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ABSTRACT

In order to understand the mechanism by which a pantograph can generate aerodynamic noise and grasp its far-
field characteristics, a simplified double-strip pantograph is analyzed numerically. Firstly, the unsteady flow field
around the pantograph is simulated in the frame of a large eddy simulation (LES) technique. Then the location of
the main noise source is determined using surface fluctuating pressure data and the vortex structures in the pan-
tograph flow field are analyzed by means of the Q-criterion. Based on this, the relationship between the wake
vortex and the intensity of the aerodynamic sound source on the pantograph surface is discussed. Finally, the
far-field aerodynamic noise is calculated by means of the Ffowcs Williams-Hawkings (FW-H) equation, and
the contribution of each component to total noise and the frequency spectrum characteristics are analyzed.
The results show that on the pantograph surface where vortex shedding or interaction with the wake of upstream
components occurs, the pressure fluctuation is more intense, resulting in strong dipole sources. The far-field aero-
dynamic noise energy of the pantograph is mainly concentrated in the frequency band below 1500 Hz. The peaks
in the frequency spectrum are mainly generated by the base frame, balance arm and the rear strip, which are also
the main contributors to the aerodynamic noise.
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1 Introduction

With the continuous increase in train operation speed, train noise pollution becomes more and more
serious. The noise radiated by high-speed trains seriously affects the life of residents along the line. It is
urgent to take effective measures to reduce the noise levels of high-speed trains. The high-speed train
noise mainly includes wheel/rail rolling noise and aerodynamic noise. It is generally believed that the
aerodynamic noise increases with the speed faster than the wheel/rail rolling noise. According to the test
results in Europe, when the speed exceeds 300 km/h, the aerodynamic noise will exceed the wheel/rail
noise and occupy a dominant position [1,2]. As a prominent part on the roof of the high-speed train, the
pantograph is directly impacted by high speed air flow, with high noise intensity, which is the local
strongest noise source of a high-speed train [3]. Besides, as the pantograph is located on the train roof,
the aerodynamic noise of the pantograph will be more prominent for the lines with sound barriers [1].
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Therefore, the problem of pantograph aerodynamic noise has attracted the attention of many scholars
and engineers.

There are two main methods for pantograph aerodynamic noise research, experiment and numerical
simulation. In terms of experimental research, Noger et al. [4] tested the aerodynamic noise of TGV train
pantograph system in low-noise wind tunnel and found that the vertical plane at the rear of the
pantograph cavity is the main noise source, and the presence of pantograph will increase the amplitude of
broadband noise. Different from the general cavity flow, there is no cavity resonance in the pantograph
cavity. Lauterbach et al. [5] conducted aerodynamic noise test for a 1:25 ICE train scale model in wind
tunnel, and found that all single frequency sound in noise arise from the top area of the pantograph.
Lölgen et al. tested the aerodynamic noise of two different types of pantograph, DSA350SEK and ASP in
the wind tunnel. He found that the single frequency sound in the noise spectrum is related to the vortex
shedding of the cylindrical components of the pantograph and determined the source of the peak values
by Strouhal criterion [6]. Brick et al. [7] tested the aerodynamic noise of pantograph installed in the
concave cavity under the state of raised and folded. The results show that the noise of the raised
pantograph is 8 dB higher than the folded one. Lee et al. [8] investigated the wake and aerodynamic
forces of a double-arm, a single-arm and a periscope-arm pantograph with a rectangular panhead and an
optimized panhead through wind tunnel test. Chen et al. [9] investigated the influence of pantograph
shroud on the aerodynamic noise of pantograph through wind tunnel test. The results show that the
shroud has little effect on the overall sound pressure level when the pantograph is raised, while it has a
good noise reduction effect when the pantograph is folded.

