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ABSTRACT

A microgrid (MG) refers to a set of loads, generation resources and energy storage systems acting as a controllable
load or a generator to supply power and heating to a local area. The MG-generated power management is a
central topic for MG design and operation. The existence of dispersed generation (DG) resources has faced MG
management with new issues. Depending on the level of exchanges between an MG and the main grid, the MG
operation states can be divided into independent or grid-connected ones. Energy management in MGs aims to
supply power at the lowest cost for optimal load response. This study examines MG energy management in two
operational modes of islanded and grid-connected, and proposes a structure with two control layers (primary and
secondary) for energy management. At the principal level of control, the energy management system is determined
individually for all MG by taking into consideration the probability constraints and RES uncertainty by the Weibull
the probability density function (PDF), generation resources’ power as well as the generation surplus and deficit
of each MG. Then, the information of the power surplus and deficit of each MG must be sent to the central
energy management system. To confirm the proposed structure, a case system with two MGs and a condensive
load is simulated by using a multi-time harmony search algorithm. Several scenarios are applied to evaluate the
performance of this algorithm. The findings clearly show the effectiveness of the proposed system in the energy
management of several MGs, leading to the optimal performance of the resources per MG. Moreover, the proposed
control scheme properly controls the MG and grid’s performance in their interactions and offers a high level of
robustness, stable behavior under different conditions and high quality of power supply.
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Harmony search algorithm; multi-MG system; multi-owner systems; central and non-central control; optimal
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Nomenclature Quantity

PWT ,n
t Wind turbine (WT) generated power

PPV ,n
t Photovoltaic (PV) generated power

PMT ,n
t Micro-turbine (MT) generated power

PVG,n
t Virtual generation source generated power

PES−,n
t Energy storage (ES) generated power
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PES+,n
t ES consumed power

PRLD,n
t Responsive load demand (RLD) load consumed power

PVL,n
t Virtual load consumed power

Pload,n
t Non-responsive load demand (NRLD) load consumed power

PLL,n
t Lumped load (LL) load consumed power

PGRID+,n
t Power sold to the main grid from the nth MG

PGRID−,n
t Power purchased from the main grid by the nth MG

PMG+,kn
t Power sold to the kth MG by the nth MG

PMG−,kn
t Power purchased from the kth MG from the nth MG

PBUY Maximum purchased power by the nth MG
PSELL Maximum sold power by the nth MG

1 Introduction

The human population is concerned with the reliable and extensive use of renewable energy sources
(RESs) to reduce greenhouse gas emissions and supply distributed loads remotely. RESs are clean and
infinite; they can therefore be appropriate alternatives for fossil fuels [1]. The emergence of dispersed
generation RES and need for supplying the consumed load at the point of use have led to the emergence
of microgrids (MGs). When global electricity cannot be distributed, the use of MGs is suggested.
Based on International Energy Agency’s report, more than 1 billion people worldwide do not have
access to the electricity network. Plans are being made to supply the electricity needed by these people
via developing the global electricity network and using MGs [2]. Based on the high fluctuation of
accessible power at the distribution voltage level, the MG systems may fail to supply major consumers.
Therefore, by dividing the consumers into smaller units, several MGs are used and each unit of load
is fed by one MG. Using several MGs in a low-voltage grid, integrated multi-owner MGs emerge [3].
To monitor the performance of MGs and optimize their operation, it is essential to provide an energy
management system (EMS) in different conditions. The energy management system (EMS) is used to
control the performance of all generation units (GUs), controllable loads and ESS in all the MGS,
demand-side management, all the interactions of MGs with the grid and the power exchange between
MGs. In [4], the economic issues and confidence of distributed MGs are discussed. In [5], the location
of DG sources is examined in distribution systems and the research projects are proposed on this
topic. The advantages of MGs, including promotion of local confidence factor, reduction of supply
line losses, support and improvement of local voltage, correction of voltage drop or working as an
uninterruptible power supply were noted in [6]. The gravity search algorithm was used to determine
optimal energy management [7]. Moreover, a stochastic framework was provided for the optimal
scheduling of MGs by considering the islanded mode [8]. In this approach, different uncertainties
are taken into account and the daily scheduling of resources is determined by considering emergency
conditions. An independent hybrid MG as a combination of RES such as wind and solar energy, fuel
cell and ESS was proposed in [9]. This MG used fuzzy logic controllers and employed a management
strategy based on the battery’s state of charge (SOC) in order to keep the energy balance. In [10], the
performance of the hybrid system was optimized in the presence of a pumped hydro storage (PHS) by
a modified search algorithm to reduce fuel consumption.

