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ABSTRACT

A three dimensional (3D) numerical wave flume is used to investigate carefully the ISWs (Internal solitary wave)
forces acting on cylinders interacting with a stratified shear environment. Using the Large-Eddy Simulation (LES)
approach and analyzing the distribution of shear stress and pressure along the surface of the cylinder, the differ-
ential pressure resistance and the viscous force are obtained. The method of multiple linear regression analysis is
adopted and a comprehensive influence coefficient is determined accordingly to account for the dimensionless
forces acting on the cylinder. Results show that the differential pressure resistance on a square cylinder is 1.5 times
higher than that on a circular cylinder in the upper layer, while the differential pressure resistance on a square
cylinder is 3.5 times larger than that on a circular cylinder in the lower layer. The viscous force is 1–2 orders
of magnitude smaller than the differential pressure resistance, which means that the viscous force could be
ignored. The comprehensive influence coefficient shows positive correlation with the relative wave height and
negative correlation with upper and lower water depth ratio.
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1 Introduction

Internal waves (IWs) usually occur in fluids with stable density stratification. Stable stratified flow exists
in oceans, estuaries, and lakes, while fluid density varies along the vertical direction induced by temperature
and salinity differences and other environmental conditions [1]. In such an environment, IWs carrying
enormous energy can be produced by a small perturbation at the density interface (pycnocline) [2].
Internal solitary waves (ISWs) are a particular type of nonlinear IW with a large amplitude, short period,
and considerable energy [3]. Large amplitude ISWs significantly impact the safety and stability of
underwater structures in coasts and estuaries with complex hydrodynamic environments [4].

During the propagation of ISWs, fluid in the upper and lower layers, bounded by the pycnocline, flows
in opposite directions. The enormous energy carried by the strong shear flow will lead to an unusually high
velocity. The maximum wave-induced force on a cylinder exerted by an ISW with a velocity of 2.1 m/s is
equivalent to the force exerted by a surface wave with a wavelength of 300 m and a wave height of 18 m [5].
This strong force could be a severe threat to underwater structures, such as oil drilling platforms or supporting
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cylinders [6]. It is of great significance to carry out in-depth research on the mechanism of ISW dynamics and
ISW-induced forces on underwater structures.

The horizontal force on cylinders can be divided into differential pressure resistance and frictional
resistance(viscous force) [7]. The differential pressure resistance is the horizontal force generated by the
pressure difference between the windward side (upstream surface) and leeside (downstream surface) of
the cylinder, while the viscous force is the horizontal force generated by fluid viscosity. Most previous
studies have focused on the overall force on a cylinder exerted by ISWs and very few studies have
precisely obtained the force distribution on different parts of the cylinder in the upper layer or in the
lower layer [8–10]. The detailed mechanical characteristics of the cylinders are still not fully studied.

In the current research, a three-dimensional (3D) numerical wave flume is used to investigate the ISW
forces acting on cylinders meticulously through a large-eddy Simulation (LES) approach. By extracting the
pressure distribution and tangential velocity of the cylinder based on the numerical simulation results, the
infinitesimal method is adopted to obtain the differential pressure resistance and the viscous force on the
cylinder in each layer by the method of integration. Finally, the vertical distribution of the IWS forces
along depth can be obtained to reveal the force mechanism of the cylinder in the stratified flow environment.

2 Mathematical Model

2.1 Governing Equations
Based on Navier-Stokes (N-S) equations, the moving course of 3D unsteady incompressible fluid can be

expressed by:
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where ρ is the density; t is the time; ui is the velocity component; p is the pressure; mis the kinetic viscosity
and fi is the body force.

2.2 Scalar Transport Equation
In current investigation, the internal solitary wave is generated by the salinity variation in a two-phase

flow system. The convective-diffusive effect can be described by the following equation:
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where C represents a scalar volume concentration ranging from 0 to 1, and the fluid density difference
between the two layers can be dominated by the equation: ρ = Cρlow + (1 – C)ρup, (ρlow and ρup are the
designed fluid density in the two-layer system, respectively); k is the molecular diffusivity coefficient;
and S is the source or sink term.