Although the aerodynamic noise results of pantograph under real conditions can be obtained by
experimental research, the cost of experimental research is high and the flow field information can be
obtained is limited. With the rapid development of computing technology, computational fluid dynamics
(CFD) technology is gradually applied to the prediction of aerodynamic noise. More comprehensive flow
field information can be obtained through numerical simulation, which can help people understand the
mechanism of aerodynamic noise more deeply. In the aspect of numerical simulation, Yu et al. [10]
applied the non-linear acoustic solver (NLAS) combined with FW-H equation to analyze the aerodynamic
noise characteristics of a simplified DSA-350 pantograph and the noise reduction effects of four different
designs of pantograph fairing. They found that the aerodynamic drag of pantograph area would be
increased by all four schemes, and only the scheme using side sound insulation panels could reduce the
noise of pantograph. Ikeda et al. [11] used CFD method and described the shape of panhead section with
B-spline curve, to optimize the panhead section shape combined with optimization algorithm. The new
panhead shape has better aeroacoustic and aerodynamic performance. Meskine et al. [12] calculated the
aerodynamic noise of a full-scale four car high-speed train model by using lattice Boltzmann method
based software PowerFLOW. The results show that for the measuring point 7.5 m away from the track,
the pantograph is the main aerodynamic noise source in the frequency range of 200∼400 Hz and above
800 Hz. Zhang et al. [13,14] analyzed the aerodynamic noise characteristics of a DSA-380 pantograph
through numerical simulation and they further studied the influence of cross wind on aerodynamic noise
of pantograph. Tan et al. [15] analyzed the spatiotemporal evolution of vortex structures in the unsteady
flow field of the CX-PG pantograph through numerical simulation, and studied the relationship between
the vortex structures and the aeroacoustic performance of the pantograph components. Noh simulated the
flow field and aerodynamic noise of a real-scaled CX-PG pantograph and analyzed the generation
mechanism of its aerodynamic noise by using PowerFLOW software [16]. Kim et al. [17,18] investigated
the influence of pantograph cavity on the flow field and aerodynamic noise of pantograph area by
numerical simulation. Li et al. [19] studied the effect of the strip spacing on the aerodynamic noise
characteristics of the pantograph by numerical simulation, an important conclusion is that the single-strip
pantograph has better aerodynamic and aeroacoustic performance than double-strip pantograph.
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The purpose of this paper is to analyze the relationship between the vortex structures in the pantograph
area and the pressure fluctuation(dipole source) on the surface of the pantograph to explore the generation
mechanism of pantograph aerodynamic noise and master the far-field aerodynamic noise characteristics of
the pantograph, including the spatial distribution characteristics of the far-field noise, the noise
contribution of each component, the spectrum characteristics and the inflow velocity dependent regularity.
Therefore, a simplified double-strip pantograph is taken as the research object. The unsteady flow field
around the pantograph is simulated by LES model, and the far-field aerodynamic noise is calculated by
FW-H equation. The arrangement of the paper is as follows. In Section 2, LES model, FW-H acoustic
analogy equation and its integral solution are introduced. In Section 3, the geometry model, mesh scheme
and solution setup are introduced. In Section 4, the fluctuating pressure (dipole source) on the pantograph
surface and the unsteady vortex structures in the pantograph flow field are analyzed, and the relationship
between them is discussed. In Section 5, the far-field aerodynamic noise characteristics of pantograph are
studied. Finally, Section 6 summarizes the whole paper and gives the main conclusions.

2 Mathematical-Physical Model

As the large eddy simulation (LES) model has a strong ability to capture vortices, it is first used to
calculate the flow field around the pantograph to obtain accurate sound source data. Then the FW-H
equation is used to calculate the far-field aerodynamic noise of the pantograph.

2.1 LES Model
Large eddy simulation is a kind of spatial averaging of turbulent fluctuations. Its basic idea is to separate

the large-scale vortices and small-scale vortices through filtering function, the large scale vortices are solved
directly, while small scale vortices are solved by modeling. The governing equations employed for LES are
filtered Navier-Stokes equations, which are as follows:
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where the overline represents the average value of the physical quantities in the spatial domain, ρ is the fluid
density, t is time, u is the fluid velocity, p is the pressure, σij is the viscous stress tensor, and ~sij is the sub-grid
stress tensor. To realize large eddy simulation, it is necessary to construct a sub-grid stress model. In this
paper, The Smagorinsky-Lilly sub-grid stress model is used, which is in the form of:

