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ABSTRACT

There are two prominent features in the process of temperature control in solar collector field. Firstly, the
dynamic model of solar collector field is nonlinear and complex, which needs to be simplified. Secondly, there
are a lot of random and uncontrollable, measurable and unmeasurable disturbances in solar collector field. This
paper uses Taylor formula and difference approximation method to design a dynamic matrix predictive control
(DMC) by linearizing and discretizing the dynamic model of the solar collector field. In addition, the purpose of
controlling the stability of the outlet solar field salt temperature is achieved by adjusting the mass flow of molten
salt. In order to further improve the ability of the system to suppress unmeasured disturbances, a steady-state
Kalman filter is designed to estimate state variables, so that the system has better stability and robustness. The
simulation verification results show that the DMC control system based on Kamlan filtering has better control
effect than the traditional DMC control system. In the case of large fluctuations in solar radiation intensity
and consideration of undetectable interference, the overshoot of the system is reduced by 4% and the rise time
remains unchanged.
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1 Introduction

As an environmentally and widely available renewable energy, solar energy has broad development
prospects. At present, many countries use solar energy to generate electricity by establishing photovoltaic
power stations or solar thermal power stations. The focused solar thermal power station focuses the solar
energy through the collector, and then heats the heat transfer working medium inside the collector. The
heated heat transfer working fluid generates steam through the heat exchanger and drives the steam
turbine to generate electricity. In order to ensure stable power output, the outlet temperature of the solar
thermal field must be able to maintain the set operating point. Due to the non-linearity, complexity, delay
and strong random interference characteristics of the solar heat collection field, the control of the outlet
temperature of the heat transfer working fluid in the heat collection loop has become a hot and difficult
problem in the research field of solar thermal power generation.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

DOI: 10.32604/EE.2021.014724

ARTICLE

echT PressScience

mailto:18368914525@163.com
http://dx.doi.org/10.32604/EE.2021.014724


This paper studies solar power plants with linear Fresnel (LF) collectors. The LF collector is an
improvement and simplification of the trough collector. Its heat collection system is mainly composed of
a condenser and a glass-metal vacuum heat sink. The concentrator can be regarded as the linear
segmentation discretization of the parabolic trough reflector, it reflects the incident light from the sun and
gathers it on the focal line of the linear strip mirror. The heat sink is installed above the focal line and
heating the heat transfer fluid, and finally realize the conversion of solar energy to thermal energy [1].
The LF collector field is affected by a variety of interference sources. At present, the main considerations
are the change of solar radiation intensity, the change of ambient temperature, the fluctuation of the inlet
molten salt temperature and the influence of the molten salt flow rate on the outlet salt temperature of the
collector loop. Among them, the intensity of solar radiation is the most important interference, because
scattered clouds may produce strong changes throughout the day. Therefore, the main purpose of the LF
collector field control system is to maintain the temperature of the working fluid at the outlet of the
collector loop at a desired level [2].

In response to the problem of temperature control of LF collector field, many scholars at home and
abroad have done a lot of research, including traditional PID control, model-based predictive control
(MBPC) [3], adaptive control, internal model control(IMC), and nonlinear control [4,5] etc. In Lima et al.
[6], a filter dynamic matrix control (FDMC) is used to control the output temperature of a solar collector
field of the desalination plant. In the filter dynamic matrix control, a filter is used in the prediction error,
which can improve the robustness and anti-interference characteristics of the original algorithm. In Brus
et al. [7], a generalized predictive control algorithm with feedforward compensation is proposed, which
uses feedforward control to compensate for disturbances and the strong robustness of predictive control to
improve the tracking effect of predictive control on collector outlet oil temperature. In Xu et al. [8],
according to the dynamic mathematical model of a parabolic trough solar collector loop, using direct
normal irradiation, inlet oil temperature of the collector and ambient temperature as disturbances, PID
controller and IMC are designed. The result shows that IMC is more effective. In Lu et al. [9], an
adaptive prediction model of solar collector was established based on the measured data. The author
adopting a switching strategy based on the minimum cumulative error, the optimal control model was
selected online, and an active fault tolerant sliding mode predictive controller was designed, which
improved the tracking accuracy and robustness of the system. The above controllers are all control
strategies for suppressing general interference, and lack of suppression strategies for unmeasured
(unmodeled) interference. Traditional predictive control and robust control have poor control effects on
unmeasured disturbances of objects with large inertia and large delay.

