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ABSTRACT

As a surface functional material, super-hydrophobic coating has great application potential in wind turbine blade
anti-icing, self-cleaning and drag reduction. In this study, ZnO and SiO2 multi-scale superhydrophobic coatings
with mechanical flexibility were prepared by embedding modified ZnO and SiO2 nanoparticles in PDMS. The
prepared coating has a higher static water contact angle (CA is 153°) and a lower rolling angle (SA is 3.3°), show-
ing excellent super-hydrophobicity. Because of its excellent superhydrophobic ability and micro-nano structure,
the coating has good anti-icing ability. Under the conditions of −10�C and 60% relative humidity, the coating can
delay the freezing time by 1511S, which is 10.7 times slower than the normal freezing time. More importantly, due
to the mechanical properties provided by SiO2 and the synergistic effect of micro-nano particles, the coating has
excellent mechanical durability. After 10 wear tests, the contact angle of the coating is still as high as 141° and the
rolling angle is 6.8°. This research provides a theoretical reference for the preparation of a mechanically stable
coating with a simple preparation process, as well as a basic research on the anti-icing behavior of the coating.
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1 Introduction

With the rapid development of wind power technology, various problems faced by wind turbines during
the operation are also emerging. Among them, the problem of wind turbine blade icing is one of the focuses
of current research in the wind power industry [1,2]. For the icing of wind turbine blades, coating is currently
one of the most popular solutions. In recent years, with the continuous development of science, related
materials in the superhydrophobic field have emerged one after another, which has attracted widespread
attention of experts and scholars at home and abroad. Normally, superhydrophobic surface refers to the
surface with CA > 150°, SA < 10° [3] (CA:Contact angle; SA:Sliding angle). Due to superhydrophobic
surface extreme hydrophobicity and self-cleaning properties, it has very important applications in self-
cleaning [4], deicing [5], antifreeze [6], oil-water separation [7], corrosion protection [8] and so on. There
have been 24 years of research history since the lotus leaf phenomenon was discovered in 1996, but there
still exists many problems in its practical application, mainly in the poor mechanical stability of the
superhydrophobic surface and unstable surface chemical properties [9]. The main reason for this problem
is that the superhydrophobicity of the artificial superhydrophobic surface mainly relies on the construction
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of micro-nano structures and low surface energy substances [10]. Since the micro-nano structure is
very fragile, it is very easy to be damaged by external forces, which damages the Cassie-Baxter model
and affects the hydrophobic properties of the surface [11]. At present, the chemical properties of the
surface of superhydrophobic materials are very unstable. The main reason is that under the influence of
external acid, alkali and other factors, the micro-nano structure and surface energy substances may
undergo physical and chemical changes, making the surface superhydrophobic properties reduce or even
be lost [12].

In view of the problems mentioned above which are faced by superhydrophobic surfaces, researchers
have carried out many related researches. Dai et al. [13] fabricated three-dimensional layered ZnO
nanostructures on PDMS substrates through PDMS pouring process and solution growth procedures, and
found that the ZnO nanostructures grown on layered PDMS substrates have a great influence on the
surface wetting behavior. Zhou et al. [14] controlled the ratio of ZnO to epoxy resin so that the ZnO
particles were not completely covered, forming a clustered ZnO coating. After modification with stearic
acid, the coating has excellent superhydrophobicity and exhibits excellent wear resistance. Zhang et al.
[15] combined the rough structured SiO2 film with low surface energy and durable PDMS by
electrodeposition, and built a corrosion-resistant coating on low-carbon steel with good resistance
corrosion performance. Wang et al. [16] use PDMS, SiO2, CaCO3, etc., to only back the composite
coating, which can be directly applied to different substrates and has certain anti-corrosion performance
and self-healing ability. Lu et al. [17] used perfluorosilane fluorinated ethanol solution to wrap TiO2

nanoparticles to form a suspension sprayed or brushed onto the substrate to obtain a superhydrophobic
coating, and developed a “paint + adhesive” adhesive. The method was to overcome the weak
mechanical properties of the superhydrophobic surface. Li et al. [18] proposed a new method of “glue +
powder”. By embedding various functional micro-nano particles to realize the functionalization of
superhydrophobic surfaces, the relationship between the intrinsic wettability of embedded particles and
the wettability of superhydrophobic surfaces was studied. Through experiments, it was found that there is
no obvious connection between the two. The size and level of the microstructure are considered to be the
decisive factors for liquid hydrophobicity. That is, smaller and coarse particles promote better
hydrophobicity. Kim et al. [19] used acrylate-polyurethane (PU) adhesives combined with fluorinated
SiO2 nanoparticles to prepare a mechanically stable superhydrophobic coating. Through experiment, they
found that the binder plays a key role in controlling surface roughness and superhydrophobicity through
the capillary mechanism. Zhang et al. [20] sprayed a mixture of ZnO and epoxy on the surface of the
substrate. Then they used stearic acid and acetic acid solutions to roughen the surface of the coating to
form a micro-nano structure and reduce surface energy to prepare a mechanically stable and wear-
resistant superhydrophobic coating.