~sij ¼ 1

3
~skkdij � 2lt~Sij (3)

where μt is the sub-grid viscosity coefficient and ~Sij is the strain rate tensor, δij is Kronecker tensor, and the
viscosity coefficient of sub-grid turbulence can be expressed as:

lt ¼ qLsjeSj (4)

and

Ls ¼ minðjd; CsV
1=3Þ (5)

where Ls is the mixed length of the grid, κ is the von Karman constant, d is the nearest distance from the grid
to the wall, Cs is the Samagorinsky constant, and V is the volume of the computational element.
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2.2 FW-H Equation
In 1969, Fwowcs Williams and Hawkings extended Lighthill and Curle’s results to consider the

influence of the moving solid boundary by introducing generalized functions, and obtained a more
general result-FW-H equation, as shown in Eq. (6) [20]:
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where c0 is the sound speed, p
′ is the sound pressure, x is the component of the Cartesian coordinate, f = 0 is

the equation of the sound source surface. Hð�Þ is Heaviside function, ρ0 is the density of the fluid at the
undisturbed area, r is Nabla operator, vn is the normal velocity component of the sound source surface,
Tij is the Lighthill stress tensor.

If the right hand of Eq. (6) is regarded as the source term, Eq. (6) is a typical wave equation. The three
terms at the right hand of the equation represent monopole source term, dipole source term and quadrupole
source term respectively. In this paper, the quadrupole source term is ignored, because in the low
Mach number flow, compared with the other two source terms, the contribution of quadrupole is
negligible, which has been verified in the aerodynamic noise prediction of landing gear, high-speed
train bogie and other low Mach number flow conditions [17,21–23]. Besides, the pantograph is in
the static state in the numerical simulation, the monopole source is also 0. In this case, the far-field
noise of pantograph only includes the contribution of dipole source term. Solving FW-H equation by
using Green’s function in free space, the time domain integral solution of FW-H equation is obtained as
follows:
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with

Lij ¼ ðp� p0Þdij � rij (8)

where r is the distance from a point on the surface of the sound source to the receiving point, and the
subscript τ = τe indicates that the relevant variables are evaluated at restarted time τe, and τe = r/c0, nj is
the unit outward normal vector of a point on the sound source surface, and r̂i is the unit vector from the
source point to the receiving point. p0 is the pressure of the fluid in the undisturbed area. It should be
noted that the influence of air flow on sound propagation is not considered when Eq. (7) is used to
calculate the far-field aerodynamic noise of pantograph.

3 Simulation Model

3.1 Geometry Model
A simplified full scale double-strip pantograph model is used as the research object, and its geometry

model is shown in Fig. 1. Compared with the complex pantograph model, the simplified model with the
main structural features can reduce the number of grids and help to obtain high quality grids, which can
reflect the flow field characteristics of the pantograph area and at the same time improve the
computational efficiency.
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3.2 Mesh Scheme
A rectangular computational domain in Fig. 2 is used to simulate the external flow field of the

pantograph. The distance from the bottom center of the pantograph to the inlet of computational domain
is 9 m, to domain outlet is 25 m and to domain top and side are 7.5 m. The distance between the
pantograph and the outlet of the computational domain is more than 10 times length of the pantograph,
which ensures that the influence of the wake of the pantograph on the outlet boundary can be ignored.
The distance from the pantograph to the two sides and the top of the computational domain is close to
five times of the height and width of the pantograph respectively, which ensures that the blocking ratio of
the numerical wind tunnel is around 1%. The maximum mesh size of pantograph surface is set as 5 mm,
and 17 layers of fine prism layer mesh with initial height of 0.01 mm and growth rate of 1.2 are drawn
on the surface of pantograph. Two blocks are set up to refine the mesh. Three sets of mesh are divided by
modifying the mesh size of the encryption domain, which are named coarse, medium and fine mesh.
When the mesh size in the first block around the pantograph is 20 mm, 10 mm and 5 mm, respectively,
the corresponding grid numbers of three sets of mesh are approximately 8 million, 17 million and
32 million. Fig. 3 shows the computational mesh and encryption blocks (yellow dotted line).

