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ABSTRACT

The pulsating heat pipe is a very promising heat dissipation device to address the challenge of higher heat-flux
electronic chips, as it is characterised by excellent heat transfer ability and flexibility for miniaturisation. To
boost the application of PHP, reliable heat transfer performance evaluationmodels are especially important.
In this paper, a heat transfer correlation was firstly proposed for closed PHP with various working fluids
(water, ethanol, methanol, R123, acetone) based on collected experimental data. Dimensional analysis was
used to group the parameters. It was shown that the average absolute deviation (AAD) and correlation
coefficient (r) of the correlation were 40.67% and 0.7556, respectively. For 95% of the data, the prediction
of thermal resistance and the temperature difference between evaporation and condensation section fell
within 1.13K/Wand 40.76K, respectively.Meanwhile, an artificial neural networkmodel was also proposed.
The ANN model showed a better prediction accuracy with a mean square error (MSE) and correlation
coefficient (r) of 7.88e-7 and 0.9821, respectively.
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Nomenclature

b, b bias
Cv covariance
cp specific heat (J/(kg·K))
d i inner diameter (m)
g gravity (m/s2)
l length (m)
N number of turns
Q Power (W)
q heat flux (W/m2)
R thermal resistance (K/W)
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r correlation coefficient
�T temperature difference (K)
T temperature (K)
x, x input
y, y output
Y data value

Greek Symbols
λ thermal conductivity (W/(m·K))
μ dynamic viscosity (Pa·s)
π i dimensionless number
ρl liquid density (kg/m3)
σ surface tension (N/m)
ϕ filling ratio
ω, ω weight

Subscript
e evaporation section
exp experiment
pre predicted results

1 Introduction

With the rapid development of the electronics industry, chips are becoming increasingly
compact, generating a larger amount of heat in an ever-smaller physical size. This additional heat
must be efficiently dissipated by the thermal network. Otherwise, the chips will suffer significantly
from lower efficiency, short life-span, and even physical damage [1]. Thermal management of
chips has and will continue to become one of the most essential technologies. Against this
context, pulsating heat pipes, or oscillating heat pipes, characterised by excellent heat transfer
ability, simple physical structure, and high flexibility for miniaturisation, are believed to be one
of the most promising prospective technologies to meet the requirement of higher heat flux
dissipation [2,3]. The PHP consists of connected serpentine channels, and is divided into evapo-
ration, adiabatic, and condensation sections [4]. Considering the small diameter of PHP channel,
the influence of the working fluid’s surface tension is very important [5]. A train of liquid
slugs and vapor plugs are formed within the channel, and through their oscillation motions, the
heat is dissipated [6]. Many studies were conducted to study its heat transfer characteristics by
theoretical modelling and experimental investigation over the past decades [7–9]. Some potential
applications of PHP in electronics cooling, heat exchangers, and solar energy utilisation also have
been preliminarily investigated [10].

Reliable prediction of the performance of PHP has been a hot research topic as it plays an
essential role to promote its application. Generally, there are two basic methods to predict perfor-
mance of the PHP, classic heat transfer correlations and ANN network models. For classic heat
transfer correlations, typical heat transfer dimensionless numbers, like the Kutateladze number,
Morton number, Jackob number, Bond number, and Prandtl number, are correlated to study the
influence of various geometric, property and operating parameters. In 2003, Khandekar et al. [11]
presented a correlation for PHP by theoretical analysis of several basic heat and mass transfer
mechanisms in the PHP. The accuracy of the correlation was within ±30%. After that, Katpradit
et al. [12] presented two correlations for the performance of PHP in vertical and horizontal
heated models. The standard deviations of these were ±18% and ±29%, respectively. Qu et al. [13]
introduced the influence of Bond number and Morton number, revealing another correlation for
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vertical PHPs. It was suggested that the deviation of the correlation was ±40%, comparing with
the collected experimental data. Kholi et al. [14] proposed another new heat transfer correlation.
The influence of the filling ratio was separately considered by a polynomial. The correlation
successfully coincided with the performance of PHPs with ±30% accuracy. Another remarkable
method to predict the performance of the PHP is by the ANN models, as ANN models have
apparent advantages in analysing non-linear systems and have been extensively used in pattern
recognition, property parameter prediction, and heat transfer regression [15,16]. E et al. [17]
presented an ANN model using the filling ratio, heat flux, and inclination angle of the PHP
as the input. The relative average error between the experimental data and predicted results was
4% as claimed, showing good accuracy of the ANN models. Ali et al. [18] built another ANN
model also with filling ratio, heat flux, and inclination angle as the input parameters. It was
shown that the relative errors of 90% of the data points were less than 5%, and the remaining
points lay between 5% and 12%. Another ANN model was suggested by Patel et al. [19], with
inner diameter, outside diameter, lengths of evaporation and condensation section, number of
turns, heating power, filling ratio, and inclination angle as the inputs. The working fluids were
examined by index. The mean absolute relative deviations fell within 24.12% for 68% of the data.
A more general method was proposed by Wang et al. [20] using Kutateladez number, Morton
number, Bond number, Prandtl number, Jackob number, the ratio of evaporation length and inner
diameter, and the number of turns as selected input parameters for PHP with various working
fluids. The correlation coefficient of the proposed ANN model was 0.9824, showing a very high
agreement.