Inspired by the above research, a superhydrophobic coating with mechanically flexible ZnO/SiO2 multi-
scale micro/nano structure was directly constructed by the embedding method. This method mainly uses
SiO2 to effectively improve the mechanical properties of the coating, heating and weather resistance, and
corrosion resistance. In addition, ZnO is easy to handle and directly constructs low surface energy micro-
nano structures. Based on PDMS, a multi-scale micro nano superhydrophobic coating was constructed.
Compared with previous studies, the preparation process of the coating is very simple, and the coating
has excellent mechanical stability and superhydrophobicity by modifying the two kinds of particles. At
the same time, because the coating has certain self-cleaning, anti-freezing and deicing ability, it can
effectively alleviate the icing problem of wind turbine blades and improve the power generation time of
wind turbines [21].
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2 Materials and Methods

2.1 Materials
Nano Zno (20–30 nm), nano SiO2 (100–300 nm), PDMS and its curing agent, FAS-17, ethanol (AR),

acetic acid, and STA.

2.2 Coating Preparation
2.2.1 Fluorination Modification of ZnO

A certain amount of ZnO was put into 10 ml of ethanol mixed solution containing different amounts of
FAS-17, and the mixture was vigorously stirred for 2 h in an oil bath at 45�C. Then the obtained ZnO was
repeatedly washed in an ethanol solution and dried at 120�C for 2 h to obtain FAS-ZnO particles. As we all
know, -CF3 in the fluorine-containing group has extremely low surface energy. FAS-17 grafts ZnOH + ions,
so that the hydroxyl groups on the surface of ZnO are replaced by FAS molecules.

Zn2þ þ 2OH� ! ZnðOHÞ2 (1)

ZnðOHÞ2 ! ZnOþ H2O (2)

ZnðOHÞ2þCF3�ðCF2Þ5�CH2�CH2�Si�ðOCH2CH3Þ3 !CF3�ðCF2Þ5�CH2�CH2�Si�ðO�ZnOHÞ3 (3)

2.2.2 Hydrophobic Modification of SiO2

Put a certain amount of SiO2 into 50ML absolute ethanol solution, ultrasonically treat for 5 min, add
1ML OTS, and magnetically stir in a 60�C water bath for 2 h to obtain modified SiO2 particles. The
obtained modified SiO2 particles are washed twice in absolute ethanol and dried to obtain finished
superhydrophobic SiO2 particles. As shown in Fig. 1, through the modification of OTS, a carbon chain of
18 carbon atoms is added to the SiO2 molecule, which increases its hydrophobic chain length and reduces
hydrophilic groups, making it exhibit excellent hydrophobicity.

2.2.3 Construction of ZnO/SiO2 Multi-Scale Superhydrophobic Coating
In the first step, PDMS and curing agent are mixed in a ratio of 10:1, and then uniformly coated on the

glass substrate to form a layered liquid film with a thickness of about 3.5 mm. In the second step, ZnO and
SiO2 are mixed in a certain proportion, and they are evenly sprinkled on the formed layered liquid through a
sieve until the liquid film is covered by ZnO and SiO2, and dried in a drying oven at 80°C for 4 h. Finally, the
coating was taken out, immersed in a 5 wt% stearic acid solution to further roughen the coating surface, and
then put into a 20 wt% acetic acid/ethanol solution to further reduce its surface energy [22]. Finally, it was
dried at room temperature for 1 h to form a ZnO/SiO2 multi-scale superhydrophobic coating. The preparation
process of ZnO/SiO2 multi-scale superhydrophobic coating is shown in Fig. 2.

Figure 1: Modified SiO2 molecule and its reaction formula
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2.3 Characterizations
Under the scanning electron microscope (SEM, QUANTA250, USA), the morphology of the coating

was characterized. Under the optical microscope (OM, 200mat, USA), the surface difference before and
after wear was characterized. Fourier transform infrared spectroscopy (FTIR, Nicolet iS10, USA) was
used to study the functional group changes of the modified nanoparticles. The water CA was determined
with OCA15 contact angle analyzer (Data-physics, Germany). In order to simulate the icing situation in a
high-altitude, low-temperature and high-humidity environment, the actual anti-icing performance of the
coating was tested using a methyl blue solution under an artificial freezing environment of −10°C and
60% relative humidity. The experiment included: ice experiment and dynamic icing experiment. A 50 g
weight was used to apply gravity to the coating, and a wear test of the coated sandpaper was performed
on the SiC sandpaper to verify the mechanical stability of the coating. The self-cleaning ability was tested
by putting the coating sample into the methyl blue solution and then taking it out.