2.3 Turbulence Model
The turbulence is simulated by Large-eddy simulation (LES) in this paper by using a spatial filter to the

two governing equations above [11]. Therefore, the space filtered Eqs. (1)–(3) can be expressed (denoted by
an overbar) as:
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where τij is the sub-grid stress tensor and χj is the Sub-Grid Scale (SGS) flux. The former is used for the
momentum exchange between the SGS and the resolved scale (RS), and the latter is applied for the scalar
transport between the SGS and the RS. The two parameters can be defined by the formulas below:

sij ¼ uiuj � uiuj (7)

vj ¼ Cuj � Cuj (8)

Actually, SGS tensor τij can be decomposed into an off-diagonal tensor τtij and a diagonal tensor τtkk
yielding these formulas:

stij ¼ sij � dij
3
stkk ¼ �2mtSij (9)

vj ¼ �kt
@C

@xj
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where νt is the turbulent eddy viscosity; Sij is the strain rate tensor; kt is the eddy diffusion coefficient. νt and
Sijcan be solved by:
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where Cs is the Smagorinsky constant and varing in time and space because of the stratified strong shear
environment, which can be determined by a dynamic procedure developed by Germano et al. [12]; Δ is
the filtered scale.

2.4 Differential Pressure Resistance on Cylinder
2.4.1 Circular Cylinder

As shown in Fig. 1, P is the pressure on a certain point of the circular cylinder circumference at a depth y,
and the horizontal differential pressure resistance on the circular cylinder fc can be defined as:

fc¼ �
Z 2p

0
P � cos u dl (13)

where θ is the angle between the point pressure P and the X axis, (°), counterclockwise is positive; l is the arc
length, cm.

Based on the infinitesimal method, Eq. (13) can be discretized as:
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fc¼ �Dli
Xn
i¼1

Pi � cos ui (14)

where Pi is the pressure acting on the i-th infinitesimal, Pa; θi is the angle between the extension cord of the
normal line of the i-th infinitesimal and the X axis, (°), counterclockwise is positive; n is the number of
division on the circumference, in this paper, n is taken as 360; Dli ¼ 2pr/n = 0.087 cm is the arc length
of the i-th infinitesimal (r is the cylindrical radius, r is taken as 5 cm in this paper).

2.4.2 Square Cylinder
As shown in Fig. 2, P is the pressure on a certain point of the square cylinder edges at a depth y, and the

horizontal differential pressure resistance on the square cylinder fs can be defined as:

fs ¼ fs3 � fs1 ¼
X90
i¼1

Pi � Dsi �
X90
i¼1

Pi � Dsi (15)

where fsj is the pressure acting on the j-th side of the square cylinder, N , j = 1, 2, 3, 4, as shown in Fig. 2; Pi is
the pressure of the i-th infinitesimal on each side of the square cylinder, N; Dsi ¼ s=4 � n ¼ 0:11 cm is the
side length of the i-th infinitesimal (s is the perimeter of the square cylinder , s is taken as 10 cm in this paper;
m is the number of division on the edges, m is taken as 360).

Figure 1: Calculation diagram of differential pressure resistance on circular cylinder

Figure 2: Calculation diagram of differential pressure resistance on square cylinder
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2.5 Viscous Force on Cylinder
2.5.1 Circular Cylinder

As shown in Fig. 3, the tangential velocity us and radial velocity uc of a certain infinitesimal on the grid
nearest to the circumference can be defined as:

us ¼ uz cos u� ux sin u (16)

uc ¼ uz sin uþ ux cos u (17)

where ux and uz are the x-direction and z-direction velocity of the infinitesimal, cm/s; θ is the angle between
the infinitesimal a and the X axis, (°), counterclockwise is positive. Then the viscous force Dfcs along the
horizontal direction on a certain infinitesimal i can be expressed as:

Dfcsxi ¼ � @usi
@c

� l � sin ui � Dli (18)

where usi is the tangential velocity of the i-th infinitesimal,
@usi
@c

is the normal gradient of the tangential

velocity, cm/s; μ is the dynamic viscosity, Pa � s, l ¼ m � q, which mis the kinematic viscosity.

Based on the infinitesimal method, the horizontal viscous force on the circular cylinder fcs can be
expressed as:

fcs ¼
Xn
i¼1

Dfcsi (19)

2.5.2 Square Cylinder
Following the calculation method of the viscous force on circular cylinder in Section 2.5.1, the viscous

force fss along the horizontal direction on square cylinder at a depth y can be obtained:

fss ¼ fss2 þ fss4 ¼
X90
i¼1

Dfssi þ
X90
i¼1

Dfssi (20)

Figure 3: Calculation diagram of viscous force on circular cylinder
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where Dfssi ¼ @uxi
@c

� l � Dsi, fssj is the viscous force acting on the j-th edge of the square cylinder, N; as shown
in Fig. 4, uxi is the velocity along the X direction of the i-th infinitesimal, cm/s;

@uxi
@c

is the normal gradient of

the velocity along the X direction, cm/(s·cm).