Figure 1: Geometry model ①-strip1; ②-balance arm; ③-strip2; ④-upper arm; ⑤-lower arm; ⑥-base frame;
⑦-insulator1; ⑧-insulator2; ⑨-insulator3

Figure 2: Computational domain
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3.3 Solution Setup
The maximum inflow velocity is 400 km/h and the corresponding Mach number is 0.327. There are two

main reasons for still considering air as incompressible gas in this paper. One is that Mach number is still
close to 0.3, and the compressibility of gas is not strong; the other is that it is difficult to accept the
computing resources and time cost required for using the compressible model, and the incompressible gas
model has better convergence and calculation efficiency. The inlet of the computational domain is set as
velocity inlet boundary and flow velocity is input, the outlet of the computational domain is set as
pressure outlet boundary, the static pressure is 0, the two sides and the top of the computational domain
are set as symmetrical boundary condition, the bottom of the computational domain and the pantograph
surface are set as the static wall with no slip.

The steady flow field computation combined the Realizable k − ε turbulence model and non-balance wall
treatment method [24]. The pressure velocity coupling used the Semi-Implicit Method for Pressure Linked
Equations (SIMPLE) algorithm. The continuity equation is discretized using the standard scheme. The
momentum equation, turbulence kinetic energy equation, and turbulence dissipation rate equation are
discretized using the second-order upwind scheme. The transient flow field computation used the LES model.
The temporal difference equation used a second-order implicit scheme. The pressure-velocity coupling used
the Pressure-Implicit with Splitting of Operators (PISO) algorithm. The continuity equation is discretized using
the PRESTO! scheme. The momentum equation is discretized by using bounded central differencing scheme.

The convergent steady-state results provide initial field for transient simulation. The time step of
transient calculation is 10−4 s, according to Nyquist theorem, the corresponding maximum analysis
frequency being 5000 Hz. Each time step has 20 iterations to ensure convergence. During the transient
calculation, the first 1500 time steps ensure flow field achieve statistical stability, and the next 2500 time
steps record the fluctuating pressure data on the pantograph surface as the calculation input of far-field noise.

3.4 Mesh-Independent Validation
Table 1 shows the aerodynamic drag of the pantograph and the sound pressure level results of three far-

field measuring points (see Fig. 10 for the location of measuring points) by using three sets of mesh based on
the calculation process above. It can be seen from the results that the relative difference of aerodynamic drag
between medium grid and fine grid is less than 2%, and the difference of sound pressure level is less than 0.5
dB, which indicates that when the mesh reaches the medium mesh scale, the computation results are
independent of the grid distribution. Therefore, the medium mesh is used in this paper.

Figure 3: Computational mesh. (a) Mesh distribution of middle section (b) Prism layers of strip

Table 1: Mesh independent validation

Aerodynamic
drag

Sound pressure level
(p1)

Sound pressure level
(p7)

Sound pressure level
(p13)

Coarse 2700.1 N 99.2 dB 100.6 dB 105.8 dB

Medium 2746.2 N 100.7 dB 100.2 dB 105.7 dB

Fine 2740.1 N 100.8 dB 100.3 dB 105.4 dB
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3.5 Verification of Calculation Methods
According to the solution setup mentioned above, the aerodynamic noise generated by a cylinder with a

diameter of 10 mm at inflow velocity of 72 m/s is simulated. This case is also used to verify the calculation
method in other literatures on pantograph aerodynamic noise research [10,19,25]. Fig. 4 shows the
calculation conditions and the computational mesh. The simulation results are compared with the
experimental results in the literatures [26,27]. Fig. 5a shows the time-averaged pressure coefficients on
the cylinder surface. Fig. 5b shows the spectrum of sound pressure level at the measuring point 1.85 m
away from the center of the cylinder in the vertical direction. In the numerical simulation, the time step is
set as 5 × 10−5 s, and the sampling time is 0.25 s, corresponding to the frequency resolution of 4 Hz,
which is the same as that of the experiment. It can be seen that the time-averaged pressure coefficient
obtained by numerical simulation and the experimental results agree well, and the numerical simulation
could capture the peak value caused by periodic vortex shedding. In general, the simulation results are in
good agreement with the experimental results, which verifies the reliability of the calculation methods in
this paper.