Since the factors that affect the overall efficiency such as direct solar radiation, specular reflectance and
metal absorptance can only be measured locally, and other unmodeled factors such as wind speed, it is
necessary to consider these interferences in the process of controlling the salt temperature at the outlet of
the collector to improve the control effect [10]. In this paper, solar radiation intensity, ambient
temperature, and inlet molten salt temperature are used as measurable disturbances, and a DMC controller
is designed to control the outlet molten salt temperature of the collector by adjusting the working fluid
flow. In order to solve the problem of the deterioration of DMC control performance caused by excessive
solar radiation intensity fluctuations and unmeasured disturbances, this paper expand on the basis of the
classic DMC algorithm prediction model. A steady-state Kalman filter is design to estimate unmeasured
interference, state variables and future output. And it also is used to improve the system’s ability to
suppress unmeasured interference. This paper provides reference for actual operation control of domestic
LF power station.
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2 Mathematical Model of LF Collector Field

The Dacheng Dunhuang LF Power Station is currently composed of a heat collection field, a heat storage
system and a power generation system. The heat collecting field uses binary molten salt as the heat transfer
medium, with a total of 80 parallel circuits and a total mirror area of 1.27 million m2.

2.1 Distributed Parameter Model
After general simplification and assumptions, the distributed LF collector field can be described by a

distributed parameter model about temperature. This distributed parameter model includes the energy
balance equation of the metal heat absorption tube and the energy balance equation of the heat transfer
fluid in the heat absorption tube [11]:

qmcmAm
@Tm
@t

ðt; xÞ ¼ gGIðtÞ � hf L½Tmðt; xÞ � Tf ðt; xÞ� � haG½Tmðt; xÞ � TaðtÞ� (1)

hf L Tmðt; xÞ � Tf ðt; xÞ
� � ¼ qf cf Af

@Tf
@t

ðt; xÞ þ qf cf vðtÞ
@Tf
@x

ðt; xÞ (2)

where I is the solar radiation intensity; hf is the convective heat transfer coefficient between the molten salt
and the absorbor tube; Tm is the wall temperature of the metal absorbor tube; Ta is the ambient temperature; Tf
is the temperature of molten salt fluid; v is the molten salt mass flow in the solar collector field. The
descriptions and values of the other parameters are shown in Tab. 1.

Since the heat transfer effect between the metal absorbor tube and the heat transfer fluid is good, it
is assumed that the metal absorbor tube temperature is equal to the heat transfer fluid temperature [12],
That is, Tm(t,x) = Tf(t,x), according to Eqs. (1) and (2), the simplified energy balance equation is shown
in Eq. (3):

Cm þ Cf

� � dTfo tð Þ
dt

¼ gGIðtÞ � qf cf vðt � dcÞ Tfo tð Þ � Tfi tð Þ
Dx

� haG TfoðtÞ � TaðtÞ
� �

(3)

where, Tfi is the inlet molten salt temperature, Tfo is the outlet molten salt temperature, Cm ¼ qmcmAm,
Cf ¼ qf cf Af , Dx ¼ L.

