
This work is licensed under a Creative Commons Attribution 4.0 International
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/ee.2022.022217

EDITORIAL

Key Optimization Issues for Renewable Energy Systems under
Carbon-Peaking and Carbon Neutrality Targets: Current States
and Perspectives

Bo Yang1, Zhengxun Guo1, Jingbo Wang1,*, Chao Duan2, Yaxing Ren3 and Yixuan Chen4

1Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming, China
2Department of Physics and Astronomy, Northwestern University, Illinois, USA
3Warwick Manufacturing Group, The University of Warwick, Coventry, UK
4The University of Hong Kong, Hong Kong, China
*Corresponding Author: Jingbo Wang. Email: JingboWang96@outlook.com

Received: 28 February 2022 Accepted: 14 April 2022

KEYWORDS

Carbon-peaking and carbon neutrality targets; renewable energy; optimization modeling; power fore-
cast; planning and dispatching; reliability and security analysis

1 Introduction

The United States, Japan, Canada, the European Union, and other developed countries and
regions have all formulated climate strategies and pledged to achieve net-zero CO2 emissions by 2050.
China, meanwhile, has announced through the “carbon-peaking and carbon neutrality targets” in
September 2020 that it aims to achieve “peak carbon use” by 2030 and “carbon neutrality” by 2060
[1]. According to statistical data from the International Energy Agency (IEA), Fig. 1 illustrates the
carbon intensity of electricity generation in various regions in the Announced Pledge Scenario (APS)
from 2010 to 2040 [2]. One can easily observe that each region aims to accomplish a sharp decrease in
the carbon intensity of electricity generation after 2020.

Thus far, traditional fossil fuels, e.g., coal, oil, and natural gases, are still the main resources of
power generation, which have witnessed a dramatic depletion. Besides depletion, greenhouse gases
that cause many environmental problems are produced as well [3]. Therefore, various renewable
energies (wind, photovoltaic, hydropower, biomass, geothermal, wave energy, etc.) have become the
most promising candidates for energy conservation and emission reduction [4], upon which Table 1
shows the installed renewable capacity of representative regions in 2020 [5]. In general, the current
energy structure and power generation models have achieved a rather dramatic transformation.

Due to the inherently strong intermittent and volatile characteristics of renewable energy, the
integration of large-scale renewable energy leads to a series of tricky issues for current power systems,
i.e., (a): Accurate modeling of large-scale integrated systems; (b): Precise power forecast of renewable
energy; (c): Optimal planning and dispatching of distributed generation; (d): Reliability and security
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analysis of renewable energy systems and grid and so on [5–7]. It is difficult yet crucial to undertake
some advanced techniques in the modern power system to ensure the power generation output can
be well optimized and completely sufficient. Hence, the exploitation and implementation of various
advanced techniques to deal with the consumption and optimization of renewable energy systems
are imperative. This paper provides a comprehensive and systematic statement regarding the above
problems, and proposes several promising perspectives for further study.
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Figure 1: Carbon intensity of electricity generation in various regions in APS from 2010 to 2040

Table 1: Installed renewable capacity of representative regions in 2020 (GW)

Items Hydropower Ocean energy Wind energy Photovoltaic Biomass Geothermal

China 370.2 0.005 282.0 258.3 18.7 0.02
EU 156.4 0.243 201.3 150.5 41.8 1.65
USA 310.6 0.020 117.7 73.8 12.0 2.58
World 1332.9 0.527 732.4 709.7 127.2 14.01

2 The Current States of Key Issues

The integration of large-scale renewable energy into the power grid is a necessary, effective, and
prospective solution for achieving both carbon-peaking and carbon neutrality targets. Nevertheless,
on account of requirements of security and stability, the feasibility of renewable energy access to the
power grid is usually evaluated by various simulation tests based on system models rather than actual
experiments. Thus, accurate modeling is regarded as the primary challenge, which provides the model
foundation for the real-time and reliable power forecasting of renewable energy. Furthermore, real-
time and reliable power forecasting gives data foundation for optimal planning and dispatching. In
addition, an optimal planning and dispatching scheme offers a data foundation for reliability and
security analysis of renewable energy systems and grids while it requires a comprehensive evaluation
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by reliability and security analysis before execution. Lastly, Fig. 2 explicitly demonstrates major
challenges and their inner relationships for renewable energy under carbon-peaking and carbon
neutrality targets.
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Figure 2: Major challenges and their inner relationships for renewable energy under carbon-peaking
and carbon neutrality targets