3 Results and Discussion

3.1 Microstructure and Chemical Composition of the Coating Surface
3.1.1 Hydrophobicity of Fluorinated ZnO Nanoparticles

Hydrophobic ZnO nanoparticles are conducive to effective combination with PDMS substrates. Fig. 3
shows the wettability of treated and untreated ZnO nanoparticles. The unmodified ZnO nanoparticles are
completely hydrophilic due to their high surface free energy without any hydrophobic effect. However,
when the water droplets fall on the surface of the fluorinated modified ZnO particle powder, the water
droplet is spherical and difficult to wet on the surface of the modified ZnO particle powder. This
phenomenon shows that ZnO has been modified to become hydrophobic particles, and its surface free
energy is reduced. This phenomenon is mainly due to the modification of ZnO nanoparticles by FAS-17.

Figure 2: Preparation process of ZnO/SiO2 multi-scale superhydrophobic coating

Figure 3: Hydrophobic effect diagram of ZnO powder: (a) fluorination treatment, and (b) untreated
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Due to the existence of C-F and C-H groups, FAS-17 can not only reduce the free energy on the surface
of its ZnO nanoparticles, but also make it more soluble in organic solvents and avoid the occurrence of
nanoparticle agglomeration [23,24]. The CA of FAS on a smooth plane is 109°, which has good
hydrophobicity, and its molecules are easy to modify on the hydroxyl-rich surface [25,26]. Fig. 4 shows
the FTIR spectrum of FAS-ZnO. The band at 1065 cm−1 is attributable to the asymmetric stretching
vibration of the Si-O-Zn material, which proves the dehydration reaction between the hydrolyzed Fas
molecules and the ZnO particles. FAS-ZnO has three peaks at 1128, 1210 and 1150 cm−1, which are
attributed to the stretching vibration of -CF2 and -CF3 groups, indicating that fluorinated ZnO particles
have been successfully synthesized.

3.1.2 Microstructure of Coating Surface
The natural superhydrophobic surface micro-rough structure and low surface energy chemical

composition of “lotus leaf effect” and “rose petal effect”, among which level difference and microscopic
gap size are the key to regulating the water adhesion behavior of superhydrophobic surface [27,28]. It can
be seen that the roughness of the coating surface provided by the micro-nano structure is important for
the ZnO/SiO2 multi-scale superhydrophobic coating. It can be seen from Figs. 5a and 5b that the
ZnO/SiO2 multi-scale superhydrophobic coating has a unique surface structure. The coated ZnO and SiO2

nanoparticles adhere to the PDMS substrate to form a high specific surface. The rough hilly porous
structure effectively reduces the area of the coating and reduces the surface energy of the coating. At the
same time, the secondary structure can be observed from Figs. 5c and 5d, which indicates that the ZnO
and SiO2 nanoparticles added are not completely covered by the PDMS substrate, only the particles
adhere to the PDMS substrate. Since the droplets drop on the surface of the coating, the air is trapped in
the cavities on the surface of the layered rough structure, forming a solid-liquid-gas three-phase contact
state, and it is difficult for the droplets to penetrate into the micro-nano porous structure [29,30]. The
water adhesion behavior is also consistent with the low water adhesion superhydrophobic state of the
Cassie-Baxter wetting model [31,32]. At the same time, SiO2 particles are modified by OTS, adding a
carbon chain of 18 carbon atoms, reducing the hydroxyl hydrophilic groups on the surface; ZnO particles
are modified by FAS-17 fluorination to make the hydroxyl groups on the surface of ZnO hydrophilic. The
groups are replaced by FAS molecules. By modifying ZnO and SiO2, the surface energy of the coating is

Figure 4: FTIR spectrum of FAS-ZnO
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further reduced and the superhydrophobic ability is further enhanced. Therefore, the surface can exhibit a
surface state of high CA (153°), low SA (3.3°) and low adhesion.

