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ABSTRACT

One primordial consideration in residential ventilation standards is the comfort of provided to people living in
those habitations. This is highly dependent on the thermal and fluid flow conditions, the space geometry and so
on. Efficient designs may reduce the energy usage, making the buildings more sustainable over a longer period of
time. This study aims to investigate the impact of whole day thermal conditions on the fluid flow structure and
heat transfer phenomena, mainly natural convection, inside a partitioned attic-shaped configuration. The Finite
Volume Method is applied to solve the governing equations. Sinusoidal thermal boundary condition is applied on
the sloping walls to illustrate the characteristics of primary flow through daily cycles. A highly thermal conductive
partition was placed vertically at the middle of the cavity. Note that through the partition, only heat could freely
transfer between two fluid zones. Results show that, during day time, a stratified fluid flow structure is obtained,
which originates from the prevailing conduction heat transfer mechanism, while, for the night-time it changed
into a strong convection mechanism which significantly affects the flow structure. These results are particularly
important for understanding the fluid dynamics inside the attic shaped building and also designing new residen-
tial building.
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Nomenclature
AR: Aspect Ratio
Cp: Specific Heat (j=kg K)
g: Gravitational acceleration (m=s2)
H: Height of the attic (m)
h: Heat transfer coefficient (W=m2K)
k: Thermal conductivity (W=mK)
Nu: Nusselt Number
p: Pressure (Pa)
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P: Period of a cycle (sec)
Pr: Prandtl number
q: Convective heat flux (W=m2)
Ra: Rayleigh Number
T: Temperature (K)
t: Time (sec)
u, v: Velocity components (m=s)
W: Half horizontal length of attic (m)
x, y: Coordinates
u: Velocity (m=s)

Greek Symbols
a: Thermal diffusivity (m2=s)
b: Thermal expansion coefficient (1=KÞ
t: Kinematic Viscosity (m2=s)
q: Density (kg=m3)

Subscriptions
air: Air
A: Amplitude
eff: Effective
ref: Related to a constant temperature

1 Introduction

Free convection heat transfer mechanism within cavities has been considered as one of the significant
fluid flows induced from temperature gradient between the boundary and the interior and the eventuated
density difference in the working fluid. This issue has attained remarkable consideration throughout the
past decades particularly by engineers as it possessed a distinguished significance in houses thermal
design, nuclear devices, solar collectors and some other thermal systems. Some wide-ranging review of
the current issue can be met in existing literature [1–4]. Morsi et al. [5] numerically analyzed the effects
of roof structure and shape on the fluid flow and heat transfer phenomenon inside an enclosure. Their
study revealed that, the shape of the top dome has influenced convective heat and fluid flow
characteristics greatly. They also concluded that, circular and elliptical shapes lead to higher heat transfer
rates compared to others.

Number of studies has been carried out scrutinizing rectangular enclosure [6–11]. However, it is
essential to mention that attributed simulations of rectangular geometries cannot describe the whole
aspects of buoyancy driven flow inside the cavities with variable or inclined boundaries. Natural
convection inside the rectangular geometries has been studying for about four decades. However, the
issue of natural convection within triangular cavities or attic shaped spaces, which also happens in many
geophysical environments, has got less attention.

According to the climate situation, attic shapes in some buildings are subject to various thermal
conditions within a day (24 h). Therefore, the process of natural convection within a building should be
exactly exposed and then explained. As thermal and air flow conditions need to provide comfort
environment based on residential ventilation standards, the geometry, internal structure and insulation are
key causes for an appropriate design. Furthermore, energy usage for ventilation should be concerned for
the sake of attaining a higher energy efficient building.
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Tzeng et al. [12] provided the Numerical Simulation-Aided Parametric Analysis (NSAPA) method to
study the correlation between parameters and natural convection structures in the roof of the attic-shaped
enclosures which is useful to design energy-efficient houses. Flack et al. [13,14] accomplished various
experiments implementing isosceles triangular enclosures and using air as working fluid for different
aspect ratio, AR and Rayleigh number, Ra. The domain received hot/cold energy from horizontal base
edge and was cooled/heated from sloping boundaries. Thermal and air flow patterns were scrutinized as
well as local and average Nusselt number for inclined boundaries. In case of the base heating and
slopping walls cooling, it was concluded that the rise in Rayleigh number causes unstable laminar, natural
convection heat transfer when approaching to the critical Rayleigh in which the flow regime changes to
the turbulent free convection pattern. Kent [15] did a similar boundary conditions of Flack et al. [13,14].
He conveyed that in the case of base cooling and inclined walls heating, the air flow is stable when the
Rayleigh number is high.

