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ABSTRACT

History matching is a critical step in reservoir numerical simulation algorithms. It is typically hindered by diffi-
culties associated with the high-dimensionality of the problem and the gradient calculation approach. Here, a
multi-step solving method is proposed by which, first, a Fast marching method (FMM) is used to calculate the
pressure propagation time and determine the single-well sensitive area. Second, a mathematical model for history
matching is implemented using a Bayesian framework. Third, an effective decomposition strategy is adopted for
parameter dimensionality reduction. Finally, a localization matrix is constructed based on the single-well sensitive
area data to modify the gradient of the objective function. This method has been verified through a water drive
conceptual example and a real field case. The results have shown that the proposed method can generate more
accurate gradient information and predictions compared to the traditional analytical gradient methods and other
gradient-free algorithms.
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1 Introduction

Reliable reservoir models can accurately reproduce the complete reservoir developing process and
provide convincing guidance for production management decision-making [1-5]. History matching that
can correct reservoir model parameters based on geological information and production data is a critical
step in reservoir numerical simulation process. Traditional history matching methods are generally time-
consuming, and the accuracy could hardly be guaranteed. In recent decades, automatic history matching
methods has made great progress with improved optimization algorithms, in which case the model
parameters would change automatically to minimize the difference between the established model and the
real one. Currently, automatic history matching technology has become a hot research area in intelligent
reservoir development.

Generally speaking, there is a close correlation between reservoir physical properties and well
production performance, and history matching algorithms are mainly used to calculate the gradient and to
direct the countermeasures. To the best of our knowledge, the widely used algorithms for history
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matching mainly include gradient-class method [6,7], set-class algorithm such as EnKF [8], ES-MDA [9] and
SPSA [10], interpolation algorithms such as NEWUOA [11] and Wedge [12], and global optimization
algorithms such as PSO [13] and GA [14]. The gradient-class method shows very high convergence rate,
in which case, calculate the gradient of objective function or Hessian matrix is the key. However, there
are also two limitations when using the gradient-class method for history matching: (1) gradient solving
is difficult. The reservoir model usually contains hundreds of thousands of unknown parameters, which
makes it impractical to store and calculate the sensitivity matrix. (2) pseudo correlation between real
gradient and calculated gradient. The prior reservoir model based on scarce geological information is
generally quite different from the real reservoir, which leads to inaccurate covariance between calculated
production data and reservoir parameters. That means the calculated correlation between distant grids is
large instead of small. As a result, the calculated gradient deviates seriously from the actual gradient.

In order to reduce the dimensionality of variables in the history matching, several parameterization
methods were proposed. The overall idea is to convert the original high dimensional optimization
problem to a low dimensional problem without changing the main features. The parameterization
methods mainly include principal component analysis (PCA) method [15-18], Karhunen-Loeve (K-L)
decomposition method [19], gradual deformation method (GDM) [20], pilot point method [21], discrete
cosine transformation (DCT) method [22-24] and so on. PCA is a statistical analysis method, which is
widely used in areas such as finance [25], machine learning [26] and so on. This method adopts
orthogonal transformation to linearly transform the observed values to a series of possibly related
variables, so as to project them into the values of a series of linearly uncorrelated variables. These
unrelated variables are called principal components. In the oilfield, PCA method is commonly applied to
extract reservoir heterogeneity and to reduce the calculation dimension.

The pseudo correlation between gradients can be weakened by dividing the single-well sensitivity area
and then modifying the calculated gradient [27]. Single-well sensitive area refers to the grid area that would
affect the well production performance, and the grid outside the area seldomly has any impacts. FMM is an
effective approach to determine single-well sensitivity areas [28-30]. In FMM, the Eikonal equation is
established in accordance with the static reservoir parameters. The propagation time of pressure wave
from the well node to different grids is calculated to track the boundary migration. And then the critical
area (sensitive area) affects the well production performance is obtained. During the production history
matching, only the reservoir parameters in the single-well sensitive area need to be revised.