Figure 4: Aerodynamic noise model of a cylinder (a) calculation conditions (b) computational mesh

Figure 5: Comparison of simulation and experiment results (a) time-averaged pressure coefficients on the
cylinder surface (b) spectrum of sound pressure level
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4 Surface Aerodynamic Noise Source and Vortex Structure

4.1 Surface Aerodynamic Noise Sources
Since the value of viscous stress is small and p0 = 0, in Eq. (8), Lij ≈ pδij. Then, according to Eq. (7), the

far-field aerodynamic noise of the pantograph is mainly related to the magnitude of pressure and the change
rate of pressure with time on pantograph surface. Figs. 6 and 7 show the time-averaged pressure and the root
mean square value of time derivative of pressure (∂p/∂t)rms on pantograph surface at the speed of 400 km/h. It
can be seen from Figs. 6 and 7 that there is high positive pressure on the windward side of strip1, base frame
and insulators, because the air flow stops here and kinetic energy is converted into pressure potential energy.
But the pressure at these locations fluctuates weakly over time. In the wake area of the leeward side of the
pantograph, energy is dissipated by vortices, so pressure here is all negative. Also, the pressure fluctuation
here is very intense.

According to the results in Figs. 6 and 7, the order of magnitude of time derivative of pressure on
pantograph surface is 106, that of sound velocity in air is 102, that of distance r is 101∼102, and that of
fluctuating pressure on pantograph surface is 103∼104. To sum up, in the brackets of Eq. (4), the order of
the first term is 102∼103, and the order of the second term is 10−1∼102. Therefore, the far-field
aerodynamic noise of pantograph mainly depends on the change rate of fluctuating pressure on the
pantograph surface with time and (∂p/∂t)rms can be used to characterize the aerodynamic sound source
intensity on the pantograph surface. In fact, this is just as Curle pointed out: for far-field noise, when the
distance between the sound source and the receiving point is far greater than the sound wave length, the
first term in the bracket of Eq. (4) is the key factor [28].

According to the results of Fig. 7, the main aerodynamic sound sources on the pantograph surface
include: the upper surface, windward side and leeward side of the balance arm, windward side and
leeward side of the rear strip, leeward side of the base frame and insulators, upper and lower surface of

Figure 6: Pressure distribution on pantograph surface

Figure 7: (∂p/∂t)rms distribution on pantograph surface
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the beam in the front of the base frame, and the windward side where the rear insulator and the base frame are
connected with the lower arm.

4.2 Vortex Structures
Fig. 8 shows the instantaneous vortex structures of the pantograph at the speed of 400 km/h by Q

criterion, which is colored by vorticity magnitude. Q is defined as:

Q ¼ 1

2
ðk�k2 � kSk2Þ (9)

where ‖‖ is the second norm of the tensor, � is the vorticity tensor, and S is the strain rate tensor. Q criterion
defines vortex as the region where the magnitude of vorticity is greater than that of shear strain rate.

It can be seen from Fig. 8 that the larger the Q is, the smaller the vortex scale and the closer it is to the
pantograph. The incoming flow first splits to small foamed shape vortices on the pantograph surface, and
gradually develops into a wormed-shape or hairpin-shape large scale vortices. These large scale vortices
continue to move downstream. Due to the interaction between vortices, large-scale vortices gradually
break into small-scale vortices. The vortices initially formed on the surface of the pantograph has large
vorticity, and the vorticity decreases with the vortex moving backward away from the pantograph.