Ridouane et al. [16] computationally applied the boundary conditions from Flack et al. [13,14]. The
authors figured out a well-suited agreement after comparing Nusselt number attained using numerical and
experimental methods. In their subsequent study, they attached baffles on the inclined walls [17] to
decrease the heat transfer from the inclined boundaries. Poulikakos et al. [18,19] studied night-time
thermal conditions of a triangular enclosure having insulated vertical boundary which represented a
complete attic-shaped cavity. Campo et al. [20] utilized Finite Element method to assess seven practical
compounds of boundary conditions containing heated/cooled walls as well as insulated edges to catch the
fluid flow regime and heated walls Nusselt number. There are many investigations which concentrated on
the stability of flow structure [21–24]. The authors stated the fluid flow pattern for various boundary
conditions while the single cell shaped at the core of the cavity is stable. They also developed some
transitional conditions, depending on the AR and Ra values, after which the cell is subdivided into
several minor cells.

Looking from the perspective of thermal system scheme, it can be significant to find out the
characteristics of fluid flow and heat transfer between two triangular spaces that are connected through
highly conductive walls. This conductive rim has substantial impact on the heat transfer of two fluid
regions. Former researchers have pointed out that to have a partition high conductivity; the free
convection flow was suppressed compared to non-partitioned space for laminar air flow pattern [25–28].

Nishimura et al. [28] investigated the impact of multiple thin rims on the free convection inside the
spaces having AR of 4 and 10 for Ra from 106 to 108 where the number of conductive rims varies
between one and four. The researchers stated that the mean Nusselt number has an inverse proportionality
with the number of rims. Anderson et al. [29] applied two partitioned walls at a rectangular field center
and noticed 20% descending in heat transfer rate compared to single embedded rim. By dividing the
rectangular enclosure into six separate zones attenuates heat transfer with a ratio of six [28]. Turkoglu
et al. [30] applied four partitions in a rectangular enclosure and concluded that the average Nusselt
number enhances with increase in Ra. However, the enclosure AR does not alter the average Nu to a
substantial value.

Although several studies have been allocated to study the natural convection within partitioned
rectangular or square enclosures, research on triangular spaces has received less attention. However,
regarding its priceless applications in various industrial and household fields, this issue has turned much
concentration to itself [31–36]. Attic space and heat transfer and air flow related issues are of highly
interested issues in this field. Having control over the heat transfer within the triangular enclosure by
embedding employing a partition, is still not frequent. Saha et al. [37] implemented a numerical method
in a triangular space with partition and suggested that the heat transfer flux between the zones is
enhanced for lower AR for a fixed Rayleigh number. Recently, Saha et al. [31–34] have analyzed a
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sudden and ramp heating/cooling by using scale analysis containing a numerical verification. They
performed the development of a transient airflow within the region presenting various stages of the
airflow pattern.

