and increase forecasting performance, a hybrid demand forecasting
model based on empirical mode decomposition and LSTM network (Hybrid LSTM + EMD) is
proposed in this study. The model is intended to forecast California ISO aggregated electricity
demand for the years 2018 to 2020, as well as 2021 (January to April). To assess the model’s
accuracy, multiple forecasting horizons (short, medium, and long-term) are regarded, as well as
several error functions (root mean squared error, mean absolute error, coefficient of determina-
tion, and mean absolute percentage error). To test the efficiency of the proposed electricity load
prediction techniques, the simulation findings are compared to other descent machine learning
algorithms such as the XGBoost algorithm and Logistic regression (LR). Simulation findings
show that the proposed Hybrid LSTM + EMD is superior to other machine learning methods
for electricity load prediction, with correlation coefficients of 92% and 84% for short-term and
long-term load prediction, respectively. In all cases (prediction approaches), the precision of the
forecast model declines as the prediction horizon is extended. It can also be concluded that
XGBoost outperforms single LSTM and LR in terms of overall performance and is more accurate
for short-term prediction with the average determination coefficient of 91% for 24 h prediction
horizon.

Funding Statement: The authors received no specific funding for this study.
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