4.3 Relationship between Surface Aerodynamic Noise Sources and Vortex Structures
Fig. 9 shows the instantaneous vorticity magnitude distribution of four slices of the pantograph area at

the speed of 400 km/h. They show the state of wake vortices of each component and the interaction with

Figure 8: Instantaneous Q-isosurface (a) Q = 10000, (b) Q = 20000, (c) Q = 50000, (d) Q = 100000
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other components in their wake more clearly. Combining Figs. 7–9, it can be found that areas with high
sound source strength can be divided into two categories. The first category is the area where the vortex
sheds, such as the leeward side of balance arm, strip, base frame and insulators. The second category is
the area located in the wake of the upstream components, such as the upper and lower surfaces of the
front beam of the base frame (impacted by the separation vortices formed at the front edge of the front of
the base frame), the upper surface and windward side of the balance arm (impacted by the separation
vortices formed at the front strip), and the windward side of the rear strip (impacted by the separation
vortices formed at the balance arm), the windward side of where the rear insulator and base bracket are
connected with the lower arm (impacted by the separation vortices of the front beam of the base frame).

In other words, the vortex shedding and the wake impact of upstream components will aggravate the
pressure fluctuation on the pantograph surface, thus enhancing the aerodynamic noise generated by the
pantograph. Therefore, in order to reduce the aerodynamic noise of pantograph, it is necessary to reduce
the flow separation in the pantograph area and avoid the interaction between the wake vortices of the
upstream components and the downstream components.

5 Far Field Aerodynamic Noise Characteristics

The layout of far-field noise measuring points is shown in Fig. 10, in which the measuring points
p1–p13 are located on the horizontal semicircle with the center of pantograph bottom as circle center and
radius of 7.5 m. q1–q7 are 7.5 m, 15 m, 25 m, 35 m, 50 m, 70 m and 100 m from the bottom center of
pantograph in x-direction, and q1 is the same point with p7. All measuring points are 2 m above the ground.

Figure 9: Instantaneous vorticity magnitude
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5.1 Spatial Distribution Characteristics
The directivity curves shown in Fig. 11 are obtained from the calculation results of p1–p13 measuring

points. It can be seen from Fig. 11 that with the increase of radiation angle φ, the sound pressure level first
decreases and then increases, and the sound pressure level on leeward side of the pantograph is significantly
higher than that on windward side. That is to say, the aerodynamic noise of pantograph mainly radiates
backward.

According to the calculation results of q1–q7 measuring points, the attenuation characteristics of far-
field noise of pantograph are shown in Fig. 12. It can be seen that the sound pressure level of the
measuring points decreases with the increase of the distance, and the attenuation speed decrease with the
increase of the transverse distance X. The relationship between the sound pressure level and logarithmic
distance is approximately linear. Taking the data of speed at 400 km/h as an example, the linear function
is used to fit the relationship above and Eq. (10) is obtained.

SPLðX Þ ¼ �21:288 lgX þ 118:75 X � 7:5

R2 ¼ 0:9985
(10)

Figure 11: Directivity curves

Figure 10: Measuring points layout (not to scale)
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It is easy to see that the sound pressure level decreases about 6.4 dB when the transverse distance is doubled.
This is similar to the far-field attenuation characteristics of a point source in free field.

5.2 Contribution Analysis
Fig. 13 shows the contribution of the top area (strip1, strip2 and balance arm), middle area (upper arm

and lower arm) and bottom area (base frame and insulators) of the pantograph to the total noise at
p1–p13 measurement points at 400 km/h, which is obtained by calculating the sound pressure level the
with the top area, middle area and bottom area set as sound source respectively. It can be seen from
Fig. 13 that there are obvious differences in the directivity for these three areas. For top area and bottom
area, the sound pressure level of the measuring points at the leeward side is higher than that at the
windward side, while it is opposite for the middle area. When the radiation angle is in the range of 0° to
60°, the far-field aerodynamic noise of pantograph is mainly generated by the bottom area. With the
further increase of radiation angle, the contribution of the top area and the bottom area becomes equally
important and the contribution of the middle region is negligible.

Figure 12: Attenuation characteristics

Figure 13: Contribution of top, middle and bottom areas
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Table 2 further shows the contribution of each component to the total noise of p1, p4, p7, p10 and p13.
The results in Table 2 show that the base frame, balance arm and strip2 are the key components for
pantograph noise control. In addition, the contribution of the rear strip to the total noise is much greater
than that of the front strip, and the contribution of the rear insulator to the total noise is also greater than
that of the two front insulators, which is consistent with the analysis results in Section 4.3.