Very recently, Cui et al. [38] conducted a 3D numerical simulation of natural convection in a triangular
cavity with the top cooling and the bottom heating (all boundaries at constant temperature). They showed that
the fluid flow could be classified into three stages: An initial stage, a transitional stage and a quasi-steady
stage. Although their comprehensive modelling could be used as an authentic scenario in residential
buildings and they presented useful patterns of the flow, but it was limited to some specific time in a day,
which did not represent the scenario of a full cycle thermal behavior. A 2D version of this study was
conducted Sojoudi et al. [39] by adding a heat source on the bottom surface and a conducting partition
along the geometric centerline. Their study was also limited to some specific time of the day. In addition,
heat transfer and fluid flow due to non-uniformly distributed surface temperature on the sloping walls was
investigated by Saha et al. [40]. In that study a linearly varying sloping wall temperature was propounded
while the base boundary was heated uniformly. It was predictable that the inclined walls temperature in
the attic-shaped buildings might not be uniform due to sun’s position during the day. Again, this scenario
explained the airflow inside the attic in specific times of a day and also described how thermal conditions
could linearly change with respect to reference location on the roofs.

All above studies are limited to thermal behavior in some specific time of the day, which may provide us
heat transfer and fluid flow scenarios in the steady condition. In a real attic enclosure, however, the region is
exposed to different heating/cooling thermal conditions during each thermal period while few works have
been dedicated in investigating the periodic cooling or heating (effect of temperature variations during
day and night) [41–43]. The authors reported the transient hydrothermal phenomenon originated from
cyclic thermal forcing, which is imposed to the roofs.

In this investigation, we have applied FVT to study free convection inside a partitioned attic enclosure
under daily thermal condition on the roofs. Influence of Ra and AR are presented on the time-dependent
airflow and heat transfer patterns after mesh independency and time-step tests.

2 Description of Mathematical Model

The configuration of the geometry is given in Fig. 1a. Cavity half of the base wall and height are
considered as W and H, respectively. A fixed temperature of Tref was applied to the bottom wall. A
sinusoidal variation for temperature of inclined walls was considered in which Tref was the mean
temperature; TA was the temperature oscillation amplitude and P was the period of the applied boundary
condition. Six different points were selected inside the enclosure to capture the temperature time history
(Points are named from A to F). No slip condition was applied for all boundaries. The Rayleigh number
was defined as Ra ≈ 2gβTAH3/αυ. Four different Rayleigh numbers of 106, 105, 104 and 103, and three
AR of 1, 0.5 and 0.2 with the fixed Prandtl number of 0.72 were presumed for the current work.
According to Flack’s study [13,14], the upper limit of the Rayleigh number to remain in laminar regime,
is about 1.5 × 106 for AR = 0.5. Therefore, we considered lower than the critical values to keep the flow
laminar. Moreover, there were mathematical singularities near the sharp corners of the cavity. To avoid
these singularities corners were shortened by 5% cut and at determined shortened parts (Fig. 1) no slip
and insulated boundary conditions were applied. It is expected that such geometry modification would
not significantly alter the total flow progress [37–43].

3 Methodology

Under Boussinesq approximations, the principal equations to model the free convection inside a
triangular space containing the continuity, momentum and energy, took the following form:
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where u and v are velocity components of the fluid in x and y directions respectively, t is time, ν, ρ, β and α are
kinematic viscosity, density, thermal expansion coefficient and thermal diffusivity respectively, T is temperature
and g is the gravity acceleration. Initializing and utilizing the specified boundary conditions (described in
Section 2), Eqs. (1)–(4) are solved by employing SIMPLE scheme. QUICK scheme is applied to discretize
the advection term. A second order implicit time-marching scheme was also used for the unsteady term.
Central-differencing with second order precision was used to discretize the diffusion terms.