Table 1: Parameter of the process

Symbol Name Value

ρm absorbor density 7930 kg/m3

cm absorbor specific heat capacity 500 J/kg·K

Am absorbor cross-sectional area 0.0064 m2

G collector opening diameter 24.4 m

η reflection factor 61.2%

ρf molten salt fluid density 1734 kg/m3

cf molten salt fluid specific heat capacity 1539.2 J/kg·K

Af absorbor internal cross-sectional area 0.0053 m2

L absorbor tube length 22 m

ha convection heat transfer coefficient 40 W/m2·K
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2.2 Linearization and Discretization Model
Since linear discrete model is used in the predictive control algorithm, it is necessary to linearize and

discretize the energy balance equation given in Eq. (3).The outlet molten salt temperature of collector
field is a function of solar radiation intensity, ambient temperature, inlet molten salt temperature and
molten salt mass flow. Therefore, Eq. (3) can be expressed as Eq. (4):

dTfo
dt

¼ f I tð Þ;TaðtÞ; Tfi tð Þ; Tfo tð Þ; v tð Þ� �
(4)

Using Taylor linear approximation, select an appropriate operating point to linearize the model and the
result is shown in Eq. (5):

d DTfo
� �
dt

¼ aDI þ bDTa þ cDTfi þ dDTfo þ eDv (5)

Then use the differential approximation of the derivative to discretize the Eq. (5). The discretization
result is shown in Eq. (6):

DTfo kð Þ ¼ ð1þ dTsÞDTfo k � 1ð Þ þ aTsDI k � 1ð Þ þ bTsDTa k � 1ð Þ þ cTsDTfi k � 1ð Þ
þ eTsDv k � 1� dzð Þ (6)

The linearized and discretized transfer function is shown in Eqs. (7)–(10):

DTfo zð Þ
Dv zð Þ ¼ eTs

z� ð1þ dTsÞs
z�dz (7)

DTfo zð Þ
DI zð Þ ¼ aTs

z� ð1þ dTsÞ (8)

DTfo zð Þ
DTa zð Þ ¼ bTs

z� ð1þ dTsÞ (9)

DTfo zð Þ
DTfi zð Þ ¼

cTs
z� ð1þ dTsÞ (10)

where, a ¼ gG
Cm þ Cf

, b ¼ haG

Cm þ Cf
, c ¼ qf cf �v

L Cm þ Cf

� �, d ¼ � qf cf �vþ haGL

L Cm þ Cf

� � , e ¼ � qf cf �Tfo � �Tfi

� �
L Cm þ Cf

� � , �v, �Tfo,

�Tfi represent the working point of variables v, Tfo, Tfi.

3 Dynamic Matrix Control Based on Steady-State Kalman Filter

In order to solve the control object with large inertia, large delay and nonlinearity such as solar thermal
field, so that it still has good control effect in the case of model mismatch, this paper proposes a DMC
predictive control with steady-state Kalman filter algorithm (KFDMC). The KFDMC control structure
diagram of the LF collector is shown in Fig. 1. The collector control system is mainly composed of the
collector model, the open loop prediction module, the steady state Kalman filter and the dynamic control
module. Solar radiation intensity, ambient temperature, inlet molten salt temperature and other
unmeasurable disturbances are not necessary to be controlled in the input of collector model.The input
needs to be controlled is the temperature and mass flow of molten salt at the collector outlet. The The
KFDMC controller can compensate for unstable control effects caused by time-varying and random
disturbances in the heat collection field through the open-loop prediction module, steady-state Kalman
filter and dynamic control module, and has relatively low requirements on the mathematical model of the
controlled system [12].
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According to the linear collector model established in 2.2, the KFDMC controller was designed. Use
Eq. (7) to obtain the step response model of input and output, and use Eqs. (8)–(10) to obtain the step
response model of measurable disturbance. Among them, y(t) is the measured value of the outlet molten
salt temperature, that is Tfo; u(t) is the molten salt mass flow, that is v; f(t) is the measurable disturbance
that affects the outlet molten salt temperature of the collector, including solar radiation intensity I,
ambient temperature Ta, and inlet salt temperature Tfi; η(t) is the unmeasured interference that affects the
salt temperature at the outlet of the collector, including unmodeled interference such as local
measurement and wind speed.