In [11], a smart EMS was proposed by using the genetic algorithm (GA) to optimize the MG
performance. In this study and in the optimization process, a prediction module, an ESS management
module and an optimization module were used. In [12], a control algorithm based on distributed model
predictive control (DMPC) was presented for the economic programming of a network of integrated
MGs with a hybrid ES. This algorithm tried to provide the maximum economic profit of network MGs,
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reduce the ESS destruction and meet different system constraints. In [13], a company-based EMS was
proposed to facilitate power exchange between MGs by using demand-response and energy storage.
The penetration of wind and solar energy in power systems was noted in [14], while also considering
the uncertainties in ESS and HPS and examining the units’ participation problem. To improve the
optimization performance, it introduced a binary artificial sheep algorithm (BASA). In [15], an EMS
was introduced for industrial MGs. In this model, optimization was performed in a bi-level structure to
optimize the operations of industrial MGs by scalability and uncertainties. In [16], a two-stage energy
management strategy was introduced for the participation of charging stations in load management
and use of electricity price uncertainty in the optimal operation of MGs. In [17], a new forecast-
based optimization method was proposed to provide real-time planning that takes into account future
environmental trends. The recently proposed duel-based deep reinforcement learning approach has
been adopted to optimally deploy home energy management systems. In [18], a new method based on
the Gaussian process (GP) was proposed to improve the probabilistic prediction of groups or regions
of WF. The covariance function (CF), called the kernel, is an important factor when using GP. One
of the most common of these functions is the squared index (SE). This, along with other functions,
applies to the model of the proposed method. In [19], Centralized EMS (CEMS) was presented as a
unique tool. Two dispatch options are the improved Prey-Prey Optimization (IPPO) algorithm and
the improved Mixed Integer Linear Programming (IMILP). These methods are provided for planning
UC and economical dispatch in microgrid units. In the suggested approach, system constraints such
as voltage and charging facilities and unit limitations had been discussed. In [20], Planakis et al.
proposed a framework for the design and experimental evaluation of power split control systems for
ship propulsion. Machine learning is used to process data from vessel operations and recognize 20
loading patterns. A typical template that can be used as a ship load cycle is extracted in the development
and testing of energy management systems. A ship propulsion model with wave disturbance is used to
simulate a realistic load scenario in a test facility. In [21], Ahmadpour et al. evaluated the results of the
well-known EP as a Renewable Energy Certificate (REC) and its impact on the welfare surplus based
on the Power Generation Expansion Plan (GEP). To achieve the paper goals, we mix the desired EP
and GEP and present a comprehensive model from the perspective of the RES maker. The model is
solved in the form of a mixed integer nonlinear problem (MINLP) using GAMS optimization software
with the BARON optimizer.

In this paper, a multi-company system is proposed for energy management in the systems
consisting of several MGs with multiple owners. This structure aims to optimally manage the
current GUs in the MG, demand-side management and MGs’ exchange with the main grid and
the interactions between MGs. In this method, each part of the MG is regarded as a company and
the coordinated behavior of the companies in the MG minimizes the generation cost. Therefore, in
integrated MGs, there is no need for supervisory control by an independent operator that monitors the
MGs’ performance and each of the MG self-controls with the supervision of an independent operator.
As the model intended for the MG is non-linear and discrete, the harmony search algorithm is used
to implement this system in order to find the best solution possible. In this problem, the technical
constraints including full load supply, technical characteristics of each resource in the MG, constraints
on connection to the main grid and constraints on power exchange among MGs are included.