4 Grid Sensitivity Analysis and Validation

Numerical tests were conducted to assess the necessitous number of meshes and suitable time step size.
A representative grid distribution is presented in Fig. 1b. Three different aspect ratios were chosen for this
aim. Related assessments to the time-step and grid sizes are also depicted in Fig. 2. The temperature for point
C (Fig. 1) inside the cavity was calculated for different grid and time-step sizes for the whole-time simulation.
Obtained results showed that the mesh was suitable to resolve the airflow. Based on these computational
assessments, the temperature changes at the selected point using finer grid was less than 1.1%. Then, grid
with 360 × 75, 360 × 90 and 360 × 120 were chosen for AR = 0.2, 0.5 and 1, respectively. The time-step
size is also selected to be 0.5s for all modellings. By verifying the numerical method, the base wall was
considered as an adiabatic, but the inclined sidewalls were reserved at constant temperatures. The
apparatus used in [13,14] had water tanks with fixed temperatures at the roofs and an adiabatic base wall.
The tanks were linked together, and a centrifugal pump was used to circulate the water through the tanks
and reservoirs. One tank was heating using heating coils, but the other one was remained at the room
temperature or was filled with ice. For a triangular space with AR = 1 without middle partition while
Ra = 1.5 × 107 and Pr = 0.72, numerical results of the local Nu for the cold inclined wall was compared
with that of Flack [13]. Fig. 3a depicts a good agreement between the current numerical method and
former experiments and the maximum error between our numerical simulations and the experimental

Figure 1: (a) Physical model of the problem, (b) Mesh distribution
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work is less than 1.5%. Fig. 3b also depicts the comparison of dimensionless temperature for the normal
midline using the current numerical simulation and the one for [13] with respect to normalized y.

5 Results

Since the initial conditions for the air were assumed to be at 295 K and stationary, there was a starting
progression of the airflow reaction. Numerically three full cycles were evaluated to reduce the influence of
initial progressing flow. It was observed that starting influence for the present numerical method were almost
minor and the airflow reaction in the last period was similar to that of former period. The outcomes of the last
period (3rd period) are illustrated in the subsequent analysis.

5.1 Transient Temperature and Flow Response
Due to the existing symmetry, the temperature variation at three different points is depicted in Fig. 4 for

AR = 0.5 and Ra = 105. As seen from Fig. 1 these points were located at: A = (–0.5, 0.01), B = (–0.4955,
0.2410), and C = (–0.01, 0.25). For temperature time history of Point A, it was obvious that the thermal
reaction for periodic thermal forcing of sloping boundaries was 0.1P later for all periods and it could be
attributed to the thermo physical characteristics of the air and the mean distance of the point and
boundaries. Moreover, the value of temperature variation was higher at midnight time. However, it was
not considerable during the all-day with regard to other points and this was related to the proximity of
this point to a constant temperature boundary (Base wall, Tref = 295 K). Point B was very close to roof
and not only there was no lagging time of temperature change, but also in comparison with the other
points there was the most temperature amplitude during all day. At Point C and very close to the highly
conductive partition, later response of approximately 0.3P to periodic thermal forcing was observed and
higher variation of temperature also reported for daytime rather than midnight time. The other significant
result of Fig. 4 was the absence of temperature perturbation near midnight time that was reported by Saha
et al. [33] for non-partitioned triangular region. In other words, application of highly conductive partition
subsequently suppressed the temperature perturbation and eliminated the disturbances of temperature at
specified points and at other locations of the cavity for all cycles.

Fig. 5 illustrates horizontal velocity component and temperature profiles evaluated from S line (the
vertical line crossing point A and is normal to the bottom edge) during the last cycle, 2P < t < 3P. For
t = 2.1P it was perceived that a two-layer structure of the horizontal velocity component was formed, and
the velocity value became higher near the inclined wall. Where the bottom layer became oriented to the
left corner the direction of top layer was oriented to the partition depicting a rotating cell within the left
part of the attic space. As the time progressed, the values of horizontal velocity component at top and
bottom layers approached to zero in a time that t was about 2.5P which displayed the end of the daytime.
After that, the rotation direction was changed, and top velocity component again had higher value and
became oriented to left side while the bottom layer developed to the right side. During the whole cycle,
for t = 2.7P the highest velocity was found at top and bottom layer (with opposing directions). This fact
confirmed that the rotating velocity of the cell was higher at midnight time rather than day time of the
cycle. For temperature profile, it was perceived that during daytime, the air temperature increased from
bottom to the inclined wall (from t = 2.1P to t = 2.4P). After that the day time finished, one-layer
temperature profile changed into two-layer. The temperature first increased from bottom up to the end of
the first layer, then it reduced to bottom temperature at t = 2.7P. After this reduction, temperature
enhanced up to the inclined boundary. This process continued up to t = 2.9P and then the temperature
profile formed one-layer profile reaching to the start-up time condition.

