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ABSTRACT

The increasing demands for fuel economy and emission reduction have led to the development of
lean/diluted combustion strategies for modern Spark Ignition (SI) engines. The new generation of SI
engines requires higher spark energy and a longer discharge duration to improve efficiency and reduce the
backpressure. However, the increased spark energy gives negative impacts on the ignition system which
results in deterioration of the spark plug. Therefore, a numerical model was used to estimate the spark
energy of the ignition system based on the breakdown voltage. The trend of spark energy is then recognized
by implementing the classification method. Significant features were identified from the Information Gain
(IG) scoring of the statistical analysis. k-Nearest Neighbor (KNN), Artificial Neural Network (ANN), and
Support VectorMachine (SVM)models were studied to identify the best classifier for the classification stage.
For all classifiers, the entire featured dataset was randomly divided into standardized parameter values of
training and testing data sets with the ratio of 70–30 for each class. It was shown in the study that the KNN
classifier acquired the highest Classification Accuracy (CA) of 94.1% compared to ANN and SVM that
score 77.3% and 87.9% on the test data, respectively.
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1 Introduction

The depletion of non-renewable energy resources such as fossil fuels has become a huge
concern for the global economy [1]. In the last 90 years, studies show that they always had a
major share in primary energy consumption and remain a leading key issue for researchers. Due
to the increasing fuel economy and emission regulations, the development of modern SI engines
has shifted to a lean or diluted combustion strategy and engine downsizing.

In a four-stroke engine, direct downsizing can cause significant irregular combustion [2,3],
such as knocking and low-speed pre-ignition [4]. On the contrary, a two-stroke engine’s peak
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in-cylinder pressure may be reduced at the same torque output [5], reducing the risk of irregular
combustion observed in four-stroke engines [6]. A two-stroke engine also has a higher power-to-
weight ratio, which improves fuel efficiency. Recent development of SI engines requires higher
spark energy and longer discharge duration during the breakdown phase of the spark plug
discharge process to overcome the hard ignition caused by the diluted in-cylinder charge and
increased backpressure. A higher energy transfer efficiency of the ignition system should also be
increased.

The electrical field between the electrodes of a spark plug is built up before the breakdown.
Thermal electrons are accelerated towards the anode as the electrical field increases. The electrons
will ionize molecules in collisions if the electrical field intensity is strong enough, resulting in an
avalanche-like rise of electrons and ions. Subsequently, the excited atoms produce UV radiation
with a short wavelength. Ionized streamers pass from one electrode to the next, forming conduc-
tive plasma channels between the spark plug’s electrodes. When conduction is generated between
the opposing electrodes, the impedance between them is dramatically reduced. The breakdown
phase is depicted schematically in Fig. 1. The parasitic capacitor’s energy inside the spark plug is
released. The breakdown phase occurs when the voltage is high (e.g., 15 kV), the peak current is
large (e.g., 200 A), and the duration is extremely short (e.g., 1–3 ns) [7,8].

Figure 1: Schematic of breakdown phase of spark discharge process

However, the increased spark energy can have negative impacts on the ignition system. One
of them is the increased burn rate of electrodes, which deteriorates and shortens the life of
a spark plug [9]. Therefore, to value the significance of SI engines and maintain their useful
life, a numerical model was used to estimate the spark energy of the ignition system based on
the breakdown voltage. The trend of spark energy is then recognized by implementing the g
classification method. Successful engine condition monitoring by spark plug fault recognition can
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keep a vehicle from breaking down. Several spark plug conditions should be observed. Carbon-
fouling, oil-fouling, and spark plug gap are only a few of the spark plug health issues to be
aware of. When the spark plug distance between the hot top and the ground strap is too narrow
or under specifications, the air-fuel mixture gap between the hot top and the ground strap is
reduced. Since the spark has a shorter travel path, it does not remain hot enough to ignite the
air-fuel mixture. A clear (continuous) missing cylinder, a hard start if all plugs have narrow gaps,
a rough idle, and engine reluctance are all signs of a narrow gap. A spark plug that does not
burn and comes from a short distance can appear black or wet when examined. An unwanted
spark irregularity happens when the voltage has to travel a longer path. The increased travel time
of the spark weakens it, robbing it of the hot, solid ignition charge needed to fire the plug. An
unnecessary trigger cylinder misfiring, a possible no-start situation, wet, black, or fouled plugs,
engine hesitation, and rough idle.