2 Structure of the Studied Gird

The schematic representation of the studied system is given in Fig. 1. The system has several MGs,
each involving their own local loads, DG resources and ESS systems. Each MG can operate in both
grid-connected and islanded modes. Each MG has a unique EMS and a central EMS (CEMS) at a high
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level to control all these EMSs. A set of condensive loads is also considered for this grid. A condensive
load is a group of consumers who do not belong to any MG or the main grid and independently receive
demand from the introduced grid.

Figure 1: The studied system

The prices suggested by each resource in the MGs and their power exchange with the grid are
summarized in Table 1. Some bids in some intervals interfere with the prices suggested by the GUs or
other consumptions. Therefore, the proposed EMS and CEMS should be able to choose the best power
generation source and lateral consumer by considering the minimum generated power cost. The data
of the RES and the local load profile of the MGs are taken from [22,23]. These data are derived from
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the actual values of the meteorological area of Belladona, Barcelona (Spain) online. To demonstrate
the algorithm’s rapid responsiveness to the occurrence of any event, different scenarios are considered
in the system.

Table 1: The prices suggested by each GU in the MG and the power exchange between MGs and the
grid

Maximum Minimum Nomenclature Quantity

1.5 1.5 πUP,n Un-supplied penalty 8 (UP) in the nth MG
0.15 0.08 πRLD,n RLD load in the nth MG
0.09 0.03 πWT ,n Wind source in the nth MG
0.11 0.08 πPV ,n Solar source in the nth MG
0.16 0.14 πMT ,n Microturbine in the nth MG
0.16 0.1 πES+,n ESS as a generator in the nth MG
0.15 0.1 πES−,n ESS as a consumer in the nth MG
0.17 0.07 πMG−,kn Power purchase from the kth MG and selling to

the nth MG
0.17 0.15 πMG+,kn Power purchase from the nth MG and selling to

the kth MG
0.18 0.16 πGRID−,n Power purchase from the grid and selling it to

the nth MG
0.115 0.05 πGRID+,n Power purchase from the nth MG and selling to

the grid
0.12 0.06 πLL,n Condensive load (LL) in the nth MG
0.15 0.135 πVG,n Virtual generation source 9 in the nth MG
1.5 1.5 πVL,n Virtual load 10 in the nth MG

Scenario 1: In this case, the whole system is operating normally and no unwanted error has been
created.

Scenario 2: Sudden load increase (from 17:00 to 17:30 and from 18:00 to 18:30).

Scenario 3: In this case, in addition to system performance, the presence of electric vehicles and
their role in microgrid performance and how energy is exchanged are examined.

3 Optimization Problem Formulation

The studied system has n MGs, each consisting of several wind and solar RES and non-
renewable energy sources as spinning reserve microturbine, ESS and several types of uninterruptible
and controllable loads connected to the grid as well as several condensive loads. The mathematical
relations formulated for EMSs and CEMS implementation are given below.

3.1 Mathematical Implementation of EMS-MICA Objective Function
For all EMSs separately, a cost function is defined aiming to minimize the objective function and

manage the generation and consumption resources of each MG. The cost function defined for the
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EMS in the nth MG is modeled as follows:

zEMS,n = min
{

24∑
t=1

{∑
s∈S

μWT
s PWT ,n

s,t × πWT ,n
t + ∑

s∈S

μPV
s PPV ,n

t × πPV ,n
t + PMT ,n

t × πMT ,n
t + PVG,n

t

×πVG,n
t + PES−,n

t × πES−,n
t − PES+,n

t × πES+,n
t − PRLD,n

t × πRLD,n
t − PVL,n

t × πVL,n
t

+ PUP,n
t × πUP,n

t

}
× �t

} (1)

In this model, PWT ,n
s,t , PPT ,n

s,t , PMT ,n
t , PVG,n

t and PES−,n
t denote the power generated by wind sources

under scenario s (s is the total number of scenarios), solar power under scenario s, microturbine, virtual
generation source and ESS for the nth MG at time interval t, respectively.

