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ABSTRACT

Because of the randomness and uncertainty, integration of large-scale wind farms in a power system will exert
significant influences on the distribution of power flow. This paper uses polynomial normal transformation meth-
od to deal with non-normal random variable correlation, and solves probabilistic load flow based on Kriging
method. This method is a kind of smallest unbiased variance estimation method which estimates unknown infor-
mation via employing a point within the confidence scope of weighted linear combination. Compared with tradi-
tional approaches which need a greater number of calculation times, long simulation time, and large memory
space, Kriging method can rapidly estimate node state variables and branch current power distribution situation.
As one of the generator nodes in the western Yunnan power grid, a certain wind farm is chosen for empirical
analysis. Results are used to compare with those by Monte Carlo-based accurate solution, which proves the valid-
ity and veracity of the model in wind farm power modeling as output of the actual turbine through PSD-BPA.
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1 Introduction

With the large-scale integration of renewable energy sources such as wind power and photovoltaics (PV)
into the grid, there are more and more random factors in the operation of power system, which intensifies the
uncertainty of system operation [1]. The calculation of probabilistic load flow (PLF) can take into account the
influence of random disturbance or uncertain factors in the operation of power system on steady state
operation of system, comprehensively evaluate the weak points and potential risks in the operation of
system, and provide valuable information for planning and scheduling department to make decisions,
which has always been a focus of research [2,3].

The common calculation methods of PLF include simulation methods and analytical methods. In
simulation methods, Monte Carlo simulation (MCS) method [4] owns high accuracy when the sampling
scale is large enough, but it takes a long time, so it is usually used as a standard method to evaluate the
accuracy of other PLF methods. In analytical methods, convolution method performs convolution
calculation according to the probability distribution function of input random variable and obtains the
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probability distribution characteristics of output random variable [5], which concept is clear but calculation
burden is large. In order to solve the above problems, an approximate method is introduced, that is, on the
premise of not reducing the accuracy, a mathematical model with a small amount of calculation and a
calculation result similar to the actual simulation result is constructed to replace the actual simulation
program. Moreover, common approximate models include polynomial response surface method (RSM)
[6], artificial neural network (ANN) model [7], and support vector machine (SVM) function model [8],
etc. However, polynomial response surface model has a lower fitting degree for nonlinear problems; the
characteristics of SVM model varies with its used functions; ANN model is a “black box” model, which
lacks strict statistical test and is easy to fall into local extremum. Kriging model is a kind of smallest
unbiased variance estimation method estimating the unknown information, which can achieve global
approximation in the design space and has high fitting accuracy [9,10].

Both analytical and approximate methods assume that random variables in probabilistic power flows are
independent of each other. When it deals with random variables with correlation, new steps are needed to
solve the correlation problem of random variables. Haesen et al. [11] used Nataf inverse transformation to
predict wind speed to obtain a wind speed series with correlation. Liu et al. [12] transformed
multidimensionally correlated non-normal random variables into independent normal random variables
based on marginal probability distribution. Bin et al. [13] proposed a simulation method of correlated
random variables based on Copula theory and rank correlation coefficient based on cumulative
distribution function of random variables. The above correlation modeling methods all need to know the
probability distribution function of random variables, but for non-normal multi-dimensional random
variables, it is difficult to give a complete joint probability distribution [14].

Kriging is a regression algorithm for spatial modeling and prediction (interpolation) of stochastic
process based on covariance function. This paper proposes a combined Kriging model and polynomial
normal transformation (PNT) method to calculate PLF of wind farm access to system. Firstly, PNT is
used for wind speed prediction to obtain wind speed sequences related to wind turbine clusters, while
output model of wind turbine cluster is established. This method does not need to know the probability
distribution function of input random variable, but only needs to use polynomial normal transformation
according to its digital characteristics to quickly and accurately obtain relevant wind speed sequences.
Then, taking the output of PNT as input, relationship between system response and random input is
established by Kriging model, thus probability statistics of system response can be calculated. Finally, a
wind farm in Yunnan power grid is taken as an example to verify the effectiveness, accuracy, and rapidity
of the proposed method.