5.3 Spectrum Characteristics Analysis
Fig. 14a shows the spectrum of sound pressure level of p1, p4, p7, p10 and p13. It can be seen from

Fig. 14a that the energy of pantograph aerodynamic noise is mainly concentrated in the frequency band
below 1500 Hz, and there are several peaks in the spectrum of pantograph aerodynamic noise. The peaks
in the spectrum of measurement points p7, p10 and p13 are more obvious. As an example, Fig. 14b
shows the spectrum of sound pressure level of p13 at different inflow velocities. It can be seen from
Fig. 14b that the peaks moves to high frequency with the increase of inflow velocity, which conforms to
Strouhal criterion. The peak frequencies at different inflow velocities are given in Table 3.

Since p7 is the measuring point located at the track side that usually used for noise evaluation, the sound
pressure level at p13 is the highest and the peaks in its spectrum is the most obvious, p7 and p13 are taken as
examples to further analyze the source of peaks in the spectrum of pantograph aerodynamic noise. The
spectrum of p7 and p13 is calculated with each component as the sound source at the inflow velocity of
400 km/h, as shown in Figs. 15 and 16. The analysis of the spectrum of each component shows that

Table 2: Contribution of each component (dB)

Strip1 Balance arm Strip2 Upper arm Lower arm Base frame Insulator1 Insulator2 Insulator3

p1 66.3 96.1 95.1 74 89.1 97.6 82.1 80.7 86.9

p4 74.1 91.7 92 78.8 88.1 96.6 84 84.3 88.8

p7 75.9 93.8 89.8 82.9 86.3 96 87.2 85.6 91.1

p10 72.4 93.1 91.2 84.6 85.8 101 86.5 84 91

p13 68.6 98.6 95.5 79.1 76.4 102.9 83.3 82.4 89.6

Figure 14: Spectrum of sound pressure (a) spectrum of SPL at different radiation angles (b) spectrum of
SPL at different inflow velocities (p13)
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although the spectrum of most components has peak values, when the spectrum of each component is
superimposed together, some peaks with smaller amplitude will be covered up. Therefore, the total
spectrum does not show all the peaks in the spectrum of components. The spectrum of strip1, strip2 and
balance arm corresponds to the peak at 346 Hz, 692 Hz and 1047 Hz in p13 spectrum, which is the
frequency and harmonic frequency of periodic vortex shedding at strips and balance arm. However, the
amplitude of the sound pressure level of the balance arm and strip2 at these frequencies is significantly
greater than that of the strip1, which is mainly related to the interaction between the wake of the
strip1 and the balance arm and the strip2 according to the analysis in 4.2 and 4.3. However, in the
spectrum of p7, only two peaks at 158 Hz and 346 Hz are clearly visible, while the peaks the harmonic
frequency at 692 Hz and 1047 Hz are not as clear as p13. This is mainly related to the directivity of the
sound source. The peak in the spectrum of the base frame corresponds to the peak value at 158 Hz in the
spectrum of p7 and p13, and this peak comes from the vortex shedding at the front beam of the base
frame. For p13, the peaks at 158 Hz and 346 Hz can also be observed in the spectrum of the upper and
lower arms, but their values are about 20 dB lower than the corresponding peaks of the balance arm, strip
2 and base frame. Obviously, the peaks at 158 Hz and 346 Hz in the spectrum of the upper and lower
arms are not caused by the vortex shedding of the upper and lower arms themselves, but by the
interaction between the wake vortices in the base frame and panhead area and the upper and lower arms.
The peak at 158 Hz can also be observed in the spectrum of the insulators at p13, which is the same as
that in the spectrum of upper and lower arms. This peak is not caused by the vortex shedding of the
insulators themself, but by the interaction between the wake of the base frame and the insulators. In
conclusion, in the spectrum of p7 and p13, the peak at 158 Hz is mainly contributed by the base frame
and the peak at 346 Hz is mainly contributed by the balance arm and strip2. In the spectrum of p13, two
peaks at 692 Hz and 1047 Hz can also be observed, which are the harmonic frequencies of 346 Hz.

