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ABSTRACT

To solve the medium and long term power load forecasting problem, the combination forecasting method is
further expanded and a weighted combination forecasting model for power load is put forward. This model is
divided into two stages which are forecasting model selection and weighted combination forecasting. Based on
Markov chain conversion and cloud model, the forecasting model selection is implanted and several outstanding
models are selected for the combination forecasting. For the weighted combination forecasting, a fuzzy scale joint
evaluation method is proposed to determine the weight of selected forecasting model. The percentage error and
mean absolute percentage error of weighted combination forecasting result of the power consumption in a certain
area of China are 0.7439% and 0.3198%, respectively, while the maximum values of these two indexes of single
forecasting models are 5.2278% and 1.9497%. It shows that the forecasting indexes of proposed model are
improved significantly compared with the single forecasting models.
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1 Introduction

Medium and long term power load forecasting is the main basis of power special planning and
distribution network planning. Its forecasting accuracy is directly related to the quality of planning
scheme, and is also defined as an important index to evaluate the modernization degree of power
enterprise management. In addition, medium and long term load forecasting plays an important role in the
security and economy of power grid. Therefore, it has become an urgent problem to study the forecasting
method and improve the load forecasting accuracy in the development of power system. However, in
recent years, the power market demand has changed greatly, from the initial shortage of supply and
demand to the current overall balance of supply and demand. Some new characteristics emerge from the
change of power load, which brings a lot of complex factors to the forecasting work.

The single load forecasting model is restricted by the fixed scope of application, so it is difficult to be
used in all cases. Selecting multiple models to combine can not only make up the limitation of the
information of a single model, but also bring good properties to different models. Compared with single
forecasting model, the forecasting results of various models are more effective and comprehensive [1,2].
The research focus of combination forecasting is combination model selection and combination weight
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determination. The existing model selection [3,4] uses analog error to determine the analog accuracy based
on the error of forecasting results, and uses analog error to replace or approximate the forecasting accuracy
based on the principle of continuity, so as to carry out model selection. However, there is a lack of recognition
of the transfer law from analog accuracy to forecasting accuracy. The combination methods include constant
weight and variable weight. Variable weight combination has good adaptability, but it is difficult to reflect the
forecasting effectiveness of the model based on error theory.

At present, the commonly used combination methods include minimum variance method, variance
covariance method, optimal combination method and analytic hierarchy process [5–7]. Niu et al. [8] and
Xiao et al. [9] used Bayesian theory and structural risk minimization principle to establish the least
squares support vector machine (LSSVM) combined forecasting model for power load. Ma et al. [10]
proposed that the optimal combination forecasting technology can be divided into two parts: Model
screening and combination screening. Jiang et al. [11] further analyze the advantages and disadvantages
of the screening method, use grey correlation degree method to improve and establish variable weight
combination forecasting model. Zhou et al. [12] used entropy method, variance covariance method and
grey method to construct hierarchical structure to determine the weight of each model. To eliminate the
redundant information in the prediction method, You et al. [13] tested each prediction model for
redundancy one by one in combination, regarded the weight as a fuzzy number, and then obtained the
optimal weight coefficient through the properties of fuzzy number.

Markov chain is a stochastic process with Markov property in probability theory and mathematical
statistics and exists in discrete index set and state space, which is widely used in boundary estimation.
Wilinski [14] studied the prediction in a financial time series based on a model in the form of Markov
chains. Arruda et al. [15] focused on the computation of the steady state distribution of a Markov chain
and made use of an embedding algorithm. Zhu et al. [16] put forward a wind power time series modeling
method based on the improved Markov Chain Monte Carlo method. Wan et al. [17] optimized the
foundation pit settlement prediction model of logistic curve based on Markov chain. Cloud algorithm is
also a powerful tool for load forecasting. Wang et al. [18] proposed a new model with combination of
cloud model and support vector machine to select the parameters of the kernel function more accurately
and improve the accuracy of short-term load forecasting. Wei et al. [19] introduced a new method and
theory of power emergency group decision-making based on cloud model for the power emergency
evaluation system established by analytical hierarchy process (AHP). Wang et al. [20] proposed a new
model which is combined by the cloud model, particle swarm optimization (PSO) and LSSVM to
improve the accuracy of selecting the parameters of the kernel function, to deal with uncertainty factors
and improve the accuracy of short-term load forecasting. Liu et al. [21] proposed a method based on
cloud model and fuzzy Petri net to solve the problem that it is difficult to identify and control the
potential hazardous trading behavior in the power market.