3.2 Superhydrophobic Properties, Self-Cleaning
The wettability of a superhydrophobic surface is mainly determined by the microstructure and chemical

composition of the surface. It reflects its performance by measuring the CA and SA of water droplets on its
surface [33]. In order to better understand the influence of the morphology of ZnO/SiO2 nanoparticles on the
wettability of the prepared multi-scale superhydrophobic coating, we analyzed and discussed the relationship
between nanoparticles and wettability. Although the CA of PDMS with a smooth and pure surface is 114°,
which can bring a certain degree of hydrophobicity to it, the addition of modified ZnO and SiO2 nanoparticles
can further enhance the hydrophobicity and improve the physical properties of PDMS itself. This is mainly
the microscopic rough structure caused by F-ZnO and modified SiO2 nanoparticles. As shown in Fig. 6a, the
surface is immersed in water, the coating is surrounded by an air cushion with strong light reflection, and it
proved to be superhydrophobic. As shown in Fig. 6b, by putting the ZnO/SiO2 coating sample in the methyl
blue solution for a period of time and then taking it out, there is no difference in the surface, which proves that
it has a certain self-cleaning ability.

Figure 5: SEM image of ZnO/SiO2 multi-scale superhydrophobic coating: (a) 500x enlargement, (b) 1000x
enlargement, (c) 2000x partial enlargement, and (d) 5000x partial enlargement
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3.3 Anti-Snow and Icing Performance
As we all know, freezing on the coating surface is greatly affected by temperature [34]. In addition to the

influence of temperature, the characteristics of the icing surface, surface roughness and surface energy have a
greater influence on the surface icing phenomenon. Under the action of adsorption force, ice crystals can
adhere to the icy surface and deposit continuously. The size of this adsorption force depends on the
wettability between ice crystals and the frozen surface. If it is a hydrophobic surface with low surface
energy, it can make the ice crystal and the surface in a non-wetting state, which can greatly reduce the
adsorption force to the ice crystal and prevent freezing [35]. The surface roughness of the coating makes
the contact of water and the coating surface into a non-wetting state due to the presence of a part of the
entrained air [36]. At the same time, the solid-liquid-gas three-phase contact state greatly reduces the heat
transfer efficiency of the coating and prolongs the time for water to freeze.

Through the icing experiment at −10°C and 60% relative humidity, the actual anti-icing performance of
the ZnO/SiO2 coating in a simulated high altitude, low temperature and high humidity environment was
tested. As show in Fig. 7a, the prolonged freezing time of water droplets stained with methylene blue on
ZnO/SiO2 coated and uncoated glass slides was tested, and the actual data of the two were compared in
the icing experiment. By controlling the temperature of the freezer, the surface temperatures of the coated
and uncoated glass slides are both at −10°C. On the uncoated glass slides, the water droplets began to
freeze after 10 s, and began to freeze locally after 55 s and completely frozen after 156 s. The water
droplets on the surface of the coating began to become opaque from 833S to the 1263S. The test tube
was used for testing. Only the surface was frozen, while the inside was still liquid. The water droplets on
the surface of the 1667S coating were completely frozen. The surface of the layer is 10.7 times slower.
At the same time, in order to test the performance stability of the coating under extreme temperature
conditions, icing experiments at −2°C and −20°C were carried out. As shown in Fig. 7b, at −2°C, the
uncoated glass slide was frozen at 337S, and the coated glass slide was frozen at 2583S, which was
delayed for 37 min. As shown in Fig. 7c, at −20°C, the uncoated glass slide was frozen at 31S, and the
coated glass slide was frozen at 155S, which was delayed for 2 min.

Figure 6: Coating performance test: (a) coating wettability test, and (b) schematic diagram of methyl blue
solution test
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A self-made device was used to carry out the coating dynamic icing experiment, as shown in Fig. 8.
First, let the water mist fall on the ZnO/SiO2 coated and uncoated glass slides at a certain speed at a
position about 10 cm away from the coating. Then, compare the icing conditions of both sides. In an
environment of −10°C, the uncoated glass slide began to freeze gradually in about 6 min, and no ice was
formed on the surface of the ZnO/SiO2 coating, which further indicated that the ZnO/SiO2 excellent anti-
icing performance of the coating. The result is shown in Fig. 9.

Figure 7: Process diagram of icing experiment (a is uncoated, b is coated): (a) process chart of −10°C icing
test, (b) process chart of −2°C icing test, and (c) process chart of −20°C icing test

Figure 8: Schematic diagram of dynamic icing experiment device

Figure 9: Comparison of dynamic icing experiments: (a) before freezing, and (b) after freezing
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As expected, the ZnO/SiO2 coating can delay water condensation for a long time and has good anti-icing
properties. The coating has such good anti-icing performance, which may be attributed to the following
reasons:

1. The superhydrophobic surface with rough structure can trap air in the surface texture, so that the
droplets on the surface are in a non-wetting Cassie-Baxter state. The trapped air minimizes the
interaction between the liquid droplet and the solid surface, and the water droplet easily slips off
the surface when the surface is slightly inclined. Under actual freezing conditions, if water
droplets fall from the surface due to gravity, there is no surface icing.