3 Numerical Models

A 3D numerical wave flume is developed in this study, as illustrated in Fig. 5, with a size of 12.0 m
in length (X), 0.8 m in height (Y) and 0.6 m in width (Z). Schematic diagrams of the unstructured
triangular mesh around the cylinder and the structured mesh of the tank in the vertical direction are
shown in Figs. 6 and 7. The numbers of circumference nodes on the cylinder and vertical nodes along the
tank are 60 and 85, respectively.

In the current investigation, the dimensionless horizontal total force F 0 on the cylinder can be expressed
as [13]:

F 0 ¼ F

qgAH
(21)

Figure 4: Calculation diagram of viscous force on square cylinder
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Figure 5: Schematic diagram of the 3D numerical flume, units: meters
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where F is the total horizontal force on the circular cylinder and square cylinder calculated in the model, N; A
is the windward area of the two types of cylinders, cm2; H is the total depth of the numerical flume, cm; and g
is the gravitational acceleration, m/s2.

3.1 Cases and Parameters Setting
In current investigations, ISWs of depression type can be produced by a method of gravity collapse in a

two-phase flow system [14]. The fluid densities of the upper layer and lower layers are ρ1 = 0.998 g/cm3 and
ρ2 = 1.017 g/cm3, and the depths of the upper layer and lower layer are h1 = 0.2 m and h2 = 0.6 m,
respectively. Consequently, H is equal to 0.8 m in this study. go/H represents the dimensionless wave
amplitude when the ISW form is stable after propagating 4 m.

As illustrated in Fig. 8, the whole flume can be divided into a wave generation area and a wave
propagation area. The former starts from the left boundary and is 0.7 m in length, and the latter is 11.3 m
in length. ho, the height difference of the pycnocline between the two areas, and is called the step height,
and the step length Lo, as called in this study is the generation area length.
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Figure 6: Close-up view of the triangular unstructured mesh around a cylinder
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Figure 7: Close-up view of the structured mesh of the tank in vertical direction

Figure 8: Schematic diagram of the gravity collapse to produce the ISWs in a two-phase flow system
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3.2 Numerical Methods and Boundary Conditions
The generation and propagation of depression-type ISWs are simulated by a large-eddy simulation

(LES) model. The governing equations are discretized by the finite-volume method [15]. The SIMPLE
algorithm is applied to couple the velocity-pressure term and enforce mass conservation, and then the
pressure field can be obtained [16,17]. A bounded central differencing scheme is adopted for solving
momentum equation. The diffusion term is solved by the second-order central difference scheme, while
the advection term is solved by the second order upwind scheme. The second-order implicit scheme is
adopted to discretize the time step.

The left boundary, the two sidewalls, and the bottom of the wave flume are set to be rigid walls with no-
slip conditions as illustrated in Fig. 9. To avoid wave reflection, the right boundary is specified by a
“Sommerfeld radiation” type [18]. The top boundary is specified by the “rigid lid” approximation [19],
because the surface waves are much smaller than the internal solitary waves [20,21]. Therefore, the “rigid
lid” approximation is reasonable to use in the current research [22].

3.3 Numerical Model Verification
The validation of the established numerical model is executed by consulting the same procedure

performed in reference [23]. The size of the tank, the meshing method and the boundary conditions used
previously in reference [23] are chosen for the present numerical simulations.

4 Simulation Results and Analysis

The velocity field and pressure field in the ISWenvironment are different from those in the pure current
environment, because the three-dimensional characteristics of the flow field induced by ISWs around a
cylinder are more obvious as illustrated in Fig. 9. Instantaneous three-dimensional vorticity contours
around cylinders clearly show that the vortex sheds in opposite directions in a stratified flow
environment, and the vortex shedding from the square cylinder is more intense and erratic. Also, the flow

Figure 9: Instantaneous three-dimensional vorticity contours around cylinders, when F′ = F′max, go/H =
0.121 (a) Circular cylinder (b) Square cylinder
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structure and turbulence effect around the square cylinder has a stronger strength three-dimensional character
than that around the circular cylinder.

The comparison of the instantaneous streamlines around the two types of cylinders at depths y = 0.3 m
(Section P0.3) and y = 0.7 m (Section P0.7) is presented in Figs. 10a and 10b. The vortex around the square
cylinder is more asymmetric and is larger in the recirculation zone, which could induce the more uneven
pressure distribution on the cylinder.

Figure 10: Instantaneous streamlines around cylinders on section P0.3 and P0.7, when F′ = F′max, go/
H = 0.121 (a) Circular cylinder (b) Square cylinder
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As a result, the ISW-induced force on the cylinder differs significantly from the force induced in a one-
phase flow environment. Hence, it is of great significance to carry out research on the hydrodynamic
characteristics around cylinders and the pressure distributions on them, which promotes the force
behaviors for cylinders to be obtained in strong shear stratified environment.