In order to further expand the combination forecasting method, based on previous studies, this paper
applies the idea of Markov chain conversion and cloud algorithm to forecasting model selection and
proposed a weighted combination forecasting model for medium and long-term power load forecasting.
By forecasting the power consumption of the whole society in a certain area, the forecasting results show
the effectiveness of the proposed model, and its practical value is well verified.

2 Research Structure

This paper expands the combination forecasting method for the medium and long term power load
forecasting problem and proposes a weighted combination forecasting model. The flowchart of the
proposed model is shown in Fig. 1.
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As shown in Fig. 1, the proposed model is divided into two stages: Forecasting model selection and
combination forecasting. In the first stage, the forecasting accuracy boundary of forecasting model is
determined by Markov chain conversion, and then the estimated forecasting effectiveness is determined
by cloud algorithm. After this, the comprehensive effectiveness of forecasting model can be obtained by
integrating the analog effectiveness and estimated forecasting effectiveness. According to the
comprehensive effectiveness of forecasting model several outstanding models are selected for
the combination forecasting. In the second stage, fuzzy scale joint evaluation is carried out to determine
the weight of selected forecasting model. Based on the model weight and single model forecasting value,
weighted combination forecasting is implemented.

3 Forecasting Model Selection

It is assumed that there are m history years and the power load of history year i is qi, here i = 1, 2,…, m.
There are n forecasting years and the forecasting power load of forecasting year j is #j, here j = 1, 2…n. There
are k alternatives of forecasting models. Through forecasting model l, the analog value of power load of
history year i is q0l;i while the forecasting value of power load of forecasting year j is #0

l;j, here l = 1, 2…k.

For forecasting model l, the analog value relative error gl;i of history year i and forecasting value relative
error gl;j of forecasting year j are:

gl;i ¼ ðqi � q0l;iÞ
�
qi (1)

gl;j ¼ ð#j � #0
l;jÞ

�
#j (2)

...
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Figure 1: The flowchart of the proposed weighted combination forecasting model
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If 0 � gl;i
�� �� � 1, the analog accuracy of history year i is hl;i ¼ 1� gl;i

�� ��; If gl;i
�� �� > 1, the analog

accuracy of history year i is hl;i ¼ 0. Similarly, if 0 � gl;j
�� �� � 1, the forecasting accuracy of forecasting

year j is hl;j ¼ 1� gl;j
�� ��; If gl;j

�� �� > 1, the forecasting accuracy of history year i is hl;j ¼ 0.

Next the analog effectiveness ll and forecasting effectiveness ml of forecasting model l are:

ll ¼
Pm
i¼1

hl;i

m
ð1� rðhl;iÞÞ (3)

ml ¼

Pn
j¼1

hl;i

n
ð1� rðhl;jÞÞ (4)

Here rðhl;iÞ is the standard deviation of hl;i and rðhl;jÞ is the standard deviation of hl;j.

The comprehensive effectiveness of forecasting model l is defined by Eqs. (3) and (4), which
characterizes the credibility of the forecasting model. In the future forecasting interval, the practical
power load value has not yet appeared and the forecasting value relative error (Eq. (2)) cannot be
obtained. The accuracy and the effectiveness of a forecasting model can only be estimated based on its
inherent property. After that, the forecasting models are screened and the better forecasting models are
selected to implement combination forecasting.

The accuracy of forecasting model is an inherent property. The analog accuracy, which can be obtained
by the virtual forecasting for the multi-time power load, is a performance of the accuracy of forecasting
model. Through forecasting model l the power load of history year i is forecasted. Then the analog
accuracy sequence is obtained as fhl;1; hl;2;…; hl;mg. In fhl;1; hl;2;…; hl;mg, the expectation and the
standard deviation of the analog accuracy of each history year show the property of the forecasting
model. As everyone knows, randomness and discreteness always appear in analog accuracy sequence
fhl;1; hl;2;…; hl;mg. In view of this, Markov chain conversion matrix [22] can be adopted to describe the
conversion principle. The accuracy boundary is estimated based on Markov chain by the following steps.

Step 1: For forecasting model l the distribution interval of analog accuracy of history year i can be
equally divided into ml subintervals which are $l;1; $l;2;…; $l;ml , here ml � m. Each subinterval can be
treated as an analog accuracy status. All analog accuracy statuses form a status sequence
f$l;1; $l;2;…; $l;mlg.