In the past years, many researchers have investigated the fault recognition of spark plugs in
SI engines which in those researches, many methods have been implemented. Using spectroscopy,
Merola et al. [10] applied modeling and knock intensity monitoring in a SI engine that is one
of the causes of a faulty spark plug. They used the method of chemiluminescence together
with natural emission spectroscopy. They aim to spot radical species of knocking signs that can
be valuable for the reaction mechanisms verification. Their studies presented that during the
knocking phase, not only the ignition surface but the temperature and pressure are also improved.

Antoni et al. [11] proposed a method for analyzing vibrations in Internal Combustion (IC)
engines. In their research, they proposed a cyclo system for vibration control of IC engines. They
used vibration measurements to test the combustion process, demonstrating how cyclostationarity
can help solve some problems. They discovered that the solution to spark plug fault diagnosis lies
in passing the classical hypothesis of stationarity or quasi-stationarity by specifically modeling the
form of non-stationarity involved accomplished through the framework of cyclostationarity, based
on all of the evidence they gathered. They also developed a fault diagnostic for a four-stroke
compression ignition engine using this method [12].

Basir et al. [13] used a data fusion technique to diagnose a fault in an IC engine. They used
D–S theory to gather data from four separate sensors and then attached it. They stated that using
multiple sources of information at the same time, as well as using the D–S theory as a device for
modeling and fusing multi-sensory pieces of validation, would significantly improve the accuracy
of fault detection and thus improve engine efficiency.

Meanwhile, Wang et al. [14] discovered a way to diagnose a diesel engine fault involving
vibration signals using an adaptive wavelet packet. In this analysis, fuel injection faults were
identified using Ensemble Empirical Mode Decomposition (EEMD) and Correlation Dimension
(CD) methods. The advantage of using EEMD and CD together is that classifiers are not needed
to distinguish the different types of diesel engine faults. This approach has solved the problem
of detecting fault states when several fractal dimensions occur close together.

Vong et al. [15] on the other hand, developed a tool called Fuzzy and Probabilistic
Simultaneous-Fault Diagnosis (FPSD) to detect certain failures in automotive engines. Fuzzifi-
cation, decision-by-threshold, and pairwise probabilistic multi-label sorting are all part of this
modern FPSD. This approach is particularly useful for resolving the essential and difficult task
of engine simultaneous-fault-diagnosis using qualitative symptom recognition. Another benefit of
FPSD is that it is both feasible and affordable.
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Increased spark plug gap leads to common faults in SI engines [16], resulting in engine output
degradation. Misfire and knock, for example, are caused by pre-ignition due to a spark plug gap
fault, which causes the spark to be delayed between two electrodes. Higher ignition energy is
needed as the gap between the spark plugs grows. Unfortunately, the high ignition voltage can
cause damage to the engine’s electrical system. This weakness in SI engines can be considered a
significant electrical system flaw in general [17,18].

The maintenance of IC engines is critical to their long-term viability. As a result, they are
critical for periodically tracking its state and diagnosing its faults. Various methods of condition
control that were implemented by most researchers are undeniably formidable, but they require
a lot of time for analysis and they also cost a lot. The implementation of numerical model and
classification gives significant advantages in spark plug fault detection and has a great potential
to be popular in real-time practical application analysis techniques. These methods can be used
to manage engines efficiently and reliably. Since most failures have the potential to influence and
change engine sound, vibration, and spark plug behaviors. A substantial amount of literature has
been published on using acoustics and vibrations analyses to diagnose faults and track engine
conditions [18–20].

This article set out to study the effects of spark energy on the fault recognition of spark plugs
in a SI engine. A secondary ignition pickup and digital oscilloscope are used to collect the data
of breakdown voltage. Breakdown voltage will be derived into a numerical model which computes
the value of spark energy. The spark energy from ignition the system can be analyzed and used
as an indicator to determine when a spark plug starts to deteriorate by using the evaluation of
machine learning model KNN to classify the spark plug health condition. The advantage of the
proposed procedure is to detect a slight fault the in spark plug with high accuracy. The suggested
approach can look at the spark plug, the ignition coil, and it can show how well the fuel is
combusting in the cylinder in a more practical approach and cost-efficient.