2.1 Accurate Modeling
Accurate modeling is critical for simulation analysis, optimal control, fault diagnosis, and life

prediction. For the sake of simplicity, it is generally transferred to the precise extraction problem of
several crucial model parameters [8]. So far, various modeling methods for different renewable energies
have been developed, which can be classified into the numerical method and artificial intelligence
method (including meta-heuristic algorithm, machine learning, deep learning, etc.). The former mainly
depends on mathematical equations and complex theory rather than numerous data, which is more
intuitive but difficult to solve. On the contrary, the latter significantly depends on huge amounts
of experimental data, which generally performs more accurately, with faster speeds, and powerful
robustness. Thus, the artificial intelligence method has aroused wide attention around the world. In
particular, references [9,10] thoroughly summarized and analyzed meta-heuristic algorithms-based
modeling techniques for different photovoltaic (PV) modules. An extreme learning machine was used
to implement rapid and precise modeling of PV modules [11] and solid oxide fuel cells [12] based on
measurement data under various operation conditions. Kahraman et al. [13] developed a novel power
density model of wind power plants by meta-heuristic prediction algorithm, which acquired higher
accuracy and stability.

2.2 Power Forecasting of Renewable Energy
Power forecasting is one of the key measures to overcome a series of issues (e.g., power fluctuation,

grid impact, system stability, etc.) caused by the large-scale renewable energy grid connection to
construct a power prediction system with high prediction accuracy and relatively complete functions.
In the past few decades, various prediction methods have been proposed based on different prediction
models including physical, statistical, probabilistic as well as intelligent models [14]. The physical
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model-based method significantly relies on numerical weather predictions and usually requires com-
plex computation procedures, which can obtain satisfactory performance in short-term predictions
[15,16]. Meanwhile, other methods are uniformly determined as data-driven techniques, which require
a large amount of historical data. Their validity and practicality have been excellently verified on
different time scales in wind farms and PV stations [17–19]. However, the current power forecasting
approaches of renewable energy are only validated and applied in some special operation conditions,
which should be further tested in various complex and changeable scenarios. Thus, it is necessary to
further improve the flexibility and adaptability of renewable energy power prediction modeling and the
accuracy of prediction results. The power prediction technology will be developed to power prediction,
probability prediction, and event prediction at multiple temporal and spatial scales.

2.3 Planning and Dispatching of Distributed Generation
The load demands and distributed generation are inversely distributed in many countries and

regions, such as China. Hence, the planning and dispatching of distributed generation are considered
common and complex problems [20]. Inspiringly, various planning and dispatching methods were
presented in recent years, which are classified into deterministic methods (e.g., dynamic programming
method [21], Lagrangian re-laxation method [22], etc.) and intelligence methods [23]. The objective
function of the deterministic method is generally designed as a quadratic cost function, which is
not suitable for its non-smooth and discontinuous search space caused by the inclusion of practi-
cal constraints. Therefore, their application is seriously limited. In addition, intelligence methods,
especially those based upon meta-heuristic algorithms, are wildly applied due to their high efficiency
and prominent optimization performance, such as simulated annealing (SA) algorithm [24], genetic
algorithm (GA) [25], particle swarm optimization (PSO) algorithm [26], differential evolution (DE)
algorithm [27], and the ant colony optimization (ACO) algorithm [23].

2.4 Reliability and Security Analysis of Renewable Energy Systems and Grid
The continued increase in the proportion of renewables improves the capacity and flexibility

of the grid. Nevertheless, their intermittency and volatility potentially threatens the reliability and
security of the grid or grids themselves [28,29]. Thus, it is crucial and significant to promote the
implementation of low-carbon development by way of accurately analyzing and properly addressing
the impact of renewable energy growth on reliability and security. Specifically, many researchers
undertook quantitative analysis by calculating the capacity credit of renewable energies [30–32].
Besides, Flynn et al. [33] comprehensively analyzed the effects on voltage, frequency, small signal as
well as transient stability when large-scale wind generations were connected to the grid.

3 Perspectives

Driven by the above key issues, three instructive perspectives are summarized as follows:

• The current modeling techniques mainly focus on the static modeling of a single object,
such as PV, hydropower, biomass, geothermal, fuel cell, wind turbine generator, etc. The
dynamic modeling of the integrated system needs to be further developed to comply with the
development trend and requirements of the new and clean grid.

• A reasonable and effective planning and dispatching schedule must ensure the safe, stable, and
clean operation of the grid, save the cost to the maximum extent and obtain the maximum
economic benefits at the same time. Hence, it can be transferred to a multi-objective problem,
which may be properly solved via multi-objective heuristic algorithms.
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• With the rapid growth of big data statistics, data-driven-based techniques (e.g., neural network,
machine learning, deep learning, digital twin, etc.) are regarded as efficient and promising
solutions for the above issues.
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