Step 2: Based on the analog accuracy of forecasting model l of history year i, it is assumed that the
appearance number of analog accuracy status $l;s is ANl;s, here s ¼ 1; 2;…;ml and ANl;s < m. It means
that there are ANl;s times belonging to analog accuracy status $l;s. Assuming that the conversion times
from status $l;g to status $l;s is Clðg; sÞ. Therefore, the conversion probability of forecasting model l
from status $l;g to status $l;s is obtained as:

Plðg; sÞ ¼ Clðg; sÞ
ANl;s

(5)

Step 3: The 1st order status conversion matrix of forecasting model l is constructed as:

Pð1Þ
l ¼ Plðg; sÞ½ �m0�m0 (6)

1502 EE, 2021, vol.118, no.5



Then the qth order status conversion matrix of forecasting model l is obtained as:

PðqÞ
l ¼ ðPð1Þ

l Þq (7)

Step 4: For forecasting model l, the appearance numbers of every analog accuracy status form an initial
vector ANl as:

ANl ¼ ANl;1;ANl;2;…;ANl;ml

� �
(8)

A new status matrix of forecasting model l can be obtained by multiplying initial vector ANl and qth

order status conversion matrix PðqÞ
l :

Pl ¼ ANl � PðqÞ
l (9)

Step 5: The sum of every column of Pl is calculated one by one. Assuming that the column with the
maximum sum is column s, the forecasting accuracy belongs to accuracy status $l;s. Therefore, the
accuracy boundary estimation of forecasting model l is obtained.

In m history years, affected by various kinds of factors, analog accuracy sequence fhl;1; hl;2;…; hl;mg of
forecasting model l obviously has the features of random variables. Therefore, the forecasting accuracy is
equivocal in the accuracy boundary (obtained in Step 5). The non-determinacy in the accuracy boundary
can be described by the concepts of expectation, entropy and hyper-entropy in cloud model theory [23].
Then the accuracy can be estimated quantitatively by the following steps.

Step 6: Based on reverse cloud algorithm, analog accuracy sequence fhl;1; hl;2;…; hl;mg is treated as the
input of cloud model while expectation al, entropy bl and hyper-entropy cl is the output of cloud model. The
reverse cloud algorithm is:

(1) Expectation:

al ¼
Pm
i¼1

hl;i

m
(10)

(2) 1st order absolute center distance:

�1 ¼ 1

m

Xm
i¼1

hl;i � al
�� �� (11)

(3) 2nd order absolute center distance:

�2 ¼ 1

m� 1

Xm
i¼1

ðhl;i � alÞ2 (12)

(4) Entropy:

bl ¼
ffiffiffi
p
2

r
�1 (13)

(5) Hyper-entropy:

cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � ðblÞ2

q
(14)
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Step 7: By treating expectation al, entropy bl and hyper-entropy cl as the input of forward cloud
generator and treating accuracy boundary $l;s as constraint, the accuracy is estimated quantitatively by
forward cloud model. The forward cloud algorithm is:

(1) A normal random number is generated with an expectation of bl and a variance of cl:

� ¼ NORMðbl; clÞ (15)

(2) In accuracy boundary $l;s, normal random forecasting accuracy is generated with an expectation of
al and a variance of �:

hl;j ¼ NORMðal;�Þ (16)

Next forecasting model selection is carried out based on the comprehensive effectiveness of each
forecasting model. In m history years and n forecasting years, the comprehensive effectiveness of
forecasting model l is defined based on Eqs. (3) and (4) as:

el ¼ � � ll þ g � ml (17)

Here, ll is the analog effectiveness of forecasting model l in m history years and ml is the estimated
forecasting effectiveness of forecasting model l in n forecasting years. � and g are the importance factors
of analog effectiveness and forecasting effectiveness respectively which satisfy:

�þ g ¼ 1
� > 0; g > 0

�
(18)

The threshold value of forecasting model selection is determined by:

�e ¼
Pk
l¼1

el

k
(19)

When el is greater than or equal to threshold value �e, forecasting model l is selected for the subsequent
combination forecasting.