2 Polynomial Normal Transformation

In this paper, PNT is adopted to transform the non-normally correlated multi-dimensional random
variables into the normal uncorrelated variable space, take sampling points in the normally uncorrelated
variable space, and then inversely transform these sampling points to the original non-correlated variable
space. This transformation-inverse transformation process enables the method to deal with the PLF
problem with correlated random variables [15,16].

Common polynomial normal transformation methods mainly include third-order polynomial normal
transformation (TPNT) [17], fifth-order polynomial normal transformation (FPNT) [18] and ninth-order
polynomial normal transformation (NPNT) [19]. Considering the calculation accuracy and complexity of
polynomial normal transformation, this paper employs the most widely applied third-order polynomial
normal transformation (TPNT).

Assume a set of correlated multidimensional random variables, denoted X ¼ x1; x2; � � � ; xm½ �T, where
the mean value and standard deviation of xi is lxi and rxi , and the correlation coefficient matrix of these
variables is expressed by
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RX ¼

1 qx1; x2
qx2; x1 1

� � � qx1; xm� � � qx2; xm
..
. ..

.

qxm; x1 qxm; x2

..

.

� � � 1

2
6664

3
7775 (1)

where qxi; xj represents the correlation coefficient between xi and xj.

Besides, xi can be expressed as a third-order polynomial of a standard normal distribution vector, i.e.,

xi ¼ a0;i þ a1;izi þ a2;iz
2
i þ a3;iz

3
i (2)

where a0;i, a1;i, a2;i, and a3;i denote polynomial coefficients.

The polynomial coefficient can be obtained from the probabilistic weighted moment (PWM) of random
variable. Suppose PWM of random variable xi is bic, and its unbiased estimation [20] can be expressed as

bic ¼
1

n

Xn
k¼cþ1

k � 1ð Þ k � 2ð Þ � � � k � cð Þ
n� 1ð Þ n� 2ð Þ � � � n� cð Þ xik (3)

The linear moment of xi can be obtained from PWM of the variable, as follows [21]

�1;i ¼ b0;i
�2;i ¼ 2b1;i � b0;i
�3;i ¼ 6b2;i � 6b1;i þ b0;i
�4;i ¼ 20b3;i � 30b2;i þ 12b1;i � b0;i

8>><
>>: (4)

The coefficient of the polynomial can be obtained according to the linear moment of xi, as follows

a0;i ¼ �1;i � 1:81379937�3;i

a1;i ¼ 2:25518617�2;i � 3:93740250�4;i

a2;i ¼ 1:81379937�3;i

a3;i ¼ �0:19309293�2;i þ 1:574961�4;i

8>><
>>: (5)

The above transformation transforms non-normal random variables into normal random variables. In
order to ensure that the correlated coefficient matrix of random variables remains unchanged in the
transformation process, correlated coefficient matrix RZ between variables that obey normal distribution
needs to be further given by

RZ ¼

1 qz1;z2
qz2;z1 1

� � � qz1;zn� � � qz2;zn
..
. ..

.

qzn;z1 qzn;z2

..

.

� � � 1

2
6664

3
7775 (6)

The detailed relationship between RX and RZ can be referenced in literature [22], as follows

6a3;ia3;jq
3
zi;zj

þ 2a3;ia3;jq
2
zi;zj

þ a1;i þ 3a3;i
� �

a1;j þ 3a3;j
� �

qzi;zj

þ a0;i þ a2;i
� �

a0;j þ a2;j
� �� qxi;xjrxirxj � lxilxj

h i
¼ 0

(7)

where qzi;zj is the correlated coefficient between zi and zj; rxi and rxj denote the standard deviation of xi and xj,
respectively; lxi and lxj mean the expected value of xi and xj, respectively.
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Solve the above unary cubic equation and select the root that satisfies �1 � qzi;zj � 1, qxi;xjqzi;zj � 0 as
the value of qzi;zj .

At this time, Z is still correlated, so it needs to be transformed into an independent normal distribution by
using orthogonal transformation, as follows

Z ¼ LU (8)

where the lower triangular matrix L is the Cholesky decomposition of correlation coefficient matrix
RZ : RZ ¼ LLT ; U ¼ u1; u2; � � � ; un½ �T is a random variable subject to independent normal distribution.