2 Methodology

2.1 Experimental Setup
The 2-stroke engine of Y110 SS YAMAHA Motorcycle, FLUKE Secondary Ignition Pickup,

and Tektronix TBS 1152B Digital Oscilloscope were used to record the breakdown voltage of the
spark plug. The specifications of the 2-stroke engine are shown in Table 1.

Table 1: Y110 SS YAMAHA motorcycle engine specifications

Specifications Unit value

Displacement 110.4 cc
Tank capacity 1.2 L
Compression ratio 7.1:1
Max. power 1.35 kgf-m
Ignition system CDI

2.2 Spark Plug and Ignition Coil
An NGK BP7HS spark plug was used in Capacitor Discharge Ignition (CDI) system. The

spark plug gap was measured by using a filler gauge and confirmed to be 0.7 mm. The resistance
of the embedded resistor of the NGK spark plug is 1 k�. The embedded resistor functions as a
filter of the electrical field noise of the spark discharge process. The parameters of the ignition
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coil used are shown in Table 2. The primary inductance of the ignition coil is 1.8 mH and the
secondary inductance is 7 H.

Table 2: Ignition coil parameters

Specifications Unit value

Primary inductance, Lp 1.8 mH
Secondary inductance, Ls 7 H
Primary resistor, Rp 0.5 �

Secondary resistor, Rs 2.6 �

Coupling coefficient, kcp 0.86

2.3 Data Collection
To prepare the engine as planned, the motorcycle rides along the test route (as shown in

Fig. 2) of 5.1 km for 60 min per day. One round of the route takes five minutes. Therefore, six
rounds of the route per day are required to prepare the 2-stroke engine for data collection. The
lifespan of conventional spark plugs like NGK BP7HS ranging from 3000 to 5000 km [21]. After
10 weeks, a total of 50 h of engine runtime which equals 3060 km was recorded.

Figure 2: Test route for fulfilling engine runtime

The capability of the oscilloscope can only hold and treat 7 cycles (about 2,500 points). Then
the whole breakdown voltage cycle would be represented by the peak breakdown voltage of each
cycle. Fig. 3 shows a scatter plot of the peak breakdown voltage of a healthy and faulty spark
plug. It is hard to differentiate between spark plug health conditions using only the data spark
energy produced based on the peak of breakdown voltage PBDV only.
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Figure 3: Scatter plot of peak breakdown voltage PBDV for (a) 1st week and (b) 10th week

2.4 Numerical Model
A numerical model was used to estimate the spark energy of the ignition system based on the

breakdown voltage of the spark plug as well as the spark plug and ignition coil parameters. The
spark energy is determined by integrating the product of discharge current (Is) and gap voltage
(Ugap) over the discharge duration as shown in Eq. (1). The gap voltage is then calculated with
Eq. (2).

Espark(t)=
t∫

0

Ugap(t)Is(t)dt (1)

Ugap=Us− IsRplug (2)

where Us is the breakdown voltage obtained by the FLUKE PM9096/201 Secondary Ignition
Pick Up and Rplug is the embedded resistor of the spark plug. Is is then calculated with the
Eq. (3) [22,23].

Is(t)= Is,max−
(
Is,max+

Ugap

Rs

)(
1− e−

Rs
Ls

t
)

(3)

where Rs is the total secondary resistance, including the embedded resistance of the spark plug.
Is,max in Eq. (3) is derived by Eq. (4).

Is,max= kcp× Ip×
√
Lp
Ls

(4)

where kcp is the coupling coefficient between the primary winding and the secondary winding,
which is calculated with Eq. (5) [23,24].

kcp =
√
1− Lss

Lp
(5)
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The primary current is calculated with the Eq. (6) [22,23].

Ip(t)= Uss

Rp
×

(
1− e

−Rp
Lp

t
)

(6)

where Rp is the total primary resistance.

2.5 Feature Extraction and Selection
Spyder 4.1.6 extracts statistical features such as standard deviation, mean, skewness, and

kurtosis from the transformed data (frequency domain) for all readings. Subsequently, using IG
to define the significant features via an open-source platform, Orange V3.11, a sensitivity analysis
was performed. IG is an entropy-based function evaluation approach that calculates a feature’s
reliance on its target variable [25].