Coefficients μWT
s and μPV

s respectively denote the probability of occurrence of scenario s for wind
and solar resources. PES+,n

t , PRLD,n
t and PVL,n

t respectively indicate the consumed power by ESS, RLD
load and virtual load for the nth MG at time interval t. πWT ,n

t , πPV ,n
t , πMT ,n

t , πVG,n
t , πES−,n

t , πES+,n
t , πRLD,n

t and
πVL,n

t respectively are bid made by wind source, solar source, microturbine, virtual generation source,
ESS as the generator, ESS as the consumer, RLD load and virtual load in the nth MG in interval t.
Moreover, PtUP n is the un-supplied power and πUP,n

t is the penalty for this power in the nth MG in
interval t. In each interval, the EMSs first receive the bids of all generation and consumption sources
in each MG. Then, depending on the prices, the proposed algorithm decides to use the generation and
supply sources of the consumers to maximize social welfare. In the daily operation of the system, based
on the bid made by the GU and virtual load, MGs can have surplus or deficit generation. The surplus
power or deficit power in the MGs are notified to the CEMS by the suggested EMSs using variables
PVG,n

t and PVL,n
t :

Pn
t = (

PWT ,n
t + PPV ,n

t + PMT ,n
t + PES−,n

t

) − (
Pload,n

t + PES+,n
t + PRLD,n

t

)
(2)

If Pn
t is positive, it means surplus generation. In this situation, the MG can sell power to other MGs

and the grid; the surplus power is to be paid to the virtual load. However, when Pn
t is negative, it means

a deficit in generation. In this situation, the MG cannot supply its internal demand and must seek
the help of other MGs and the grid. Therefore, this power deficit is regarded as a virtual generation
source.

3.2 Implementation of the Objective Function in CEMS-MICA
This function aims to supply the decision and surplus generation of the MGs, such that the total

system social welfare is maximized. The objective function defined for the CEMS can be formulated
as:

zCEMS = min
{

N∑
n=1

24∑
t=1

{
PVL,n

t × πVL,n
t − PLL,n

t × πLL,n
t − PGRID+,n

t × πGRID+,n
t

−
k∑

k = 1
k �= n

PMG+,kn
t × πMG+,kn

t − PVG,n
t × πVG,n

t + PGRID−,n
t × πGRID−,n

t

+
k∑

k = 1
k �= n

PMG−,kn
t × πMG−,kn

t

}
× �t

} (3)
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In this figure, PLL,n
t , PGRID+,n

t and PMG+,kn
t respectively denote the power sold to load LL, grid and kth

MG by the nth MG in time interval t; n is the power purchased from the grid and kth MG by the nth
MG in interval t. Moreover, πLL,n

t , πGRID+,n
t and πMG+,kn

t respectively stand for the bids on power sales
to LL load, gird and kth MG, while πGRID−,n

t and πMG−,kn
t respectively show the bid on power purchase

from the grid and kth MG.

4 Problem Constraints

The constraints for the optimization problem include the following.

4.1 Balance Constraint
In each MG, the total power generated by the generators in each interval should be equal to the

total consumer demand.

In every MG, the total generated power should be equal with the demand:

PMG+,n
Tot,t +

k∑
k = 1
k �= n

PMG+,kn
t + PGRID+,n

t + PLL,n
t = PMG−,n

Tot,t +
k∑

k = 1
k �= n

PMG−,kn
t + PGRID−,n

t (4)

4.2 ES Constraints
Energy storage constraint

The maximum and minimum power in the charge and discharge period [23,24].

4.3 Energy Balance
Constraints of spinning reserve devices

The constraints on these devices include the maximum and minimum power generated by the
non-renewable energy sources [24].

4.4 Constraints of RLD Loads
The total power consumed by RLD must be less than or equal to the maximum load considered

for the RLD [23,24].

4.5 Constraints on Power Exchange between MGs and the Main Gird
In fact, the nth MG cannot purchase power more than P−BUY from the grid and other MGs or sell

power to the grid, other MGs and the LL load more than P−SELL. In fact, this constraint results from
the limitation of transfer lines connecting the grid and the MG, and aims to constrain the exchanges
with the grid and promote the use of the existing resources within the MG.