2. The large amount of air present in the superhydrophobic surface structure can become a good heat
insulating layer to prevent the droplets from freezing, thereby delaying the time for the droplets to
reach the nucleation temperature.

3. The existence of “cavitation” can reduce the chance of non-uniform nucleation of ice crystals.

4. The superhydrophobic surface can reduce the adhesion of the ice layer. The adhesion and wettability
of the ice layer on the superhydrophobic surface are related to the value (1 + cosθR). (θR = CA-SA)
When the retreat angle θR of the droplets on the solid surface is greater than 118.2°, the adhesion of the
ice layer will decrease significantly [37].

3.4 Robustness, Durability
We studied the effect of coating composition on the wettability and mechanical strength of ZnO/SiO2

multi-scale coatings. The superhydrophobic properties of the prepared surface are mainly attributed to the
synergistic effect of nano-scale and micro-scale surface roughness and low surface energy -CF2 and -CF3
groups. The surface coated with the ZnO/SiO2 multi-scale coating exhibits excellent superhydrophobicity
and has a stable Cassie-Baxtex morphology with a CA of 153° and SA of 3.3°. In addition to glass
slides, ZnO/SiO2 coatings are also applied to a variety of surfaces, including wind turbine blade, stainless
steel plates, papers, plastics, and cotton cloth. All surfaces become superhydrophobic. Therefore, the
coating can be applied to various materials, and the application prospect is very broad.

In the daily practical application, the actual focus of the development of anti-icing coatings is still the
durability and stability in harsh environments. In order to verify the mechanical stability of the ZnO/SiO2

Figure 10: Schematic diagram of sandpaper abrasion experiment: (a) experimental diagram, and (b)
experimental operation diagram

EE, 2021, vol.118, no.4 955



coating, a sandpaper abrasion test was performed on the coating [38,39], as shown in Fig. 10. First, the
samples coated with ZnO/SiO2 were placed face down on SiC sandpaper. Then put 50 g weight on the
coated sample, push the coated sample onto the sandpaper, and move 10 cm along the scale through the
glass rod. Finally, the sample was rotated 90° and moved 10 cm in the opposite direction of the dial.
Through the above three abrasion steps in the horizontal and vertical directions, the coating sample was
subjected to a cycle of abrasion experiment. Figs. 11a and 11b show the changes of CA and SA of the
coating samples as the test cycle increases. Fig. 11c shows the optical micrographs of the three coated
samples after 10 sandpaper abrasion experiments. After 10 cycles of wear, CA decreased from 153° to
141°, and SA increased from 3.3° to 6.8°, but not more than 10°, indicating that even after the sandpaper
was cyclically worn, it still maintained excellent hydrophobic properties. The coating can maintain such
excellent characteristics mainly due to the micro-nano structure constructed by the mixture of multi-scale
ZnO and SiO2 nanoparticles, and the modified ZnO and SiO2 nanoparticles have extremely low surface energy.

4 Conclusion

In this paper, on the basis of modifying ZnO and SiO2 nanoparticles of different scales, a mechanically
flexible ZnO/SiO2 multi-scale micro-nano structure superhydrophobic anti-icing coating was directly
constructed by the embedding method. The preparation process of the coating is simple. In addition to its
high superhydrophobicity (CA is 153°, SA is 3.3°), the prepared surface also exhibits excellent
mechanical durability and self-cleaning performance, which can resist the actual application of machinery
damage. At the same time, the surface of the ZnO/SiO2 coating exhibits excellent anti-icing ability under

Figure 11: Data analysis of sandpaper abrasion experiment: (a) CA change of sandpaper abrasion
experiment, (b) SA change of sandpaper abrasion experiment, and (c) Optical micrographs of the three
coated samples after the sandpaper abrasion experiment
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low temperature and high humidity conditions, which can effectively delay the formation of ice. This is
mainly due to the modification of ZnO and SiO2, the different scales of ZnO and SiO2 particles, and the
synergistic effect of the micro-nano structure constructed by PDMS. Since the preparation process is
simple, the cost is low, and it is suitable for a variety of substrates, it is expected to have great application
prospects, such as wind turbine blade. This paper proposes a superhydrophobic coating with good
mechanical flexibility in outdoor facilities and structures, as well as excellent self-cleaning and anti-icing
properties.At the same time, this research has problems in the repairability of superhydrophobic anti-icing
coatings and the anti-icing effect in extreme low temperature environments, which need to be further studied.
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