5.2 Effect of Rayleigh Number
Fig. 6 displays stream function and isotherm contours at t = 25P, 2.5P, 2.75P and 3P for different

Rayleigh numbers for fixed AR = 0.5. It was evident that for Ra = 103 two cells were shaped beside the
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roofs for all day and night and suffered less deformation during the cycle. Size of the rotating cell at day and
midnight time was larger than the other times. Temperature contours showed that the heating and cooling
pattern during the day and the night time were analogous. For Ra = 104, the average values of stream
functions increased due to stronger natural convection effect and again two counter rotating cells were
formed at the cavity both sides. For the day time stratified temperature contour was observed that was
resulted from heating effect of slopping boundaries. Nevertheless, for the nighttime, especially when t
reached to 3P, temperature contour depicted a rising plume near bottom wall and the partition on behalf

Figure 2: Mesh size and time step size selection tests; (a–b) Temperature of point C for AR = 0.2, Ra = 106,
(c–d) Temperature of point C for AR = 0.5, Ra = 106 (e–f) Temperature of point C for AR = 1.0, Ra = 106
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Figure 3: a) Distribution of the local Nu along cold wall boundary condition, comparison with experiment
b) Normal midline temperature of the cavity

Figure 4: Temperature of Points at AR = 0.5, Ra = 105 a) Point A b) Point B c) Point C
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of stronger heating effect of bottom wall than the inclined walls. With further increase in Ra, this temperature
pattern compromised faster, near t = 2.75P for Ra = 105 resulting balanced distribution of temperature till the
end of the nighttime (t = 3P). When Ra value reached to 106, average values of the stream function increased,
and the elongated cells were formed that affected the entire region of both thermally coupled spaces.
Stratified temperature contour was perceived for the day time which can be attributed to the strong
heating effect of the inclined walls when natural convection was inactivated. At midnight when Ra was
106, due to stronger effect of natural convection, two rotating cells were formed at each sides of the
cavity. More cells were shaped when Ra is high, and this fact needs to be considered in thermal design of
attic enclosures. Here, it should be mentioned that in presence of vertical partition we didn’t observe any
asymmetric behaviour of the flow within the cavity for any considered Ra. However, for non-partitioned
cavity asymmetric, temperature and stream function contours had been reported [33].

5.3 Effect of Aspect Ratio
In Fig. 7, effects of aspect ratio on flow and temperature fields in the cavity during a cycle has been

scrutinized and presented. Isotherm and stream function contours are reported for Ra = 106. More cells

Figure 5: Horizontal Velocity profile (left) and Temperature profile (right) along line S (the vertical line
crossing point A and is normal to the bottom edge) for AR = 0.5, Ra = 106
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were shaped for AR = 0.2 due to proximity of base wall and roofs and most of them were shaped during the
night time. Stratified temperature contour was reported for day time when the conduction heat transfer
became dominant. With the increment of AR, number of cells formed during night time reduced to two
cells at each side with shortened length regarding lower AR. For AR = 1 identical phenomenon occurred.

5.4 Heat Transfer Phenomenon within the Region
Average Nu was evaluated as following:

Nu ¼ heff H

kair
(5)

Where the efficient heat transfer index was introduced as:

heff ¼ q

TA
(6)

Here q is convective heat flux transferring across a boundary.

Fig. 8 illustrates the average Nusselt number at different Ra and AR = 0.5 for right and, bottom walls
and the partition. It was observed that increase in Ra, caused the average Nu of right wall to possess
higher amplitude due to higher temperature difference of sinusoidal thermal forcing boundary and
bottom wall (See Fig. 8a). Furthermore, the amount of transferred heat to the outside of the cavity
through inclined walls at night time was higher when it was compared to the amount of heat
transferred into the cavity during the day time. This issue exhibits the prevailing effect of natural
convection to conduction heat transfer mechanism for present conditions. The same pattern occurs for
bottom wall (See Fig. 8b), however, this was effective in transferring heat into the cavity at night
time. This way the energy is conserved.