Substitute Eq. (8) into Eq. (2), the original space X can be obtained. The calculation process of TPNT
prediction of wind farm groups related to wind speed can be referred to Appendix A.

3 Kriging Model Method

3.1 Modelling of Kriging
Kriging model was proposed by Krige, a South African geologist, in 1951, which was first applied to

geostatistics. Subsequently, Sack et al. [23] applied it to engineering design, and Remero et al. [24]
applied it to structural reliability analysis in 2004. Since then, the application field of Kriging model has
been explored and studied continuously.

As an approximate model, the essence of Kriging model instead of actual simulation program is to
approximate the relationship between system response and design variables with Kriging model, which is
composed of a parametric model and a non-parametric model. It is more flexible than the simple
parametric model and simultaneously overcomes the limitation of non-parametric model in processing
high-dimensional data [25]. Kriging model simulates a certain point with the help of known information
around this point, so it establishes a model related to known information, which requires few parameters
to be determined, small calculation amount, and simple model. In addition, the estimation model can be
determined through a small number of sample tests.

Kriging model assumes that the actual relationship between system response and random variables can
be expressed as

y xð Þ ¼ f T xð Þbþ z xð Þ (9)

where b denotes the regression coefficient; f xð Þ is the regression model; z xð Þ is a random process, which
obeys the normal distribution N 0; r2ð Þ, but the covariance is non-zero. The covariance of z xð Þ can be
expressed as follows

cov z xið Þ; z zj
� �� � ¼ r2R h; xi; xj

� �
(10)

where R h; xi; xj
� �

is the correlation function between sample points xi and xj; h is the relevant parameter.

The commonly used regression models and related functions are listed in Appendices B and C
respectively. Research shows that the type of regression model does not play a decisive role in the
accuracy of simulation [26]. In order to simplify the calculation process, the regression value f(x) is set
as 1. The existence of z xð Þ is the fundamental reason why Kriging model is different from the response
surface, and it plays a decisive role in simulation accuracy of model. In this paper, Gaussian correlation
equation [27] is employed as

hk ; xi; xj
� � ¼ exp �

XnN
k¼1

hk xik � xjk
� �2 !

(11)
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where nN denotes the number of random variables; xik and x
j
k are the kth components of xi and xj; hk means the

correlated parameter.

After the regression model and correlation function are determined, the expression of approximate
response ŷ xð Þ of y xð Þ concerning point x to be measured can be established. The known training sample
is denoted as S ¼ x1; x2; � � � ; xm½ �T, its actual response value is Y ¼ y1; y2; � � � ; ym½ �T, and m is the
capacity of training sample. Then the estimated value of any point x to be measured is

ŷ xnewð Þ ¼ f xnewð ÞTb̂þ r xnewð ÞR�1 Y � Fb̂
� �

(12)

where f xnewð Þ is the regression quantity; R is a symmetric matrix consisting of R hk ; xi; xj
� �

with a diagonal
element of 1 and a size of m� m; F is the regression matrix F ¼ f ðx1½ Þ; f x2ð Þ; � � � ; f xmð Þ�T; r xnewð Þ is the
correlation vector between measured point and sample point, which can be expressed as

r xnewð Þ ¼ R h; xnew; x1ð Þ;R h; xnew; x2ð Þ; � � � ;R h; xnew; xmð Þ½ � (13)

The maximum probability estimation factor is expressed as

b̂ ¼ FTR�1F
� ��1

FTR�1Y (14)

The correlated model needs to solve the relevant parameter h, and according to the maximum probability
estimation, it can be obtained as

r̂2 ¼ 1

m
Y � Fb̂
� �

R�1 Y � Fb̂
� �

(15)

The relevant parameter h is determined by solving an optimization problem as follows

max
h>0

�m ln r̂2
� �þ ln detRð Þ

2
(16)

At this point, Kriging model is established.