4.6 RES Uncertainty Constraint
Based on the predicted data, a proper probability density function will be selected for each

specified parameter. The random change in Weibull and its distribution has extensive applications
in power and control systems, as well as the weather forecast. Wind speed is modeled by the Weibull
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distribution in the following equation [25]:

PDF (v) = k
c

(
v − v0

c

)k−1

× exp −
(

v − v0

c

)k

(5)

k =
(

δ

μ

)−1.086

, c = μ

Γ

(
1 + 1

k

) (6)

In these formulas, k and c are constants for determining the power produced by wind units based
on wind speed. The Γ gamma distribution function, μ is the mean associated with wind speed data. v
and v0 are the base wind speed and current wind speed, respectively.

Solar irradiation is modeled by using the Weibull distribution beta model. The beta Weibull model
is depicted in the following equations:

PDF (si) =
⎧⎨
⎩

� (α + β)

� (α) + � (β)
× sia−1(1 − si)(β−1) 0 ≤ si ≤ 1, α ≥ 0, β ≥ 0

0 otherwise
(7)

α and β are the parameters based on the average amount of radiation (μ) and standard deviation
(σ ) for power generation. The si is the intensity of sunlight.

β = (1 − μ) ×
(

μ × (1 + μ)

σ 2
− 1

)
, α = μ × β

1 − μ
(8)

A conventional Weibull function is used to model electricity price and electricity load as follows:

PDF (χ) = 1

σ
√

2π
exp

(
−(χ − μ)

2

2σ 2

)
(9)

χ is the sunlight per unit time.

4.7 Scenario Generation
Latin Hypercube Sampling (LHS) is a group sampling method. Since the Weibull distribution

function of each stochastic variable is known, the sampling stratification is done with the sampling
delay mean to ensure the integrity of sampling data and increase the data volume. For each uncertain
parameter, the Weibull distribution should be classified into several parts. The LHS method is adopted
to generate the scenarios. These methods are presented below:

Step 1: Determining the number of scenarios and dividing the probability distribution of each
uncertain parameter by N levels;

Step 2: Selecting the mean value from the probabilistic distance [(i − 1) /N, i/N] where 1 ≤ i ≤ N;

Step 3: Calculating the values of the sample of wind speed, solar irradiation, electricity price and
electric charge based on the inverse cumulative distribution function.

4.8 Scenario Reduction
Calculating a large number of scenarios can disrupt the computation efficiency. Therefore, a

scenario reduction method must be applied. The k-means algorithm is used in the current study to
reduce the number of states owing to its flexibility and applicability for large-scale reduction.

The processes of this algorithm are presented below:
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Step 1: Randomly select k scenarios from the central cluster ci, where i = 1, 2, 3, . . . k from the
generated scenarios.

Step 2: Calculate the distance D between any scenario Sj and the cluster centers. Then, determine
each scenario from the closest cluster center.

Dj = ∣∣∣∣Sj − Ci

∣∣∣∣ , j = 1, 2, ..N (10)

Step 3: Update the cluster center.

Ci = 1
Ni

Ni∑
h=1

Sh,i (11)

Step 4: Calculate the objective function J.

Jh,i =
k∑

i=1

Ni∑
h=1

∣∣∣∣Sh,i − Ci

∣∣∣∣ (12)

Step 5: If J converges, stop the updating and keep the results; otherwise, return to Step 2.

5 Implementation of the Proposed EMS Structure with Two Control Layers

The proposed EMS for MGs with multiple owners has two control layers, i.e., primary and
secondary.

5.1 Primary Control
After choosing the MGs’ mode of operation in the first level control, the EMS is independently

applied to each MG. Based on the constraints for the problem, the optimal power of the GUs and
consumers in that MG is determined. If the MG is islanded, it will have no exchanges with the main
grid. However, if it is grid-connected, it can exchange power with the grid and other MGs. Power
exchange means purchasing power from the grid and other MGs when there is a power deficit and
selling power to them when there is a power surplus. The grid-connected MG can also supply external
condensive loads. In other words, the primary control of grid-connected MGs determines the optimal
power for the units in the MG in addition to two other variables known as the virtual GU (PVG,n

t ) and
virtual load (PVI ,n

t ). These two variables are, in fact, the sum of powers allocated for sales to the grid,
other MGs and supply the external condensive loads as a virtual load, as well as the sum of powers
allocated for purchasing from the grid and other MGs as a virtual generation source. In other words,
the virtual load is the probable generation surplus and the virtual generation source is the probable
generation deficit in the MG. Based on the objective function, the bid made by the units in the MGs
and the bid made by external elements, i.e., the main grid and other MGs, the EMS of each MG
in primary controls decides whether power exchange with the outside world would benefit the MG
operator or not. Thus, the amount of power allocated to the load and virtual generation source by
the EMS of each MG is determined based on the technical and economic constraints. Deciding how
much of this load and virtual generation is to be allocated to which element is beyond the scope of
responsibility of the MG EMS at the primary control level. Thus, in each interval, the MG’s generation
deficit or surplus is inputted to the CEMS at the secondary control level in the form of a dataset.