The existing heat transfer correlations and ANN models provide remarkable solutions to
estimate the performance of the PHP. However, the proposed heat transfer correlations were com-
monly regressed from the specific range of the experimental data, and with relative low accuracy.
More effort is still required to improve the accuracy of these models, and further validate the
suitable application range. Despite the excellent accuracies of the ANN models, their application
is highly dependent on the collected data and with certain parameters as the input. In this
paper, the impact of typical geometrical parameters, properties of working fluids, and operating
parameters were considered by dimensional analysis first to obtain the dimensionless numbers. A
heat transfer correlation was proposed based on these dimensionless numbers. Following that, an
ANN model was also presented to correlate the thermal resistance of PHP, taking advantage of
its high accuracy.

2 Methodology

2.1 Dimensional Analysis
For performance prediction, the most important factor is to figure out the relation between

the heat flux and the related geometrical, property, and operating parameters,

q= Q
2leπdiN

= f (geometric, property, andoperating parameters) (1)

To analyse the impact of various parameters on the performance of PHP, the dimensional
analysis was used to get the dimensionless parameters. This method is conducted to group the
influence of different parameters and generalise various operational conditions. The impacts of
geometric, property, and operating parameters were considered. The correlation was presented as,

R= f
(
ρl,λ,μ,σ , cp,di, le,q,N,g

)
(2)
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The dimensions of R, ρl, λ, μ, σ , cp, di, le, q, g are θM−1L−2T3, ML−3, MLT−3θ−1,ML2=−1

T−1, MT−2L, L2T−2θ−1, L, L, MT−3, LT−2, respectively. There are ten parameters, and four
basic dimensions in Eq. (1). Therefore, we can get six dimensionless parameters according to
Buckingham π theorem. If select ρl, λ, μ, d as the basic parameters, the six dimensionless
parameters are defined by,

π1 =μRcpdi (3)

π2 = qd3i ρ
2
l /μ

3 (4)

π3 = gdi
3ρ2

l /μ
2 (5)

π4 = le/di (6)

π5 = λ/cpμ (7)

π6 = σdiρl/η
2 (8)

Thus, we get the correlation

F

(
μRcpdi,

qdi3ρl2

μ3
,
gdi3ρl2

μ2
,
le
di
,

λ

cpμ
,
σdiρl
μ2

,ϕ,N

)
= 0 (9)

It is well-known that the physical properties change with temperature, and a reference temper-
ature is needed to calculate them. To evaluate the thermal-physical properties in the Eqs. (2)–(8),
the coolant temperature was selected as the reference temperature rather than the average of
evaporation and condensation section temperature, as it is the only known temperature in the
design stage. The temperatures of the evaporation and condensation section can be further
obtained based on the thermal resistance and heat transfer correlations [20].

2.2 Experimental Data Collected
To obtain the performance prediction models, the experimental data for the bottom-heated

PHP with various inner diameters, filling ratios, turn numbers, evaporation lengths, and working
fluids were gathered from the literature [21–43]. The parameters’ information of the collected data
was presented in Table 1. The ranges of these parameters cover wide operating conditions.

Table 1: The detailed information of collected data

Parameters Ranges

Working fluids Water, ethanol, methanol, R123, acetone
Evaporation section length/(mm) 8∼100
Filling ratio 0.2∼0.9
Inner diameter/(mm) 0.8∼2.45
Number of turns 2∼20
Heat flux/(W·m−2) 494∼134160.2
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3 Heat Transfer Correlation for PHP

Based on the experimental data and dimensional analysis presented above, the following
heat transfer correlation was obtained to predict the performance of PHP based on least square
method.