3.2 Case Studies of Kriging Models
The numerical example of Eq. (17) is used to verify the simulation effect of Kriging model. In the

sampling space, four groups of training sample points with scales of 15, 25, 35, and 45 are respectively
taken, which are substituted into Eq. (17) to obtain four sets of response values, and Kriging model is
constructed. Zhu et al. [28] proposes a method to solve Kriging model, in which two main functions are
dacefit and predictor. The function dacefit establishes Kriging model based on sample points, while the
function Predictor calculates the response value of the measured points based on Kriging model.

When constructing Kriging model, it is necessary to give the initial value theta0 of the relevant
function parameter h in Eq. (13), and the lower limit lob and upper limit upb of the search range, and
their length is equal to the number of design variables. The initial value and search range of h in this
example are shown in Tab. 1.

Table 1: The parameter settings of Kriging model

theta0 10 10 10 10

lob 0.1 0.1 0.1 0.1

upb 20 20 20 20
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y1 ¼ x21 þ x22 � x3x4
y2 ¼ 2x21 � x22 þ x23 � x4
�1 � xi � 1; i ¼ 1; 2; 3; 4

8<
: (17)

After the model is established, the accuracy of the model should be tested. Randomly generate 100 sets
of sample points to be tested in the sampling space, and substitute them into Kriging model and Eq. (17) to
obtain the corresponding predicted and actual values. Their relative error is provided in Tab. 2, which shows
that the established Kriging model owns good approximate accuracy.

Fig. 1 indicates the mean relative error between the predicted value and the actual value of Kriging
model. It can be seen from that the accuracy of Kriging model is related to the size of training sample.
The larger the training sample size is, the higher the accuracy of Kriging model will be.

Table 2: The relative error of Kriging model

Sampling size Relative error term Relative error/(%)

Maximum Minimum Mean

15 y1 5.2238 2.4854 3.6741

y2 4.1344 2.1882 3.0683

25 y1 4.5133 1.9987 2.6661

y2 4.1756 1.5281 2.1754

35 y1 2.1351 0.3854 1.0533

y2 1.7365 0.1567 0.5777

45 y1 0.5431 0.0737 0.1787

y2 0.1145 0.0325 0.1030

Figure 1: The mean of relative error between predictive value of Kriging model and real value
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4 Calculation Steps

In the deterministic power flow calculation, node injection power equation and branch power equation
[29] of system can be expressed by

X ¼ f Wð Þ
L ¼ g Xð Þ ¼ g f Wð Þð Þ

�
(18)

where W is the power injected into the node; X is the node voltage; L is the branch current; f is the power
equation injected into the node; g is the branch power equation.

This paper defines output of wind turbine clusters in the node injected power as input variable and the
amplitude of node voltage and the power of branch as output variable. When the input variable is a random
variable, the output variable becomes a random variable. PLF problem is to obtain the probability distribution
or digital characteristics of output variable when input variable is random.

During calculation, the sample value of output of n groups of wind turbine clusters is firstly generated by
TPNT, and then the deterministic power flow is calculated by employing sample value of each group to
obtain the corresponding node voltage and branch power of n groups, and then Kriging model is
established [30]. Then, TPNT generates output sample values of N groups of wind turbine clusters, and
Kriging model is used to obtain the estimated values of node voltage and branch power corresponding to
N groups, calculate their probability statistics and compare them with the exact solution based on Monte
Carlo method.

The calculation process is shown in Fig. 2 while the basic steps are as follows:

1. Input basic data: the number of wind turbine clusters m, the training sample size N , the sample size n
to be tested;

2. TPNT method is used to generate a series of wind speed sequences with a scale of n� m and
calculate the output of the corresponding wind turbine clusters;

3. The node voltage and branch power corresponding to N groups are calculated by deterministic power
flow calculation, and Kriging model is established;

4. TPNT method is used to generate a set of wind speed series with a scale of N � m, and the
corresponding output of wind turbine clusters are calculated;

5. The estimated values of node voltage and branch power corresponding to N groups are obtained by
Kriging model;

6. The probability statistics of Kriging model results are calculated and compared with the exact
solution based on Monte Carlo method.

5 Case Studies

Based on historical wind speed data of an actual wind farm in Yunnan Power Grid, Kriging model is
established, and the power flow calculation is performed on PSD-BPA through command line
programming [31]. All case studies are undertaken by Matlab 2019a through a personal computer with
IntelRcoreTMi7 CPU at 2.0 GHz and 32 GB of RAM. Monte Carlo method runs 5000 times to obtain
near the wind farm node voltage and branch power of statistical information as accurate values, and
50 times in comparison with the results of Kriging model simulation input.