4 Combination Forecasting

It is assumed that there are h selected forecasting models, here h < k. How to determine the weight of
each model is a key problem in combination forecasting. In the weight determination problem, expert
evaluation method can make full use of the experience and wisdom of experts. In this paper, the expert
evaluation method is introduced into the determination of forecasting model weight. Experts make a
judgment on the principle of the model, the degree of agreement with the actual situation and the
forecasting effect, so as to determine the weight of the model. In the traditional expert evaluation method,
the accurate scale value is used to express the experts’ evaluation on the importance of different objects
[24]. Compared with the accurate scale value, the fuzzy scale value can better reflect the uncertainty of
expert evaluation. In addition, compared with the single expert evaluation, the joint evaluation of multiple
experts is more reasonable. Therefore, this paper proposes a fuzzy scale joint evaluation method to
determine the weight of forecasting model. In proposed method, trapezoid fuzzy number is used to
express the experts’ evaluation on the importance of different forecasting models and rough boundary
interval is used to integrate the judgments of different experts. Its detailed process is as following.

Step 1: It is assumed that there are t experts. For h selected forecasting models, each expert evaluates the
relative importance of any two selected forecasting models. The fuzzy reciprocal evaluation matrix given by
expert r (r = 1, 2, …, t) is as:
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~Er ¼ ~erx;y

h i
h�h

(20)

Here ~erx;y is the evaluation score of model x relative to model y given by expert r. ~erx;y is a trapezoid fuzzy
number scale and ~erx;y¼ ðnrx;y;&rx;y;wr

x;y; f
r
x;yÞ. If x = y, ~erx;y = (1,1,1,1). The next step can only be carried out after

t evaluation matrices are qualified in consistency inspection. Otherwise, the corresponding expert will adjust
his evaluation matrix.

Step 2: The joint evaluation matrix is constructed as:

~E ¼ ~ex;y

h i
h�h

(21)

Here ~ex;y¼ f~e1x;y;~e2x;y;…;~etx;yg.
Step 3: According to rough sets theory [25,26], the rough boundary interval of ~erx;y in ~ex;y can be

expressed as:

RBIð~erx;yÞ ¼ Lð~erx;yÞ;Lð~erx;yÞ
h i

(22)

Lð~erx;yÞ ¼

P
~e
r
x;y�~erx;y

~e
r
x;y

Nð~erx;yÞ
(23)

Lð~erx;yÞ ¼

P
~erx;y�~erx;y

~erx;y

Nð~erx;yÞ
(24)

Here Lð~erx;yÞ is the rough lower boundary of RBIð~erx;yÞ and Lð~erx;yÞ is the rough upper boundary of
RBIð~erx;yÞ, Nð~erx;yÞ means the number of the elements which smaller than or equal to ~erx;y and Nð~erx;yÞ
means the number of the elements which bigger than or equal to ~erx;y.

Then the rough boundary interval of ~ex;y can be expressed as:

RBIð~ex;yÞ ¼ Lð~ex;yÞ;Lð~ex;yÞ
h i

(25)

Lð~ex;yÞ ¼
Pt
r¼1

Lð~erx;yÞ
t

(26)

Lð~ex;yÞ ¼
Pt
r¼1

Lð~erx;yÞ
t

(27)

Step 4: The rough boundary interval evaluation matrix is constructed as:

~� ¼ RBIð~ex;yÞ
h i

h�h
(28)

Then ~� is divided into two matrices as:

~� ¼ Lð~ex;yÞ
h i

h�h
(29)

�~� ¼ Lð~ex;yÞ
h i

h�h
(30)

Here ~� is the rough lower boundary matrix and �~� is the rough upper boundary matrix.
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Based on the gravity formula of trapezoid fuzzy number [24,27], ~� and �~� are converted to � and ��
which are real number form respectively. Then the eigenvectors of � and �� corresponding to maximum
eigenvalues are obtained respectively as:

x ¼ x1;x2;…;xh½ �T (31)

�x ¼ �x1; �x2;…; �xh½ �T (32)

Step 5: After averaging the two eigenvectors obtained by Eqs. (31) and (32), the weight vector of h
selected forecasting models is obtained as:

x ¼ x1;x2;…;xh½ �T (33)

Here xx ¼ xx þ �xx

2
is the initial weight value of selected forecasting model x. Then the initial weight

value is normalized as:

xx ¼ xx

Ph
x¼1

xx

(34)

Assuming that the forecasting value of power load of selected forecasting model x for forecasting year j
is #0

x;j, the weighted combination forecasting is implemented as:

#0
j ¼

Xh
x¼1

xx#
0
x;j (35)

5 Case Study

The rural electricity consumption data of Jiangsu Province from 2005 to 2016 are selected to establish
the model. The data are from China Statistical Yearbook 2017 (Tab. 1), and the unit of electricity
consumption in this paper is 100 million kWh. The years 2005 to 2015 are history years and 2016 is
forecasting year. The electricity consumption of 2016 shown in Tab. 1 is taken as validation data.