Throughout the day time, equal amount of heat was transferred through the partition for lower Rayleigh
numbers, however, for the night time higher amount of heat was transferred for higher Ra. The average Nu
values for the partition were very low compared to other boundaries and this fact happened due to the
symmetry of the cavity (See Fig. 8c).

Fig. 9 represents average Nusselt number at different AR with Ra = 106 for right and bottom walls and
the partition. Because of lower aspect ratio, higher amount of Nu amplitude was perceived for right wall. This
can be attributable to the nearness of the boundaries with different temperature during the night and the day
time. In Fig. 9b bottom wall average Nu is presented and it is clear that, when AR = 0.2, the same amount of
heat transferred into the media at day time was lower than the transferred amount to the outside during the
night time. Furthermore, it was noticed that for higher AR, the amount of heat flux throughout the day time
approximated zero and with the increase in AR a lagging time was influenced in the average Nu variation.
For the partition at various AR, this lagging time is obvious in Fig. 9c.

Fig. 10 displays the comparison of average Nu in partitioned and non-partitioned cavity at Ra = 106 and
AR = 0.5 for right and bottom walls. Results suggested that setting the partition could reduce the amount of
average Nu amplitude for both right and bottom walls. This went back to the thermal interaction of the two
thermally coupled systems. Such a kind of suppression should be focused when carrying out a thermal design
of an attic space.

6 Conclusions

Numerical experiments using finite volume technique were accomplished to study the free convection
inside attic spaces under daily thermal forcing condition on inclined walls and a highly conductive partition
located at the middle of region. The influence of Ra and aspect ratio AR on the unsteady flow development
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Figure 6: (continued)
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Figure 6: (continued)
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and heat transfer for a fixed Prandtl number of 0.72 was also presented. Important findings of present study
can be drawn as follows:

� Using highly conductive partition can suppress the temperature perturbation and eliminates the
disturbances of temperature within the cavity for all cycles.

Figure 6: Snapshots of stream function (kg/s) (Left) and temperature (K) (Right) contours for different times
and Rayleigh numbers at AR = 0.5
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Figure 7: (continued)
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Figure 7: Snapshots of stream function (kg/s) (Left) and temperature (K) (Right) contours for different times
and aspect ratios at Ra = 106
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Figure 8: Average Nusselt number at different Ra and AR = 0.5 for a) Right wall b) bottom wall c) Partition
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Figure 9: Average Nusselt number at different AR and Ra = 106 for a) Right wall b) Bottom wall c) Partition

Figure 10: Comparison of average Nu for partitioned and non-partitioned cavity at Ra = 106 and AR = 0.5 a)
Right wall b) Bottom wall
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� For daytime stratified temperature contour was observed that resulted from heating effect of slopping
boundaries but for nighttime, especially when t reached to 3P, temperature contour showed a rising
plume at the proximity of bottom wall and the partition due to stronger heating effect of bottom wall
than the inclined walls.

� More cells were shaped for AR = 0.2 due to the proximity of base and roofs and most of them shaped
at the nighttime.

� The equal amount of heat was calculated for day and nighttime for lower Ra, but for higher Ra, heat
flux rate of nighttime was much higher than that of daytime.

� In presence of vertical partition, symmetric behaviour of the flow was obvious for all Ra and times
according to temperature and stream function contours.

� For lower aspect ratio, higher amount of Nu amplitude was seen for right wall, this issue was ascribed
to the nearness of the boundaries with different temperature during the night and daytime.

� By the increase in AR, a lagging time of 0.1P was influenced on the average Nu variation.

� The partition suppresses the amount of average Nu amplitude for both right and bottom walls
compared to non-partitioned cavity.
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