Table 3: Frequencies of the peak values in spectrum (Hz)

Velocity Frequency1 Frequency2 Frequency3 Frequency4

200 km/h 81 175 354 525

250 km/h 98 218 435 653

300 km/h 119 261 525 799

350 km/h 141 308 611 919

400 km/h 158 346 692 1047

Figure 15: The spectrum of each component at p7
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It can also be found from Figs. 15 and 16 that for the broadband noise without peak value, the base fame
makes great contribution to the whole frequency band, the insulators mainly contribute to the noise below
200 Hz, while the strips and the balance arm mainly contributes to the noise above 200 Hz. Compared
with p13, the contribution of upper and lower arm to p7 below 200 Hz is more significant.

5.4 Inflow Velocity Dependent Regularity
Fig. 17a shows the relationship between linear weighted sound pressure level and inflow velocity of p3,

p7 and p13. It can be seen from Fig. 17a that the linear weighted sound pressure level of pantograph far-field
noise is approximately linear with the logarithm of inflow velocity, and the scale coefficient is about 50 to 60.
This is approximately in accordance with the law of the increase of the aerodynamic noise of the dipole
source with the inflow velocity.

In high-speed railway engineering, A-weighted sound pressure level is usually used to evaluate the far-
field noise. Fig. 17b further shows the growth law of A-weighted sound pressure level with speed at p7. It can

Figure 16: The spectrum of each component at p13

Figure 17: Inflow velocity dependent regularity (a) linear weighted results (b) comparison of linear-
weighted and A-weighted results
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be seen from Fig. 17b that the A-weighted sound pressure level is also approximately linear with the
logarithm of the inflow velocity. However, due to that the main frequency of the aerodynamic noise of
the pantograph moves to the high frequency with the increase of the inflow velocity and the attenuation
after weighting decreases, the A-weighted sound pressure level increases faster with the inflow velocity.

6 Conclusions

In this study, a LES/FW-H hybrid method is used to investigate the aerodynamic noise characteristics of
a simplified double-strip pantograph. The location of the main sound source on the pantograph surface is
determined by the CFD results. The vortex structures in the pantograph flow field are studied based on Q-
criterion. The relationship between them is discussed to reveal the generation mechanism of pantograph
aerodynamic noise and provide guidance for noise reduction. The characteristics of far-field aerodynamic
noise are also studied.

The results show that the aerodynamic noise of pantograph surface is mainly related to the change rate of
the surface pressure with time on pantograph surface. (∂p/∂t)rms can be used as an index to characterize the
sound source intensity on pantograph surface and determine the main source location.

The aerodynamic sound source on the surface of the pantograph is closely related to the vortex structures
of the pantograph. The pressure fluctuates violently where the vortex sheds or impacted by the wake of the
upstream components and these areas are the main sound sources location. Therefore, in order to control the
aerodynamic noise of pantograph, it is necessary to reduce the flow separation on the surface of pantograph
and avoid the interference of the upstream components wake on the downstream components.

The aerodynamic noise of pantograph mainly radiates backward. When the transverse distance is greater
than 5 m, it’s attenuation characteristics is similar to the far field attenuation characteristics of a point source
in free field. The far-field aerodynamic noise energy of pantograph is mainly concentrated in the frequency
band below 1500 Hz. The peak value of the frequency spectrum is mainly generated by the base frame,
balance arm and the rear strip. They are also the components that contribute the most to the far-field
aerodynamic noise. The linear weighted sound pressure level and A-weighted sound pressure level of the
far-field aerodynamic are approximately linear with the logarithm of the inflow velocity. For the linear
weighted sound pressure level, the proportion coefficient is about 50∼60, which is similar to the velocity
dependence regularity of a dipole source. For A-weighted sound pressure level, as the main frequencies
of the pantograph aerodynamic noise move to high frequency band with the increase of inflow velocity
and the attenuation after weighting decreases, so it increases faster with the inflow velocity.
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