Data such as the technical constraints of the devices in the MG, the load prediction and RES data,
the prices suggested by each source in the MG are dispatched to the EMSs at the primary control level.
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5.2 Secondary Control
The CEMS is presented in the secondary control. After receiving the data from the EMSs of all

the MGs, the energy management process commences in the secondary control. This system specifies
the status of loads and virtual generations determined at the primary control level. In this situation,
various scenarios may occur depending on the number of MGs in the power system. If n MGs are
present in the system, n2 scenarios will occur in the system. If all the MGs have a generation deficit,
this means that the independent EMS of the GMs has allocated some power to the virtual generation
source. As noted earlier, virtual generation means purchasing from the grid and other MGs. As all the
MGs have a generation deficit, they cannot allocate any power for sales and will supply their generation
deficit only from the main grid. In this scenario, no MG can supply the external condensive load and
this load will be fully supplied by the main grid. When all the MGs have a generation surplus, this
surplus will be consumed to supply the external condensive load and sold to the main grid. In this
scenario, the MGs first compete to supply the external condensive load and the MG with the lowest
bid will win this competition. The winning MG may not supply the external condensive load fully; in
this situation, other MGs will act in the same way to supply this load. If the external condensive load
is still not fully supplied, the main gird will help. Finally, if the MGs still have a generation surplus,
this surplus will be sold to the main grid. It is also possible that some MGs might have a surplus and
others have a deficit. In this case, among the MGs with a surplus, the one with the lowest bid will
first be selected and its surplus can be used to compensate for the deficit of other MGs, supplying
the external condensive load, or sold to the main grid. In this situation, first, the generation deficit of
the MG with the lowest bid is compensated for. The CEMS decides how much of the surplus is to be
allocated to these three components.

This trend will continue until the surplus of all the MGs is used. Finally, if the MGs with a deficit
and the external condensive load are not fully supplied, the main grid will help and establish power
balance. Thus, we will have three general states in the CEMS. First, all the MGs may have a generation
deficit; in this case, there is no need for optimization because clearly all the deficits and external
condensive load must be supplied by the main grid.

6 Harmony Search Algorithm

At first, musicians randomly play on their musical instruments. This harmony is stored in their
memory. In the next parts, based on the stored harmony, musicians play new music which differs from
the previous part. Playing impromptu follows one of the following rules: Playing a sound stored in the
memory playing a close sound to that in the memory and playing a random sound from the probable
sounds. Assume a jazz trio (a saxophone, a violin and a guitar). A certain degree of justifiable sound
exists in each musician’s (saxophonist, violinist and guitarist) memory. If the saxophonist randomly
plays sol, the guitarists do, and the violinist si, the existing harmony (sol, si, do) creates a new harmony.
If the new harmony is better than the one in memory, the old one will be replaced by the new one and
the old one will be deleted. This process will continue until a unique harmony is achieved. The problem
is formulated based on the harmony search algorithm and the structure of the solution is assumed as a
harmony. Then, the algorithm randomly generates a harmony based on the feasibility conditions and
stores it in the memory. The operation of a harmony search algorithm is fully explained below [26].
First, the optimization problem is formulated as follows:

Minimize f (x) , x (i) ∈ Xi, i = 1, 2, . . . N (13)

The value of the following parameters is specified:
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The harmony memory consideration rate (HMCR), the pitch adjustment rate (PAR) and the total
scale.

The second part of the algorithm creates and forms the harmony memory based on the following
matrix:

HM =

⎡
⎢⎢⎢⎣

x1
1 x1

2 x1
n f

(
x1

)
x2

1 x2
2 x2

n f
(
x2

)
...