Table 1: The rural electricity consumption data of Jiangsu Province from 2005 to 2016

Year Electricity consumption

2005 825.10

2006 1011.79

2007 1159.03

2008 1234.14

2009 1316.62

2010 1472.89

2011 1606.83

2012 1696.41

2013 1801.86

2014 1834.93

2015 1836.19

2016 1869.27
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The initial forecasting models are (1) Hyperbola model; (2) COMPERTZ model; (3) Exponential model;
(4) Power function model; (5) Cubic curve model; (6) S-curve model; (7) Logarithm model; (8) Para-curve
model. Their analog and forecasting electricity consumption values are shown in Tabs. 2 and 3.

Assuming that analog effectiveness and forecasting effectiveness are equally important, � = g = 0.5.
According to the comprehensive effectiveness calculation approach based on Markov chain conversion
and cloud model (Eq. (17)), the comprehensive effectiveness of each forecasting model is obtained as
shown in Tab. 4.

Table 2: The analog and forecasting electricity consumption values of eight forecasting models

Year Forecasting models

1 2 3 4 5 6 7 8

2005 822.69 821.12 826.76 863.99 840.05 858.84 882.74 855.96

2006 1023.33 1027.77 984.71 1026.35 995.07 1101.78 1016.71 982.05

2007 1141.42 1139.85 1130.48 1170.52 1127.80 1197.08 1186.62 1111.89

2008 1235.14 1231.57 1264.06 1249.16 1248.20 1240.51 1260.73 1241.93

2009 1338.19 1337.61 1385.45 1352.43 1362.85 1403.59 1409.02 1368.64

2010 1460.63 1463.49 1494.66 1481.78 1474.96 1504.77 1470.10 1488.47

2011 1592.99 1595.85 1591.68 1637.57 1584.38 1628.02 1605.40 1597.88

2012 1713.36 1712.79 1676.52 1722.48 1687.55 1749.42 1724.59 1693.34

2013 1797.78 1794.20 1749.17 1886.36 1777.57 1798.29 1857.53 1771.30

2014 1833.67 1832.09 1809.64 1923.04 1844.14 1855.39 1912.38 1828.22

2015 1836.47 1840.90 1857.92 1890.13 1873.59 1928.27 1899.87 1860.57

Table 3: The forecasting electricity consumption values of eight forecasting models

Year Forecasting models

1 2 3 4 5 6 7 8

2016 1869.39 1869.54 1894.01 1867.82 1848.89 1868.28 1864.81 1869.39

Table 4: The comprehensive effectiveness of each forecasting model

Forecasting model Comprehensive effectiveness

1 87.45%

2 88.25%

3 87.84%

4 74.54%

5 86.61%

6 75.33%

7 77.09%

8 84.66%
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According to Eq. (19), the threshold value of forecasting model selection is 82.72%. Therefore
forecasting models 1, 2, 3, 5 and 8 are selected for the subsequent combination forecasting. These models
correspond to selected forecasting models (SFM) 1, 2, 3, 4 and 5 in turn. Based on the fuzzy scale joint
evaluation method proposed in Section 4, it is assumed that there are four experts to determine the weight
of selected forecasting model. This paper uses the trapezoid fuzzy number scale proposed in Reference
[24,27] to express the evaluation score of expert. The traditional nine-level comparison scale is improved
as shown in Tab. 5. For example, the scale value of comparison scale “level 2: Strong inferior” is 2,
which can firstly be converted to 2/8. Then real number “2” corresponds to trapezoid fuzzy number (1,
1.5, 2.5, 3) while real number “8” corresponds to trapezoid fuzzy number (7, 7.5, 8.5, 9). Lastly based on
the operation rules of trapezoid fuzzy number the trapezoid fuzzy number scale of “level 2: strong
inferior” can be obtained as (0.11, 0.18, 0.33, 0.43), which is shown in Tab. 5.

The fuzzy reciprocal evaluation matrices given by the four experts are shown in Tabs. 6, 7, 8 and 9.