μRcpdi = 1.02× 106
(
qdi3ρl

2

μ3

)−0.85852 (
gdi3ρl2

μ2

)0.21553 (
le
di

)−1.29007 (
λ
cpμ

)−0.0744

×
(

σdiρl
μ2

)0.41648
ϕ0.13384N−0.73686

(10)

The prediction performance of the heat transfer correlation is shown in Fig. 1. The MSE
and the correlation coefficient between the experimental data and correlation were 9.12e-6 and
0.755, respectively. The average absolute deviation (AAD) of the prediction was 47.65%. While
the prediction for most experimental data fell within Region A with deviation within ±50%, there
were some data beyond this range and lower than –50%, as indicated by Region B.
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Figure 1: The prediction of heat transfer correlation

It is noteworthy to further analyse the prediction characteristics of the correlation (10), by
revealing the reasons of great deviation in Region B. When evaluating the heat transfer perfor-
mance of the PHP, the thermal resistance and temperature difference between the evaporation
and condensation section are very important indicators. Therefore, their prediction deviations are
used in this paper to show the performance of proposed correlation, and they are given by,

�R=Rpre−Rexp (11)

�(Te−Tc)= (Te−Tc)pre− (Te−Tc)exp (12)

The influence of thermal resistance on the prediction of �R and � (Te-Tc) was shown in
Fig. 2. As can be seen from Fig. 2a, the prediction deviation of thermal resistance generally
increased with the thermal resistance. The �R of 95% data was within 1.13 K/W. While the
prediction was good for lower thermal resistance, the prediction saw quite great deviations when
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the thermal resistance was greater than 2 K/W. Nearly all the great deviations occur in this
range. Meanwhile, the prediction of �R was also influenced by the working fluids. The aver-
age deviation of �R for water, R123, ethanol, acetone, and methanol were –0.14 K/W, 0.49
K/W, –0.007 K/W, 0.058 K/W and 0.025 K/W, respectively. When it comes to the prediction of
� (Te-Tc), as indicated in Fig. 2b. For 95% of the total data, the deviations of � (Te-Tc)
were within 40.76 K, and the great deviation also occurs for the higher thermal resistance. The
average of � (Te-Tc) for water, R123, ethanol, acetone, and methanol were –6.147, 24.39, –2.51,
2.1, and 0.74 K, respectively. The influence of the heat flux is presented in Fig. 3. The predic-
tion accuracies of �R and � (Te-Tc) were generally poor when the heat flux was lower than
40,000 W/m2.

A possible reason which may contribute to the great deviations of the correlation for higher
thermal resistance and lower heat flux is when the heat flux is in a lower level, the PHP
experiences a condition of pre-startup or quasi-startup, in which status the operating of PHP is
not stable, and is characterised by different flow patterns compared to the stable oscillation at a
higher heat flux level [44]. As a result, the experimental data scatter is great between different
studies. It is therefore very difficult to correlate an accurate heat transfer correlation for various
studies. Meanwhile, the thermal resistance of PHP is usually very large when the heat flux is at
a lower level. Therefore, the deviations are generally great for lower heat flux and larger thermal
resistance cases. Further investigation on different operating patterns of PHP and the proposed
correlation separately is expected to benefit the accuracy improvement.
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Figure 2: The influence of thermal resistance on prediction of (a) �R; (b) � (Te-Tc)



EE, 2022, vol.119, no.2 807

0 40000 80000 120000 160000

-4

-2

0

2

4

0 40000 80000 120000 160000
-300

-225

-150

-75

0

75

150

225

300

StableUnstableUnstable

 water
 acetone
 methanol
 R123
 ethanol

Δ
R

(K
/W

)

q(W/m2)

95%

Stable

 water
 acetone
 methanol
 R123
 ethanol

Δ
(T

e-
T

c)
(K

)

q(W/m2)

95%

(a) (b)

Figure 3: The influence of heat flux on prediction of (a) �R; (b) � (Te-Tc)

4 ANN Model for the PHP

A new, fully connected ANN model was defined to correlate the performance of PHP, to
take advantage of excellent it accuracy in non-linear analysis. The collected experimental data
were divided into training, validation, and testing data sets randomly at the ratio of 70%, 15%,
and 15% respectively. To avoid too complex an ANN model, only one hidden layer was used.
The parameters considered in above section were used as the input of ANN model. In an ANN
model, the outputs of each node in l-th layer are the function of weights and bias, and are
given by,

yl = f

⎛
⎝ n∑
j=1

ωl−1xl−1+ bl

⎞
⎠ (13)

Therefore, the output of the ANN model was presented by,

ypre= f
[
ω2
(
f
(
w1x1 + b1

)
+ b2

]
(14)

For all input data, the following function was used to pre-processes the input data,

y= ymax− ymin

xmax −xmin
(x−xmin)+ ymin (15)

The transfer function is used to pre-process the data. The following sigmoid function was
used,

fi (x)= 2
1+ e−2xi

− 1 (16)
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The error of the ANN model can be evaluated by,

F (x)= (ypre− yexp
)T (ypre− yexp

)
(17)

The linear function was implemented for the output layer. Due to great stability, flexibility,
and adaptability of Levenberg- Marquardt algorithm, it was selected as the learning algorithm
of the ANN model. The prediction performance of the ANN model is usually described by
correlation efficient (r) and mean square error (MSE), and they are defined by the following
equations [45]:

MSE = 1
n

n∑
i=1

(
Ypre,i−Yexp,i

)2 (18)

r= Cv (exp,pre)√
Cv (exp, exp)