...
...

...
xHMS

1 xHMS
2 xHMS

n f
(
xHMS

)

⎤
⎥⎥⎥⎦ (14)

Here, the memory matrix is randomly constructed by solution generating vectors and the real
objective function f(x) and will play the role of a memory.

The is the most important part of this algorithm because changes in the current harmonies in the
memory are applied in this stage. Based on the previous equation, the HMCR specifies the extent,
to which the harmony memory is used for constructing a new harmony, and HMCR-1 indicates the
probability of randomly generating the new harmony.

x′
t ←

{
x′

t ∈ {
x2

1, x2
t , . . . , xHMS

t

}
x′

t ∈ xi (1 − HMCR)
(15)

For instance, an HMCR of 95% means the 95% probability, by which the algorithm should select
the values of the new harmony from the values stored in the memory, and the 5% probability of
random generation. When a value is selected from the memory, it may change depending on the PAR
probability and the probability of this change is obtained by adding an integer to the value. In the
following equations, bw is the optional distance for the examination width and rand() is a random
number between 0 and 1.

Rnew
t ← Rnew

t ± rand() × bw (16)

f (x) =
{

YES PAR
NO (1 − PAR)

(17)

If the new harmony is better than the worst member of the harmony memory, the new harmony
will be stored in the memory and the worst harmony will be deleted from the memory. In the end, the
stop condition, which in this algorithm is examining the number of iterations, is examined.

7 Results and Discussion

It should be mentioned that the simulation has been done in MATLAB version 2016 software
on a personal computer with 8 GB of RAM and a 3 GB 7-core processor with 1 terabyte of internal
memory and 6 MB of cache.

The energy source programming for MGs obtained by the proposed algorithm is presented in
Figs. 2a and 2b, respectively.

Figs. 3a and 3b show the power sold to the grid, power sold to LL load by each MG, power sold
to other MGs, RLD supply power and ES charge power.
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Figure 2: The energy source programming for MGs

Figure 3: The sold power to the grid

The power generation by PV and WT is affected by climatic conditions (wind speed and solar
irradiation). These sources participate in supplying the power demanded by the consumers more
intensively than the other sources because their bids are lower, which is more competitive than the rest
of the sources. As a result, the algorithm tries to purchase the maximum accessible power from these
sources. Based on the figures, from 00:30 to 01:00, based on the lower bids of MT and the greater profit
compared to other bids, MG1 supplies RLD and ES, as well as a part of the power needed by MG2
and LL. The optimization algorithm allocates this source for supplying the power of other sources to
reduce the total generation cost. In later hours, despite higher πGRID−,n

t than all the other bids, EMS of
MG1 decides to supply a part of the RLD by purchasing from the grid.

At 20:00, due to the drop in the local load demand, more PMG,1
t power is generated; this power

is mostly used for supplying the grid due to the higher bid of πGRID+,n
t . Furthermore, between RLD

and LL loads, despite higher πLL−,1
t than πRLD,1

t , RLD is the next candidate for supplying the surplus
power generated by MG1 in this interval. EMS-MICA reduces the consumed load of both MGs to
avoid paying the penalty during the peak period when the diagram reaches maximum consumption,
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or the occurrence of scenarios 2 and 3 when the combination of all generation sources does not suffice
load supply. ES charge occurs only in three hours in both MGs and does not greatly affect the total
consumed power. After this interval, the SOC of both MGs reaches its maximum value and ES is kept
on stand-by to support the MGs when they are islanded. The related prices of generated power can be
quoted from [3,4].

The daily power generation percentages by the generation sources of the percentage share of each
consumer for consuming the surplus are given in Figs. 4 and 5 for MG1, respectively. During the first
hours of the day when the consumed load is low, RESs supply most of them and some power is also
purchased from the grid. In these hours, as load demand increases, due to the reduced WT output, the
higher load demand is supplied by the MT first; gradually, as PV is commissioned, MT’s participation
gradually decreases. The EMS of MG1 uses MT to supply its needs partly by the power purchased
from the grid.