Table 5: The relationship between traditional nine-level comparison scale and improved fuzzy scale

Nine-level comparison scale Traditional scale Trapezoid fuzzy number scale

level 1: extremely inferior 1 (0.11,0.11,0.18,0.25)

level 2: strong inferior 2 (0.11,0.18,0.33,0.43)

level 3: obviously inferior 3 (0.25,0.33,0.54,0.67)

level 4: slightly inferior 4 (0.43,0.54,0.82,1.00)

level 5: identical 5 (1.00,1.00,1.00,1.00)

level 6: slightly superior 6 (1.00,1.22,1.86,2.33)

level 7: obviously superior 7 (1.50,1.86,3.00,4.00)

level 8: strongly superior 8 (2.33,3.00,5.67,9.00)

level 9: extremely superior 9 (4.00,5.67,9.00,9.00)

Table 6: The fuzzy reciprocal evaluation matrix given by expert 1 (~E1 ¼ ~e1x;y

h i
5�5

)

SFM 1 SFM 2 SFM 3 SFM 4 SFM 5

SFM 1 / level 1 level 3 level 4 level 5

SFM 2 / / level 7 level 8 level 8

SFM 3 / / / level 6 level 7

SFM 4 / / / / level 6

SFM 5 / / / / /

Table 7: The fuzzy reciprocal evaluation matrix given by expert 2 (~E2 ¼ ~e2x;y

h i
5�5

)

SFM 1 SFM 2 SFM 3 SFM 4 SFM 5

SFM 1 / level 5 level 6 level 7 level 7

SFM 2 / / level 7 level 7 level 6

SFM 3 / / / level 6 level 6

SFM 4 / / / / level 8

SFM 5 / / / / /
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Evaluation matrices ~E1, ~E2, ~E4 and ~E4 are qualified in consistency inspection according to the

consistency inspection approach [24,27]. Then the joint evaluation matrix is constructed as ~E ¼ ~ex;y

h i
5�5

and ~ex;y ¼ f~e1x;y;~e2x;y;~e3x;y;~e4x;yg. For example, ~e11;2 = (0.11,0.11,0.18,0.25), ~e21;2 = (1.00,1.00,1.00,1.00),

~e31;2 = (4.00,5.67,9.00,9.00), ~e41;2 = (1.00,1.00,1.00,1.00), so ~e1;2 = {(0.11,0.11,0.18,0.25),
(1.00,1.00,1.00,1.00), (4.00,5.67,9.00,9.00), (1.00,1.00,1.00,1.00)}.

Next the rough boundary interval of ~e1;2 is calculated according to Eqs. (22)–(27).

For ~e11;2 in ~e1;2, the rough upper boundary is:

Lð~e11;2Þ = ((0.11,0.11,0.18,0.25) + (1.00,1.00,1.00,1.00) + (4.00,5.67,9.00,9.00) + (1.00,1.00,1.00,1.00))/4

= (1.53,1.94,2.79,2.81).

And the rough lower boundary is Lð~e1;2Þ = (0.11,0.11,0.18,0.25)/1 = (0.11,0.11,0.18,0.25).

Then the rough boundary interval of ~e11;2 in ~e1;2 is obtained as RBIð~e11;2Þ = [(0.11,0.11,0.18,0.25),
(1.53,1.94,2.79,2.81)]. By same way:

RBIð~e21;2Þ = [(0.70,0.70,0.73,0.75),(2.00,2.56,3.67,3.67)],

RBIð~e31;2Þ = [(1.53,1.94,2.79,2.81),(4.00,5.67,9.00,9.00)],

RBIð~e41;2Þ = [(0.70,0.70,0.73,0.75),(2.00,2.56,3.67,3.67)].

According to Eqs. (25)–(27), The rough boundary interval of ~e1;2 is obtained as RBIð~e1;2Þ =
[(0.76,0.86,1.11,1.14),(2.38,3.18,4.78,4.79)]. After calculating the rough boundary interval of all elements

in ~E ¼ ~ex;y

h i
5�5

, rough boundary interval evaluation matrix is constructed as shown in Tab. 10.