4.1 Total Dimensionless Horizontal Force on a Cylinder
Based on the numerical simulation results, the trend curves of F 0 with time t under the cases of go/H of

0.034, 0.075, 0.103 and 0.121 are illustrated in Fig. 11. F 0 of each case increases gradually with increasing
spacing go/H. The ISW forces on the square cylinder are larger than those on the circular cylinder because of
the more uneven pressure distribution andr the higher differential pressure between the front and rear of the
square cylinder.

Meanwhile, it can be found that the propagation of ISWs is a transient motion. When passing through the
cylinder, the ISW force on the cylinder is continuously changing. Therefore, the most unfavorable moment
can be selected as the calculation feature time when F 0 reaches F 0

max. F
0
max is the ISW-induced dimensionless

maximum horizontal force as shown in Fig. 11.

4.2 Differential Pressure Resistance and Viscous Force Distribution on the Cylinder along the Depth
The horizontal force on the cylinder can be divided into differential pressure resistance and viscous

force.The basic ideas for solving these two kinds of forces are as follows: ① intercept a cross section at
regular intervals on the cylinder along the vertical (Y) direction (9 sections in total), selecting 360 points
along the circumference of each cross section. By extracting the pressure and velocity values at these
points, the pressure and velocity distribution on circumference can be obtained; ② the infinitesimal
method is adopted. By integrating the pressure and velocity distribution on circumferences at various
depths, the differential pressure resistance f (Eqs. (14)–(15)) and viscous force fτ (Eqs. (19)–(20)) acting
on the circular cylinder and square cylinder can be obtained respectively.

4.2.1 Differential Pressure Resistance
The dimensionless horizontal differential pressure resistance f 0 on the cylinder at depth y is

defined as:

f 0 ¼ f

qgAH
(22)
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Figure 11: The trend curves of F′ with time t for different wave amplitudes
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f 0on circular cylinder fc0 and square cylinderfs0 at various depths y are shown in Tab. 1 , taking the case of
go/H = 0.098 as an example, and their vertical distribution can be subsequently obtained. With an ISWof the
same amplitude, bounded by the pycnocline, the differential pressure resistance fs

0 on the square cylinder in
both the upper and lower layers are greater than fc

0 on the circular cylinder: in the upper layer fs
0 is

approximately 1.5 times that of fc
0, while in the lower layer fs

0 is approximately 3.5 times that of fc
0.

4.2.2 Viscous Force
The dimensionless horizontal viscous force fs

0 on the cylinder at depth y is defined as:

fs
0 ¼ fs

qgAH
(23)

fs
0on circular cylinder fcs0 and square cylinder fss0at various depths y are shown in Tab. 1, taking the case

of go/H = 0.098 as an example, and their vertical distribution can be obtained. Comparing f 0with fs0, it can be
found that the viscous forces on the two types of cylinders are 1–2 orders of magnitude smaller than the
differential pressure resistance.

The results show that the viscous force has little contribution to the total horizontal force on cylinders;
therefore, the fluid viscosity effect can be ignored and only the effect of differential pressure resistance should
be considered in the current study. This is similar to the result obtained under the condition of a pure flow
environment: differential pressure resistance accounted for more than 95% of the total horizontal force [7],
indicating that the viscosity effect is weak in both fluid environments.

4.3 Quantification Analysis of ISW Force on the Cylinder
Numerous studies have shown that forces on cylinders increase with increasing ISW amplitude [24]. In

addition to the amplitude factor, the thicknesses of the upper layer h1 and lower layer h2 also determine the
propagation characteristics of ISWs [25]. It can be inferred that the water depth ratio h1/h2 can also be a
sensitivity parameter of the forces on cylinders. In this study, the influence rule of the relative amplitude
go/H combined with h1/h2 on ISW forces is comprehensively considered, and the correlation between the
maximum dimensionless horizontal force F 0

max and go/H and h1/h2 in the stratified flow environment is
quantitatively analyzed. The calculated F 0

maxvalues on the circular cylinder under all cases are shown in
Tab. 2, keeping the density difference Dρ = 0.019 g/cm3 constant, h1/h2 ranging from 0.231 to 0.778, and
go/H ranging from 0.034 to 0.158.