KFDMC algorithm is a model-based control algorithm and applies the principle of online optimization.
The online calculation of KFDMC consists of an initialization module and a real-time control module. The
initialization module detects the actual output y of the object in the first step of operation and sets it to the
predicted initial value ysðiÞ, i = 1,…,n. From the second step, it is transferred to the real-time control module,
and the online calculation process at each sampling moment is shown in the Fig. 2. Due to uncertain factors
such as actual model mismatch, unmeasured (unmodeled) interference, noise, etc., the actual output at time k
is yðkÞ 6¼ yfrðkÞ. In order to eliminate the interference of unmeasurable disturbances and obtain the optimal
estimate, Kalman filtering is used to estimate the future output [13], get the open-loop dynamic prediction
value yolðiÞ and prediction error eðiÞ. The initial predicted value ysðiÞ of the next time is obtained by the
shift operation of ysðiÞ at the current time. Use ysðiÞ to replace the actual output y, and use the rolling
optimization method to obtain the control increment Du, We have got the measurable disturbance Df,
finally, the free predicted value yfrðiÞ at k+1 time can be obtained and enter the next cycle.

Solar Linear
Fresnel

Steady-state
Kalman filter

Optimization
Regulator

w(k)

y(k)

Target
Calculator

Δf(k) η(k)

Δu(k)

Figure 1: KFDMC structure

Figure 2: KFDMC algorithm flowchart
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3.1 Steady State Prediction Module
The DMC system uses the step response of the system to calculate the output predicted value. For the

SISO system, the open-loop prediction output at time k is [14,15]:

ysðkÞ ¼
Xn�1

i¼1

su
i
Duðk � iÞ þ sunuðk � nÞ þ

Xn�1

i¼1

sf
i
Df ðk � iÞ þ sfnf ðk � nÞ (11)

where, sui , s
u
i are the step response coefficients corresponding to u and f respectively, satisfy the condition

sunþi ¼ sun, s
f
nþi ¼ sfn, 8i � 0.

At time k, DuðkÞ has not been obtained, assuming that Df ðkÞ has been obtained. Let yfrðk þ pjkÞ be the
predicted value of ysðk þ pjkÞ in the condition of Duðk þ i� 1jkÞ ¼ 0, 1 � i � p and Df ðk þ iÞ ¼ 0,
1 � i � p� 1,which is called the free predicted value. And yfrðk þ ijkÞ ¼ yfrðk þ njkÞ,8i � n. Use
Eq. (11) to make predictions to obtain free predictive values, as shown in Eq. (12):

yfrðk þ pjkÞ � yfrðk þ pjk � 1Þ ¼ supþ1Duðk � 1Þ þ sfpDf ðkÞ (12)

Satisfy the condition: yfrðkjkÞ ¼ ysðkÞ .
Then it is obtained by Eq. (12):

~Y fr
nþ1ðk þ 1Þ ¼ M ~Y fr

nþ1ðkÞ þ
0
Su
n

� �
DuðkÞ

�	
þ 0

Sf
n

� �
Df ðk þ 1Þ (13)

where, Su
n ¼ ½su1;…; sun�T, Sf

n ¼ ½sf1;…; sfn�T, ~Y fr
nþ1ðkjkÞ

yfrðkjkÞ
yfrðk þ 1jkÞ

..

.

yfrðk þ njkÞ

2
6664

3
7775

yfrðkjkÞ
Y fr

n ðkÞ
� �

¼ ~Y fr
n ðkÞ

yfrðk þ njkÞ
� �

,

M ¼ 0 I
0 0 � � � 0 I½ �

� �
.

3.2 Design of Steady-State Kalman Filter
Since the step model does not include wind speed and other unmeasured (unmodeled) factors that

interfere with stable controlled variables, it will inevitably lead to tracking errors. In order to eliminate
errors and suppress unmeasured interference, a steady-state Kalman filter is introduced into the DMC
algorithm to realize the estimation of system state variables containing unmeasured interference.