This wind farm has four wind turbine clusters, with installed capacity of 49.5 MW, 42 MW, 34.5 MW,
and 42 MW respectively, and total installed capacity of 168 MW, operating with constant power factor of
0.95. Fig. 3 is a regional grid structure diagram of wind farm access system, which is connected to
220 kV main network in the 220 kVarea by Node 2 through 110 kV line of two LGJ-300 conductors [32,33].
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Fig. 4 shows the probability density curve of historical wind speed sequences and TPNT generated wind
speed sequences (wind turbine cluster 1 and wind turbine cluster 2 are taken as examples). It can be seen from
that wind speed sequences generated by TPNTare very close to the measured historical data, which indicates
that TPNT method is effective.

Suppose historical wind speed and parameters of marginal probability distribution function of wind
speed generated by TPNT are gar and gat, respectively. The relative error index of the parameters of
marginal probability distribution function can be expressed by Eq. (19)

fa ¼
gat � gar

gar

				
				� 100% (19)

where gar and gat are the historical given value of parameter a and the fitting value of TPNT method,
respectively.

Start

Set the number of wind turbine clusters, 
the training sample size, and under test 
sample size to m, n, and N, respectively.

According to Eq. (2), generate a set of 
training sample related wind speed 

sequence S via TPNT, and establish the 
output model of wind turbine clusters.

Calculate basic power flow  to obtain its 
true response Y.

Determine the regression quantity, 
correlation function and related parameters;   

construct Kriging prediction model 
according to Eq. (12).

Generates a set of related wind speed series X of 
samples to be tested applying TPNT according 

to Eq. (2), and establish the output model of 
wind turbine clusters.

Substitute the sequence of the sample to be 
tested into Kriging prediction model of Eq. (12) 

to obtain the estimated output response .

Calculate the probabilistic and statistical 
information of Y and y.

Compare and analyze statistical 
results

End

Generate a set of training sample 
related wind speed sequence via 

TPNT  based on Eq. (2), and 
establish the output model of wind 

clusters.

Calculate output response y
employing Monte Carlo power 

flow calculation method.

>

Y

>

Figure 2: Calculation flow chart
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In order to facilitate the calculation of Eq. (19), probability distribution model of wind speed adopts
Weibull distribution that fits well with the actual statistical distribution of wind speed [34], and its
probability distribution function can be expressed as

Wind farm grid 
connection point

Branch 1

220 kV110 kV

115.9 kV
Node 2

225.2 kV
YS

116.0 kV
Node 1

115.6 kV
SYB

114.3 kV
YN

115.2 kV
LD

114.5 kV
QN

114.7 kV
TYB

227.4 kV
LJ

115.3 kV
LG

227.9kV
HP

Branch 3

Branch 2

116.5 kV
HJP

116.5 kV
YJ526.7 kV

TA

529.3 kV 
Hp

500 kV

115.0 kV
GDB

#4 Wind cluster

#1 Wind cluster

#3 Wind cluster

#2 Wind cluster

115.6 kV
hydropower 

station

115.8 kV
hydropower 

station

Figure 3: Structure diagram of regional grid after accessing wind farm

Figure 4: Probability density curves of wind speed. (a) Wind turbine cluster 1, (b) Wind turbine cluster 2
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f vð Þ ¼ k

c

v

c

� �k�1
exp � v

c

� �k
 �
(20)

where v represents wind speed; k and c are the shape parameters and scale parameters of Weibull
distribution, respectively, which can be approximated by the expected value of wind speed lv and
standard deviation rv:

k ¼ rv=lvð Þ�1:086 (21)

c ¼ lv
� 1þ 1=kð Þ (22)

where � represents the gamma function.

The accuracy of correlation model established by TPNT method can be evaluated through Eq. (19), and
calculation results are shown in Tab. 3. It can be seen that the correlation samples generated by TPNT have
high accuracy in fitting the parameters of marginal probability distribution function of input random
variables, and the sample quality keeps improving with the increase of sampling scale.