Table 8: The fuzzy reciprocal evaluation matrix given by expert 3 (~E3 ¼ ~e3x;y

h i
5�5

)

SFM 1 SFM 2 SFM 3 SFM 4 SFM 5

SFM 1 / level 9 level 6 level 7 level 7

SFM 2 / / level 1 level 3 level 3

SFM 3 / / / level 5 level 7

SFM 4 / / / / level 1

SFM 5 / / / / /

Table 9: The fuzzy reciprocal evaluation matrix given by expert 4 (~E4 ¼ ~e4x;y

h i
5�5

)

SFM 1 SFM 2 SFM 3 SFM 4 SFM 5

SFM 1 / level 5 level 8 level 8 level 5

SFM 2 / / level 6 level 7 level 6

SFM 3 / / / level 7 level 5

SFM 4 / / / / level 3

SFM 5 / / / / /
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According to Eqs. (29) and (30), ~� ¼ RBIð~ex;yÞ
h i

5�5
is divided into two matrices as: ~� ¼ Lð~ex;yÞ

h i
5�5

and �~� ¼ Lð~ex;yÞ
h i

5�5
. As shown in Tabs. 11 and 12, ~� and �~� are converted to � and �� which are real

number form, respectively.

The eigenvectors of � and �� corresponding to maximum eigenvalues are obtained respectively as
x = [0.56,0.53,0.46,0.28,0.33]T and �x = [0.56,0.55,0.45,0.29,0.31]T. According to Eqs. (33) and (34),
the weight vector of five selected forecasting models is obtained as x = [0.26,0.25,0.21,0.13,0.15]T. Then
according to Eq. (35), the weighted combination forecasting result is obtained as shown in Tab. 13.

Table 10: The rough boundary interval evaluation matrix ~� ¼ RBIð~ex;yÞ
h i

5�5

� 	
SFM 1 SFM 2 SFM 3 SFM 4 SFM 5

SFM 1 [(1,1,1,1),(1,1,1,1)] [(0.76,0.86,1.11,1.14),
(2.38,3.18,4.78,4.79)]

[(0.72,0.91,1.46,1.95),
(1.59,2.02,3.60,5.42)]

[(1.04,1.30,2.12,2.88),
(1.83,2.32,4.14,6.21)]

[(1.13,1.21,1.50,1.75),
(1.38,1.64,2.50,3.25)]

SFM 2 [(0.76,0.87,1.11,1.14),
(2.38,3.18,4.78,4.79)]

[(1,1,1,1),(1,1,1,1)] [(0.68,0.83,1.30,1.71),
(1.34,1.66,2.66,3.52)]

[(0.95,1.20,1.99,2.72),
(1.82,2.31,4.12,6.19)]

[(0.72,0.91,1.46,1.95),
(1.59,2.02,3.60,5.42)]

SFM 3 [(0.34,0.45,0.72,0.91),
(0.92,1.15,1.83,2.40)]

[(0.51,0.70,1.11,1.24),
(2.17,3.05,4.84,4.92)]

[(1,1,1,1),(1,1,1,1)] [(1.03,1.16,1.52,1.80),
(1.24,1.51,2.35,3.05)]

[(1.13,1.27,1.71,2.08),
(1.40,1.71,2.71,3.57)]

SFM 4 [(0.23,0.31,0.52,0.66),
(0.60,0.75,1.16,1.45)]

[(0.26,0.35,0.59,0.76),
(0.84,1.05,1.71,2.25)]

[(0.38,0.47,0.70,0.84),
(0.69,0.75,0.89,0.98)]

[(1,1,1,1),(1,1,1,1)] [(0.42,0.51,0.86,1.21),
(1.53,1.95,3.54,5.43)]

SFM 5 [(0.44,0.50,0.65,0.75),
(0.81,0.83,0.88,0.92)]

[(0.34,0.45,0.72,0.91),
(0.92,1.15,1.83,2.40)]

[(0.32,0.40,0.61,0.74),
(0.67,0.72,0.84,0.92)]

[(0.64,0.86,1.40,1.64),
(2.56,3.54,5.64,5.94)]

[(1,1,1,1),(1,1,1,1)]

Table 11: The rough lower boundary matrix with real number form (�)

SFM 1 SFM 2 SFM 3 SFM 4 SFM 5

SFM 1 1 0.97 1.27 1.85 1.40

SFM 2 0.97 1 1.14 1.73 1.27

SFM 3 0.61 0.89 1 1.38 1.55

SFM 4 0.43 0.49 0.60 1 0.76

SFM 5 0.59 0.61 0.52 1.14 1

Table 12: The rough upper boundary matrix with real number form (��)