2.6 Classifiers
Several classifiers, including KNN, ANN, and SVM, were investigated for their effectiveness

in classifying spark plug health conditions. It should be remembered that the default settings
(hyperparameters) from the Orange platform are used in this preliminary investigation. The
Classification Accuracy (CA), precision, sensitivity, recall, accuracy, and the F1 score derived from
the confusion matrix were all used to test the classifiers.

3 Results and Discussions

It is hard to differentiate between spark plug engine profiles in time domain as a dataset.
This is because of the slight fault considered in the current research. However, the waveform of
breakdown voltage depicted in Fig. 4, can distinguish between a good and a bad spark plug.
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Figure 4: Waveform of breakdown voltage during discharge process

The result of the spark energy for the ignition coil is plotted in Fig. 5. The measurement of
the numerical model to estimate spark energy based on the breakdown voltage of the discharge
process is slightly different compared to the experimental system due to measurement errors of the
ignition coil parameters and the parasitic inductance of the experimental system. Higher ignition
energy is needed as the gap between the spark plugs grows over time.

In the feature selection stage after several trials, the standard deviation is selected as the best
feature for the spark energy. A total of 50 h of engine runtime is carried out within 10 weeks.
After 5 h of engine runtime, one dataset of raw data is collected every week. The entire featured
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dataset was randomly divided into training and testing data sets with a ratio of 70–30 for each
class.
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Figure 5: Numerical model result of spark energy during the discharge process

3.1 Results of Classifiers
The effectiveness of the classifiers was assessed in two ways: by taking into account all

features and important features. Standard deviation, mean, kurtosis, and skewness corresponding
to the y-axis of acceleration readings were all selected using the feature selection process. As
shown in Fig. 6, the KNN and SVM models trained with all features had an overfitting trend,
with the test CA slightly lower than the train CA, while the ANN model had no discernible CA
for both train and test evaluations.
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Figure 6: Graph of comparison between 3 classifiers

In contrast, using the selected features, both ANN and SVM models generated the same CA
for both the train and test datasets, with no misclassification on the dataset. Despite this, the
KNN model outperformed the other tested models in terms of CA on the train dataset, with a
CA of 94.1 percent and no misclassification on the test dataset, suggesting that the KNN model is
the best classifier based on the significant features discovered through IG scoring. Table 3 displays
the outcomes of the models that were evaluated using different performance metrics while taking
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all of the dataset’s features into account. Table 4, on the other hand, displays the outcomes based
on the features selected.

Table 3: Results of the employed classifiers with all combined features

Method CA F1 Precision Recall

KNN 0.896 0.896 0.976 0.896
ANN 0.854 0.805 0.782 0.854
SVM 0.852 0.852 0.976 0.852

Table 4: Results of the employed classifiers with selected features

Method CA F1 Precision Recall

KNN 1.000 1.000 1.000 1.000
ANN 1.000 1.000 1.000 1.000
SVM 1.000 1.000 1.000 1.000

Further examination of the fine and weighted KNN models in Fig. 7, showed that the KNN
model does not report any misclassification. By increasing the amount of data collected, testing
the sensitivity of the features chosen to classification accuracy, and optimizing the hyperparameter
of the built model, misclassification can be reduced.

Figure 7: Test set of KNN model with selected features

4 Conclusion

A spark plug fault detection classification method based on the effects of spark energy
was created as part of this preliminary investigation. The investigation revealed that the model
measurement of spark energy requires further improvement for a better result. Selecting the
features is not easy to provide a fairly accurate classification of the tested spark plug. It was
also demonstrated that by using the IG to identify characteristics, all of the evaluated models
(KNN, ANN, and SVM) on the dataset could achieve a CA of 100%. It is worth noting that
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the research is still in its early stages, so more data subjects will be added, different features will
be engineered, and hyperparameter optimization on different machine learning models will be
performed in the future. The preliminary findings also point to the proposed system’s suitability
for offering an objective based on judgment in the detection of spark plug faults. In comparison
to the traditional approaches commonly used in spark plug fault recognition, this will assist the
2-stroke engine user in providing a more reliable assessment of spark plug health status.
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