The voltage amplitude of two nodes near wind farm and power of three branches are selected as the
observed values, which are numbered as Node 1, Node 2, Branch 1, Branch 2, and Branch 3,
respectively, as shown in Fig. 3.

According to the historical wind speed data of 4 wind turbine clusters, a set of relevant wind speed
sequences are generated from TPNT to establish wind turbine cluster output model, which is connected to
the system for 50 basic power flow calculations to obtain the corresponding 50 voltage groups of Nodes
1 and 2, along with the response values of active power of Branch 1, Branch 2 and Branch 3. Kriging
model is constructed according to 50 groups of response values, and 5000 groups of node voltage and
branch power are generated by the constructed Kriging model, and the statistical results of 5000 Monte
Carlo simulations are compared and analyzed to verify the validity, accuracy, and rapidity of Kriging model.

In Fig. 5, the probability density distribution curve of the voltage amplitude of Node 1 and Node 2 are
obtained by Kriging model, and compared with the simulation result based on Monte Carlo method. As can
be seen from Fig. 5, the results of 50 times Kriging model method have a high degree of fitting with
5000 times MCS, indicating that Kriging model can well simulate system output.

Table 3: Relative error index of Weibull distribution parameters of wind speed

Sampling size Historical
wind speed fk%

TPNT generated
wind speed fc%

200 4.8312 1.4190

400 4.1386 1.3991

600 3.4724 1.2650

800 1.1335 0.5818

1000 0.7700 0.4445

3000 0.5292 0.3393

5000 0.1890 0.3285

7000 0.1590 0.1915
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Fig. 6 compares the probability density distribution of active power of three branches obtained by two
methods. The probability density curve obtained by Kriging model fits the histogram obtained by MCS well.

Figure 6: Probability density distribution of the related branches’ power flow under Kriging and recorded
history datum. (a) Branch 1, (b) Branch 2, (c) Branch 3

Figure 5: Probability density curves of the related bus voltages under Kriging and recorded history datum.
(a) Node 1, (b) Node 2
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Let the simulation results of Kriging model and Monte Carlo method be nmc and nkrig, respectively, and
the relative error between them is:

e ¼ nmc � nkrig
		 		

nmc
� 100% (23)

Tab. 4 compares mean value and standard deviation of the grid related node voltage and branch power. It
can be seen from that the mean value and standard deviation of the Kriging model results and the relative
error between the exact value are below “0.2%” and “3%”, respectively, which once again verifies the
high accuracy of Kriging model.

Tab. 5 shows the simulation time of two methods. It shows that simulation time of Kriging model
method is far less than that of Monte Carlo method, which proves the rapidity of the method proposed in
this paper, and solves the problems of the traditional random analysis method with many simulation times
and long simulation time.

6 Conclusions

Due to the proximity of geographical locations in the same wind farm, the wind speed between different
wind power clusters has a strong correlation, so that the output of each wind turbine cluster has a strong
correlation. In this paper, TPNT method is adopted to model wind turbine clusters with relevant wind
speed, and Kriging model is applied to PLF analysis of system. An example of a real wind power farm in
Yunnan power grid shows that Kriging model owns 100 times less than MC computation burden. Kriging
also owns higher simulation accuracy, which verifies the effectiveness, accuracy, and rapidity of this method.

Table 4: Branch powers and bus voltage expectations and standard deviations

Node or branch 5000 times MC 50 times MC Relative error (%)

Node 1 Mean value 115.6974 115.6995 0.0018

Standard deviation 0.5681 0.5521 2.8203

Node 2 Mean value 115.4565 115.4603 0.0033

Standard deviation 0.7986 0.7747 2.9912

Branch 1 Mean value 19.6450 19.6514 0.0327

Standard deviation 16.7559 16.6551 0.6019

Branch 2 Mean value 68.2970 68.4219 0.1829

Standard deviation 14.5241 14.3586 1.1394

Branch 3 Mean value 111.5477 111.5894 0.0374

Standard deviation 10.1658 10.1361 0.2917

Table 5: Simulation time of the two methods

Method Simulation time/s Total time/s

5000 times MC 64081.7 64081.7

50 times Kriging

Sampling modeling Prediction

714.2712.4 1.8
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This paper provides an effective modeling and analysis method for studying PLF problem based on
correlation. Compared with traditional random analysis method, it has fast calculation speed and less
memory, and can quickly calculate system probability statistics with correlated random variables. Besides,
based on calculation and analysis of PLF in this paper, Kriging model method could be applied to the
Optimal power flow calculation and analysis of power system. The measured data will be used to verify
feasibility of the proposed method.
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Appendix A. TPNT Generates Correlation Wind Speed Sequence