To design a steady-state Kalman filter, consider the following state-space model to describe the
dynamic system:

~Y fr
nþ1ðk þ 1Þ ¼ M ~Y fr

nþ1ðkÞ þ
0
Su
n

� �
DuðkÞ

�	
þ 0

Sf
n

� �
Df ðk þ 1Þ þ gðkÞ (14)

ysðkÞ ¼ H ~Y
fr
nþ1ðkÞ þ nðkÞ (15)

where, H ¼ I 0 � � � 0½ �.
Assume 2.1 gðkÞ and nðkÞ are uncorrelated white noises whose variance matrix is Q and R.

E½gðkÞ� ¼ 0; E½nðkÞ� ¼ 0, E½gðkÞgTðjÞ� ¼ Qjkj; E½nðkÞnTðjÞ� ¼ Rjkj, E½gðkÞnTðjÞ� ¼ 0; 8k; j.
where, jkk ¼ 1, and k 6¼ j 时, jkj ¼ 0.

Assume 2.2 x(0) is not related to gðkÞ and gðkÞ, and E½xð0Þ� ¼ l0, E½ðxð0Þ � l0Þðxð0Þ � l0ÞT� ¼ P0.

Assume 2.3 uðkÞ 2 Rm is a known control input, which can be a known deterministic (non-random)
input, or feedback control, that is, uðkÞ is a linear function of fyðkÞ; yðk � 1Þ;…; uðk � 1Þ; uðk � 2Þ;…g.
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Theorem 2.1 (Steady state Klaman filter) System Eqs. (14)–(15) under assumptions 2.1–2.3, the steady
state Kalman filter is [16]:

~Y ol
nþ1ðkjkÞ ¼ M ~Y ol

nþ1ðk � 1jk � 1Þ þ 0
Su
n

� �
Duðk � 1Þ

�	
þ 0

Sf
n

� �
Df ðkÞ þ KeðkÞ (16)

eðkÞ ¼ ysðkÞ � yolðk k � 1j Þ � su1Duðk � 1Þ (17)

K ¼ ΣHTðHΣHT þ QyÞ�1 (18)

Σ ¼ M Σ � ΣHTðHΣHT þ QyÞ�1
HΣ

h i
MT þ Ry (19)

Call K the Kalman filter gain.

where, ~Y ol
nþ1ðkjkÞ

yolðkjkÞ
yolðk þ 1jkÞ

..

.

yolðk þ njkÞ

2
6664

3
7775

yolðkjkÞ
Y ol

n ðkÞ
� �

, K¼ K0

K1

� �
.

eðkÞ reflects the influence of uncertain factors not included in the step response model on the stable
controlled variable, which is called prediction error. The introduction of the eðkÞ makes the system a closed-
loop negative feedback system, which improves the system’s ability to suppress undetectable interference. Σ
is the only positive definite solution of the Riccati equation, Qy and Ry is an adjustable parameter.

From Eq. (16), the open-loop predictive output module is as follows:

Y ol
n ðk kj Þ ¼ M Y ol

n ðk � 1 k � 1j Þ þ Su
nDuðk � 1Þ
� þ Sf

nDf ðkÞ þ K1eðkÞ (20)

3.3 Dynamic Control Module
Take modeling time domain n, forecast time domain p, control time domain m, and satisfy

m � p � nþ m. At each time k, if Y ol
n ðkjkÞ is known, ol

p ðkjkÞ ¼ ½yolðk þ 1jkÞ;…; yolðk þ pjkÞ�T can be
obtained. When p > n, yolðk þ jjkÞ ¼ yolðk þ njkÞ, j > n. And the predicted value already includes the
influence of interference and feedback correction of prediction errors. According to Eqs. (11) and (12),
the closed-loop prediction equation is obtained as shown in Eq. (21):

Y pðkjkÞ ¼ Y ol
p ðkjkÞ þ SuD~uðkjkÞ (21)

where, Su ¼

su1 0
su2 su1
..
. ..