Figure 4: Daily participation percentage of generation sources of MG1

Figure 5: Daily participation percentage of consumption sources of MG1
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Based on Fig. 5, in the first hour of the day when the load demand is low, EMS allocates some
of the generated power for charging the ES in this period; based on the ES constraint, the maximum
ES charge is P; thus, the rest of the surplus is used to supply the RLD. In this period, a part of the
surplus power is sold to MG1 which is used for charging the ES. Due to the lower bid of purchasing
from MG2 than ES charge, the MG1 operator makes a good profit.

The daily power generation percentages by the generation sources of the percentage share of each
consumer for consuming the surplus are given in Figs. 6a and 6b for MG2, respectively. Like MG1,
MG2 uses MT sources and the gird in hours when the local load begins to increase (06:00–09:00)
before the commissioning of PV, during peak hours, or when scenarios 2 and 3 occur (00:18–00:24).
The EMS of MG2 does not purchase power from MG1, except at 00:30 (00:10). At this hour, based
on the bids, the ES loads, RLD and MG2 are respectively supplied; from 00:18 to 00:24, due to the
higher bid of MT than purchasing from the grid, the MT is commissioned with the power of P and
the rest of the power is purchased from the grid. Due to the priority of consumers’ bids, the surplus
generation supplies internal RLD and ES, and no surplus power is generated for being sold to MG2.

(A)

(B)

Figure 6: (A) Daily participation percentage of the generation sources of MG2; (B) Daily participation
percentage of consumption sources of MG2
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Finally, a comparison of the proposed method with other methods is presented. In order to better
evaluate the efficiency of the proposed method compared to other methods, we have chosen a larger
range. This function is defined as follows:

f (x) = −
n∑

i=1

sin (xi)

(
sin

(
i × x2

i

π

))2m

M = 10, i = 1, . . . , n, − 50 ≤ xi ≤ 50
(18)

Fig. 7 shows a three-dimensional image with greater resolution in the smaller range (−5.5).

Figure 7: Three-dimensional representation of the standard test function

For better comparison, the best coefficients have been extracted from other papers and we
have considered only the same initial population number for them. Fig. 8 shows the convergence
of the proposed algorithms after 10 different implementations. The method proposed in this paper
is compared with particle aggregation and genetics methods. As shown in the figure, the proposed
method has high speed and accuracy in finding the final answer.
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Figure 8: Convergence of the proposed algorithms to solve the proposed test function
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In studies, the effect of these modifications has been evaluated as quite useful so that the modified
method will be able to achieve better results in less time than the conventional method. Evaluation of
the final model of the algorithm shows that the proposed method is a very effective method in solving
large system problems that are often impossible to solve with conventional methods. In other words,
the value and efficiency of the proposed operators start from the point where the common operators
of the algorithm stop and are unable to move forward.

8 Conclusion

The present study proposed a structure with two control layers for energy management of multi-
owner MGs, determining the optimal power of generation and consumption sources in the Mga
as well as controlling their exchanges with one another and the main grid by using multi-company
systems. The developed multi-company system was implemented via a multi-dimensional harmony
search algorithm and presented for controlling the operation of islanded and grid-connected MGs. In
the proposed algorithm, a set of optimal solutions was taken into account, such that they fully satisfied
the technical constraints. The results of two MGs and a condensive load confirmed the performance
of the introduced structure in energy management of several MGs. The findings demonstrated that the
proposed multi-company system was economically effective as it effectively managed DG sources with
the minimum cost of operation. The proposed structure could precisely monitor, control and operate
the power system; it was also scalable, robust and easily re-adjusted. Thus, this system can be developed
for various needs and conditions to manage and control any structural of power systems by extending
the functions of companies and creating additional companies in the system. A developed algorithm
is proposed to solve the problem. The purpose of this algorithm is to optimally generate the units of
production in the microgrid, demand side management and power exchange with the global network.
The proposed algorithm is adapted to control the microgrid connected to the network by creating
a primary population with respect to independent and dependent variables and taking into account
the technical constraints proposed in this problem. The results show that the proposed optimization
algorithm can provide reliable and high-certainty solutions in an acceptable simulation time for energy
management system problems. The resulting results clearly demonstrate the effective usability of the
proposed structure in systems based on independent and network-connected microgrids.
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