Table 1: the dimensionless horizontal forces on circular and square cylinders, go/H = 0.121

y/m fc
0 fs

0 fcs
0 fss

0

0 0 0 0 0

0.1 0.09 0.52 −0.0096 0.02069

0.2 0.133 0.556 −0.0096 0.0216

0.3 0.179 0.631 −0.0096 0.0234

0.4 0.249 0.709 −0.001 0.0252

0.5 0.184 0.741 −0.0131 0.0036

0.6 0.81 0.791 0.0335 −0.0257

0.7 0.728 0.902 0.0337 −0.0103

0.8 0.617 0.791 0.0337 −0.0071
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By analyzing the data in Tab. 2, F 0
max has a strong correlation with go/H and h1/h2. Multiple linear

regression is used to perform correlation analysis with h1/h2and go/H as independent variables and F 0
max

as the dependent variable: F 0
max shows a positive correlation with go/H and a negative correlation with

h1/h2 The optimal linear fitting relation among them can be expressed as:

F 0
max¼� 0:88h1=h2 þ 3:72g0=H þ 0:34 (24)

The goodness of fit R2 is only 0.3. Taking the calculated F 0
max as the x-axis and the true value F

0
max as the

y-axis, an exponential behavior is exhibited. Therefore a comprehensive influence coefficient m is defined as
in current study:

m ¼ �0:88h1=h2 þ 3:72 go=H þ 0:34 (25)

Table 2: Cases and parameters setting of ISW force quantification analysis

Cases h1(cm) h2(cm) h1/h2 go/H F 0
max

G1 15 65 0.231 0.034 0.0899

G2 15 65 0.231 0.075 0.2931

G3 15 65 0.231 0.103 0.5236

G4 15 65 0.231 0.121 0.6106

G5 15 65 0.231 0.158 1.1890

G6 20 60 0.333 0.034 0.0646

G7 20 60 0.333 0.075 0.2198

G8 20 60 0.333 0.103 0.3383

G9 20 60 0.333 0.121 0.5107

G10 20 60 0.333 0.158 0.6987

G11 25 55 0.455 0.034 0.0540

G12 25 55 0.455 0.075 0.1685

G13 25 55 0.455 0.103 0.2167

G14 25 55 0.455 0.121 0.2390

G15 25 55 0.455 0.158 0.3694

G16 30 50 0.600 0.034 0.0382

G17 30 50 0.600 0.075 0.0750

G18 30 50 0.600 0.103 0.1594

G19 30 50 0.600 0.121 0.1855

G20 30 50 0.600 0.158 0.2612

G21 35 45 0.778 0.034 0.0200

G22 35 45 0.778 0.075 0.0420

G23 35 45 0.778 0.103 0.0860

G24 35 45 0.778 0.121 0.1066

G25 35 45 0.778 0.158 0.1485
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By further logarithmically fitting the true value F 0
max with m, the following equation can be

obtained:

F 0
max ¼ 0:05e4:18m (26)

R2 is fitted to be 0.957 with a high fitting degree at this time (as shown in Fig. 12). The comprehensive
influence coefficient m has its own physical significance: The larger go/H and Dh = h1-h2 are, the larger the
value of m and the forces on the cylinder are. m provides a quantitative index for the influence of go/H and
h1/h2 on forces acting on the cylinder. Moreover, m is positively correlated with go/H and negatively
correlated with h1/h2 (Eq. (25)). In summary, the forces on the cylinder increase with go/H under various
stratification conditions; with the ISW of the same amplitude, the greater h1/h2 is, the smaller forces on
the cylinder are.

5 Conclusion

A 3D numerical wave flume is used to meticulously study the ISW forces acting on cylinders through a
large-eddy Simulation (LES) approach. By analyzing the hydrodynamic characteristics around cylinders and
the pressure distributions on them, the detailed behaviors of differential pressure resistance and viscous force
on cylinders can be obtained. The main conclusions from this study are as follows:

a) with the ISWof the same amplitude, the pressure difference resistance on the square cylinder in both
the upper and lower layers is greater than that on the circular cylinder: the force on the square cylinder
in the upper layer is approximately 1.5 times that on the circular cylinder, while the force on the
square cylinder in the lower approximately is about 3.5 times that on the circular cylinder;

b) the viscous force acting on cylinders is 1-2 orders of magnitude smaller than the differential pressure
resistance; therefore, the effect of fluid viscosity can be ignored and only the effect of differential
pressure resistance should be considered;

c) the maximum dimensionless ISW horizontal force F 0
maxhas a strong correlation with the relative

amplitude go/H and water depth ratio h1/h2. Meanwhile, F 0
max has a notably exponential relation

with the comprehensive influence coefficient m, and the goodness of fit R2 of the two is 0.957.
F 0
max shows a positive correlation with go/H and a negative correlation with h1/h2.
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Figure 12: The correlation between F′max and m
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