. . .
.

sup sup�1 � � � sup�mþ1

2
6664

3
7775, D~uðkjkÞ¼ DuðkjkÞ;Duðk þ 1jkÞ; � � � ;Duðk þm� 1jkÞ½ �T,

Y pðkÞ ¼ ½yðk þ 1 kj Þ; yðk þ 2 kj Þ; � � � ; yðk þ p kj Þ�T .
The optimization process of predictive control is repeated online, and the optimization criterion is

minimized at each moment to achieve optimization, that is, rolling optimization. Choose the optimal
objective function as follows:
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J ðkÞ ¼
Xp
i¼1

jjwðk þ iÞ � yðk þ ijkÞjj2Q þ
Xm
j¼1

jjDuðk þ j� 1jkÞjj2R (22)

s.t.: ymin � yðk þ ijkÞ � ymax, i ¼ 1;…; p

umin � uðk þ jjkÞ þ Duðk þ jjkÞ � umax, j ¼ 0;…;m� 1

The molten salt fluid selected in the project is composed of 60% NaNO3 and 40% KNO3. Its melting
point is about 220°C, and its vaporization point is about 600°C. The expected operating temperature
range is 290°C to 550°C. The molten salt flow rate varies from 0 kg/s to 50 kg/s. From Eqs. (7)–(10), it
is known that the range of the variable affects the parameters of the transfer function of the linearized
model. Therefore, the expected range of differences between variables will be used to calculate
uncertainty. Considering the range of variables, take the operating point parameter values as:
�v ¼ 31:29 kg=s, �Tfo ¼ 290�C, �Tfi ¼ 550�C.

According to the necessary conditions for taking extreme values @J=@D~u ¼ 0, we can get:

D~uðkÞ ¼ ðSuTQSu þ RÞ�1SuTQ½W pðkÞ � Y pðkÞ� (23)

where, DT ¼ ðSuTQSu þ RÞ�1SuTQ is the control vector, Q ¼ diagðq1 � � � qpÞ and R ¼ diagðr1 � � � rmÞ are
the error weight matrix and the control weight matrix, respectively. W pðkÞ is the desired output sequence,
and W pðkÞ ¼ ½wðk þ 1Þ;wðk þ 2Þ; � � � ;wðk þ pÞ�T.

So far, DMC has obtained the optimal control variable matrix that should be applied at each time, but
DMC uses rolling optimization. At each time k, DMC only selects the first parameter in the optimal control
variable matrix as the actual application. The amount of control, that is:

DuðkÞ ¼ 1 0 � � � 0½ �D~uðkÞ (24)

4 Simulation Experiment Analysis

4.1 Collector Model Verification
The collector model verification is carried out by comparing with the actual operating data of Dacheng

Dunhuang Linear Fresnel Power Plant. Use the solar radiation intensity I, the ambient temperature Ta, the
collector molten salt inlet temperature Tfi and the molten salt flow rate v as input to the collector model
established above, and simulate the model. The comparison between the steady-state simulation results of
the collector and the experimental data of the Dacheng Dunhuang LF Power Station is shown in Tab. 2,
the relative errors of the collector outlet temperature and the experimentally measured value of the
collector outlet temperature are 0.2%, 0.1%, 0.3%, 0.3%, respectively. The simulation results are basically
consistent with the experimental results, which proves that the steady-state results of the model are
correct and reasonable.

4.2 KFDMC Control System Simulation Experiment
In this section, two different weather conditions are used to analyze the performance of the controller.

Take the sampling time Ts = 1 min, use Eq. (7) to obtain the input and output step sampling sequence
fsui ; i ¼ 1; 2;…; ng, and use Eqs. (8)–(10) to get the step sampling sequence fsfi ; i ¼ 1; 2;…; ng with
measurable disturbance. Assume that the unmeasurable disturbance gðkÞand measurement noise nðkÞare
independent Gaussian white noise with variances of 0.8 and 1.

The simulation data of the measurable disturbances I, Ta and Tfi used to simulate a day with clear weather and
no cloud cover is shown in Fig. 3. The fluctuation of solar radiation intensity is small, when the model mismatch
problem caused by unmeasured disturbance is not considered, both PID controller and DMC controller can
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achieve better control effect and can effectively suppress radiation interference, at the same time, DMC controller
has smaller overshoot and the same rise time. The simulation results are shown in Fig. 4.