√
Cv (pre,pre)

(19)

A trial-and-error method was implemented to find the optimal hidden layer neuron number.
The analysis result is shown in Fig. 4. It was shown that the MSE changed with neuron numbers,
and with the increase of the number, the MSE generally decreased. To balance the accuracy
and complexity, the optimal hidden layer neuron number was set at 12. The MSE of training,
validation, testing and, total data set were 8.59e-7, 5.69e-7, 6.71e-7, and 7.88e-7, respectively. The
structure of the proposed ANN model was illustrated in Fig. 5.
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The predictions for the training, validation, testing, and total data set are further shown in
Fig. 6. As can be seen, when the hidden layer was with 12 neurons, the prediction of the proposed
ANN model coincided well with the experimental data. The MSE and correlation coefficient were
7.88e-7 and 0.9821, respectively. The optimised bias and weights are presented in Table 2.
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Figure 5: The structure of the presented ANN model
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Table 2: The bias and weights of nodes

Node Hidden layer weights Hidden
layer bias

Output
layer weight

Output
layer bias

π2 π3 π4 π5 π6 ϕ N

1 –1.248 –3.632 –0.1192 1.235 1.356 0.1696 –1.476 –3.939 –2.206 0.9240
2 –2.195 –2.037 –0.3265 –3.480 –4.121 0.2727 7.667 3.185 1.146
3 –3.092 –0.9589 –0.4393 0.8211 –0.5356 0.3144 1.478 1.145 –1.637
4 0.9958 –2.089 –1.581 –2.450 –4.904 –0.06707 4.561 1.457 –2.719
5 –0.5800 1.093 –4.606 –3.526 –4.279 –0.1185 5.356 2.816 –2.347
6 –0.0728 0.09350 –1.346 –1.154 2.619 –0.0179 –1.913 –0.134 –1.878
7 1.241 1.530 –0.3851 –1.470 –3.255 –0.1292 1.940 0.5034 –1.120
8 –0.7466 1.611 –3.850 –1.032 1.775 –0.00359 –2.568 0.0328 0.6827
9 0.3775 0.01606 3.352 1.300 3.228 0.04450 –3.026 –1.116 –3.333
10 –5.753 2.455 –1.088 0.1840 3.278 0.2349 0.1813 –1.753 –1.390
11 –3.271 –0.7660 –1.067 –0.2324 –1.677 0.2798 0.5518 1.334 1.901
12 0.8520 2.641 0.2677 0.4395 –1.836 –0.1138 1.599 3.627 –5.279

The influence of thermal resistance on the prediction of �R and � (Te-Tc) is presented
in Fig. 7. As can be seen, the prediction of �R was better with lower thermal resistance. For
�R prediction, more than 95% of experimental data fell within ±0.39 K/W, which showed an
excellent accuracy of the ANN model. The prediction was also influenced by working fluids.
For water, acetone, methanol, R123, and ethanol, the average �R were 0.0036, 0.095, –0.015,
–0.083, and 0.006 K/W, respectively. Regarding the prediction of � (Te-Tc), 95% of data fell
within ±19 K. Meanwhile, the average of � (Te-Tc) for water, acetone, methanol, R123, and
ethanol were 1.18, 1.98, –1.04, –9.67, and 0.18 K, respectively. The influence of heat flux is
shown in Fig. 8. With increasing heat flux, the prediction of �R became more accurate, while
the prediction of � (Te-Tc) did not show any relevance to the heat flux.
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5 Conclusions

In this paper, the dimensional analysis was conducted to group various influence parameters
to predict the heat transfer performance of PHP with various working fluids (water, ethanol,
methanol, R123, acetone). A heat transfer correlation was firstly presented based on the col-
lected data. The coefficient correlation and AAD of the correlation were 0.755 and 47.65%,
respectively. Further analysis suggested that most great deviation occurred for higher thermal
resistance (>2 K/W) or lower heat flux (<40000 W/m2). For 95% of the data, the prediction
of thermal resistance and temperature difference between evaporation and condensation section
were 1.13 K/W and 40.76 K, respectively. In addition, an ANN model was also proposed to
better predict the performance of PHP, considering its great advantage in solving and correlating
complex non-linear problems. The proposed ANN model has 7 nodes, 12 nodes, and 1 node in
input layer, hidden layer, and output layer, respectively. It was found that the prediction agreed
with the experimental data very well, with the MSE and R at 7.88e-7 and 0.9821, respectively.
Furthermore, the ANN model also showed good accuracy in predicting the �R and � (Te-Tc).

Despite that, further studies regarding the internal heat transfer characteristics and oscillation
flow patterns of the PHP in various conditions still need to be conducted. Revealing them will
help to build more accurate models and boost the application of PHP.
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