Using TPNT to generate a wind speed sequence with a specified correlation coefficient, which mainly
includes three parts:

1. Sampling points are selected from the independent standard normal space U ;

2. The transformation Z ¼ LU is used to convert these sampling points from space U to space Z ;
3. Eq. (2) is used to transform the sampling point from space Z to the original space X .

The flow chart of TPNT to predict relevant wind speed of wind farm group is depicted in Fig. A1:

Appendix B. Regression Model

The regression part of Kriging model simulates the overall trend of the response, which provides global
approximations within the design space, commonly employing zero-order, first-order and second-order
polynomials, as follows

zero-order, p ¼ 1,

f1 xð Þ ¼ 1

first-order, p ¼ nþ 1,

f xð Þ ¼ 1; f xð Þ ¼ x; . . . ; f xð Þ ¼ x

second-order, p ¼ 1

2
nþ 1ð Þ nþ 2ð Þ,

f1 xð Þ ¼ 1

Start

Set the number of wind Clusters, the 
training sample size, and the test sample size 

to m, n, and N respectively.

Read historical wind speed of wind turbine

Obtain correlation coefficient matrix, mean 
value and standard deviation of historical 

wind speed

Calculate polynomial coefficient a according 
to Eq. (3), Eq. (4), and Eq. (5).

Transform the correlation coefficient matrix 
RX to get RZ, and then exploit Cholesky 

decomposition to get L

Generate correlation coefficient matrix RZ of  
wind speed sequence  based on transforming 

function Z=LU

Obtain wind speed sequence with 
correlation coefficient matrix RX according 

to Eq. (2),

End 

Figure A1: Forecasting related wind speed of wind farm group by TPNT method
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f2 xð Þ ¼ x1; . . . ; fnþ1 xð Þ ¼ xn

fnþ2 xð Þ ¼ x21; . . . ; f2nþ1 xð Þ ¼ x1xn

f2nþ2 xð Þ ¼ x22; . . . ; f3n xð Þ ¼ x2xn

� � � � � � fp xð Þ ¼ x2n

Researches indicate that regression part has little effect on the accuracy of the model, and usually just
simply takes constant.

Appendix C. Correlation Model

The existence of random function Z xð Þ is the fundamental reason why Kriging model is different from
the response surface, and it plays a decisive role in the accuracy of the model. Z xð Þ obeys Gaussian
distribution N 0; r2ð Þ, but its covariance is non-zero. It is determined by correlation function R h; xi; xj

� �
,

which is adopted to calculate the degree of correlation between two samples, and can be expressed as follows

R h; xi; xj
� � ¼Qn

k¼1 Rk hk ; dkð Þ
where dk ¼ xik � xjk .

The common correlation functions are shown in Tab. C1.

Note: & nkð Þ ¼
1� 15n2k þ 30n3k 0 � nk � 2

1:25 1� nkð Þ3 0:2 < nk < 1
0 nk � 1

8<
:

Table C1: Correlation function

Function name Function form

Exponent (EXP) exp �hk dkjð Þ
General exponent (EXPG) exp �hk dkj jhnþ1

� �
Gauss (GAUSS) exp �hk dkð Þ2

� �
Linear (LIN) max 0; 1� hk dk jjf g
Spherical (SPHERICAL) 1� 1:5nk þ 0:5n3k , nk ¼ min 1; hk dkj jf g
Cubic (CUBIC) 1� 3n2k þ 2n3k , nk ¼ min 1; hk dkj jf g
Spline (SPLINE) & nkð Þ, nk ¼ hk dkj j
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