Simulate a day with cloud cover and strong radiation intensity interference, the simulation data of the
measurable disturbances I, Ta and Tfi used are shown in Fig. 5. Because there are several strong
fluctuations in the irradiation intensity, the molten salt flow fluctuates greatly, which will bring big
changes to the dynamic characteristics of the heat collection field, and make the model mismatch problem
exist in the collector field model. The simulation result of the DMC controller is shown in Fig. 6. The
performance of the controller deteriorates and there is a steady-state error. The simulation effect of the
KFDMC controller is shown in Fig. 7. Due to the use of the Kalman filter to estimate the undetectable
interference, the steady-state error is effectively eliminated, and the control effect is better. The curve of
salt temperature at the outlet of the collector field in Fig. 7 is smoother and more stable than Fig. 6. In
the 60th to 70th minutes of the simulation, the DNI fluctuates between 848.22 W/m2 and 874.06 W/m2,

Table 2: Comparison table of steady-state simulation results and experimental results of collectors

Experimental parameter Tf(°C)
(test)

Tf(°C)
(simulation)

Relative deviation

I(W/m2) Ta(°C) Ti(°C) v(m/s)

1 788 31 292.7 6.78 549.4 550.5 0.2%

2 848 30 291.7 7.63 549.3 549.9 0.1%

3 920 34 293.1 8.01 549.5 551.3 0.3%

4 955 36 293.4 8.39 549.5 551.3 0.3%

Figure 3: Simulation and disturbance data for a clear day (a) Direct normal irradiation (b) Ambient
temperature (c) Inlet molten salt temperature of collector field
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and the fluctuation is small. During this period, the maximum overshoot of the outlet salt temperature of the
DMC control algorithm is 0.42%, and the maximum overshoot of the KFDMC control algorithm outlet salt
temperature is 0.27%, and the maximum deviation of the outlet salt temperature of the KFDMC controller is
63.26% of the maximum deviation of the outlet salt temperature of the DMC algorithm. In the 100th to 110th
minutes, DNI dropped sharply from 877.89 W/m2 to 520.47 W/m2, with large fluctuations. During this
period, the maximum overshoot of the DMC algorithm was 7.14%, the maximum overshoot of the
KFDMC controller was 3.39%, and the maximum deviation of the KFDMC controller outlet salt
temperature was 47.5% of the maximum deviation of the DMC algorithm outlet salt temperature.

Figure 4: PID and DMC simulation comparison

Figure 5: Perturbation data used in the heat field loop (a) Direct normal irradiation (b) Ambient temperature
(c) Inlet molten salt temperature of collector field
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Figure 6: Dynamic matrix control results without filtering (a) Outlet molten salt temperature of collector
field (b) Molten salt mass flow in collector field

Figure 7: Dynamic matrix control with Kalman filter (a) Outlet molten salt temperature of collector field (b)
Molten salt mass flow in collector field
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The observation result of the Kalman filter is shown in Fig. 8, Fig. 8b is a simulation curve of 4 h~5 h.
The result shows that the Kalman filter can estimate the state value more accurately, thus ensuring that the
control performance is not affected. Where y is the outlet molten salt temperature of the collector field
measured by the system, and yol is the open-loop predicted output estimated by steady state Kalman filter.

5 Conclusions

This paper proposes a DMC predictive controller with unmeasured interference estimation. By adding a
steady-state Kalman filter in DMC, the LF heat collection system can effectively suppress the influence of
measurement errors and unmodeled interference on the control effect. This article carries out simulation
analysis for two different interference conditions. The results show that under the condition of clear
weather and no cloud cover, the classic DMC predictive control algorithm has a good control effect, and
its performance is better than PID controller. When there is cloud cover and the intensity of solar
radiation fluctuates strongly throughout the day, considering measurement errors and model mismatch, the
DMC predictive controller with unmeasured interference estimation has better control than the classic
DMC predictive controller effect.
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Figure 8: Kalman filter observations (a) Complete observation curve (b) Observation curve of the last hour
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