SFM 1 SFM 2 SFM 3 SFM 4 SFM 5

SFM 1 1 3.77 3.21 3.68 2.21

SFM 2 3.77 1 2.31 3.66 3.21

SFM 3 1.59 3.73 1 2.05 2.36

SFM 4 0.99 1.47 0.83 1 3.17

SFM 5 0.86 1.59 0.79 4.41 1
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The percentage error (PE) of single forecasting models (SFM 1, 2, 3, 4 and 5) and weighted combination
forecasting model are compared as shown in Tab. 14, while the mean absolute percentage error (MAPE) of
single forecasting models (SFM 1, 2, 3, 4 and 5) and weighted combination forecasting model are compared
as shown in Tab. 15.

Table 13: The weighted combination forecasting result

Year Electricity consumption

2005 825.07

2006 1011.77

2007 1160.16

2008 1229.39

2009 1325.56

2010 1465.80

2011 1603.85

2012 1709.03

2013 1788.64

2014 1842.19

2015 1834.06

2016 1869.54

Table 14: The comparison of PE of single forecasting models (SFM 1, 2, 3, 4 and 5) and weighted combination
forecasting model

Year SFM 1 SFM 2 SFM 3 SFM 4 SFM 5 Weighted combination
forecasting model

2005 1.8119% 3.7402% 0.2012% –0.2921% –0.4824% –0.0036%

2006 –1.6525% –2.9393% –2.6764% 1.1406% 1.5794% –0.0020%

2007 –2.6945% –4.0672% –2.4633% –1.5194% –1.6548% 0.0975%

2008 1.1393% 0.6312% 2.4244% 0.0810% –0.2082% –0.3849%

2009 3.5113% 3.9510% 5.2278% 1.6383% 1.5942% 0.6790%

2010 0.1405% 1.0578% 1.4780% –0.8324% –0.6382% –0.4814%

2011 –1.3972% –0.557% –0.9429% –0.8613% –0.6833% –0.1855%

2012 –0.5223% –0.181% –1.1725% 0.9992% 0.9656% 0.7439%

2013 –1.3481% –1.696% –2.9242% –0.2264% –0.4251% –0.7337%

2014 0.5019% –0.3657% –1.3783% –0.0687% –0.1548% 0.3957%

2015 2.0368% 1.3277% 1.1834% 0.0152% 0.2565% –0.1160%

2016 –1.0903% –0.2386% 1.3235% 0.0064% –0.0776% 0.0144%

Table 15: The comparison of MAPE of single forecasting models (SFM 1, 2, 3, 4 and 5) and weighted
combination forecasting model

SFM 1 SFM 2 SFM 3 SFM 4 SFM 5 Weighted combination forecasting model

1.4872% 1.7294% 1.9497% 0.6401% 0.7267% 0.3198%
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Figs. 2 and 3 are error analysis of single forecasting models (SFM 1, 2, 3, 4 and 5) and weighted
combination forecasting model. As can be seen in Fig. 2, the maximum PEs of SFM 1, 2, 3, 4 and 5 are
3.5113%, –4.0672%, 5.2278%, 1.6383% and –1.6548%, respectively, while the maximum PE of
weighted combination forecasting model is only 0.7439%, which is greatly reduced. In Fig. 3, the MAPE
of weighted combination forecasting model is only 0.3198%. Compared with single forecasting models,
the MAPE of weighted combination forecasting model is also greatly reduced.

It can be seen that this weighted combination forecasting model can effectively improve the forecasting
accuracy and increase the credibility of the model. In load forecasting with abundant historical information,
combination forecasting model can synthesize information from various single models, which not only
improves the accuracy of load forecasting, but also has strong operability.

6 Conclusions

The forecasting model selection is applied to weighted combination forecasting, and the rural electricity
consumption data of a province in China is forecasted. The weighted combination forecasting results show
that the forecasting indexes PE and MAPE are improved significantly compared with the single forecasting
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models. The forecasting accuracy has been greatly improved, proving that the forecasting method is effective
and feasible, and has played a role in expanding the combined forecasting method. Compared with other
combination methods, the weighted combination forecasting based on fuzzy scale joint evaluation
method, which is based on the experience and wisdom of experts, is more practical and easier to
implement. However, all experts are treated equal in the fuzzy scale joint evaluation. Obviously, the
ability of experts is different and this problem will be considered in future work.
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