This paper presented a two-step history matching method by integrating the FMM and the PCA. The
brief calculation scheme of history matching is shown in Fig. 1. In this method, FMM is introduced to
localize the reservoir to distinguish the single-well sensitivity area. Subsequently, based on multiple prior
geological models, PCA is used to parameterize the reservoir model and to reduce the dimensionality.
The gradients of the parameterized variables is then modified based on the information on sensitivity
area. The objectives of this paper are, first, apply the FMM method to distinguish the single-well
sensitive areas. Second, to establish a mathematical model for history matching and to propose a
correction method to correct the gradient. Third, to verify the feasibility of the method with a water drive
conceptual example and a real field case.

2 Methodology

2.1 FMM Method
The pressure wave diffusion equation (Eq. (1)) was derived by using the asymptotic ray theory of
geometrical optics and seismology [31].
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Figure 1: Calculation scheme of history matching
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where, k is permeability, p is fluid viscosity, P is pressure, ¢ is porosity, C, is the comprehensive
compressibility coefficient, ¢ is the time variable. Fourier transform and asymptotic expansion of Eq. (1)
can prove that under the high frequency limit, and the propagation of pressure wave front can be
described by the Eikonal equation (Eq. (2)) [28-31]:

n(X)|VT ()] =1 )

where, 7 is the diffusion flight time at the x position; n= fk/(ueC;) is the diffusion factor; f is the unit
conversion factor with a constant value of 0.0853. FMM tracks the leading edge of pressure wave by
solving the Eikonal equation. Herein, upwind difference method is introduced to solve Eq. (2):

T—T, T—T, T-T. .,
max(Ax/VX,O) +max(Ay/vy,O) +maX(Az/vz’O) =1 3)

where,

Ty = min(Ti—1 i, Tiv1jk)
T, = min(Tij 14, Tijr1x)
T, =min(T;j 51, Tijis1)

where, T is the flight time at position (i, j, k); Ax, Ay and Az are the grid size on the x, y, z directions,
respectively; v,, v, and v, are the propagation velocity in the x, y, z directions, respectively; T, T, and T,
are the grid tracking time in the x, y, z directions, respectively. As shown in Fig. 2, by considering
reservoir permeability anisotropy in Cartesian grid system, the process to track the flight time is as following:
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Figure 2: Flight time tracking process (a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

(1) Set the initial start grid and then mark it as a freezing grid (red point in Fig. 1a);

(2) Search for adjacent grids and calculate the flight time T

(3) Find the grid to which the minimum flight time is required (“1” point in Fig. 1b and mark it as new
freezing grid);

(4) Search for adjacent grids surround the freezing grid. Then calculate the flight time and set a new
freezing grid (“2” point in Fig. 1d);

(5) Repeat Steps 2 to 4 until all grids are marked as freezing grids.

In order to reduce the calculation cost, we set the time threshold of single-well sensitive area to a

preliminarily defined tracking range. In this paper, we arranged 1/7 it from large to small and calculated

the cumulative value. When the cumulative value accounted for 99% of the sum, all the grids with values
less than the time threshold are set as the initial tracking range of the well.

2.2 Principle of History Matching

In this section, we first briefly described the mathematical model of history matching and the process to
do parameter dimensionality reduction. Then, we explained how to use the single-well sensitive area data to
correct the gradient of the objective function.

2.2.1 Mathematical Model of History Matching

History matching is a typical inverse-problem solving process, which aims to generate the maximum
posteriori estimate of the reservoir model by matching the observation data. The correction between the
actual observation data and the model parameters is:

dobs = g(m) +eq (4)

where, d, is the observed data, such as water content, oil production rate, bottom hole pressure, etc.; g( )
refers to the numerical simulation process; m is the model parameter; eq4 is the measuring error. According to
the Bayesian framework, the conditional PDF of m conditional d,,s can be written as:
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p(dobs ]m)p(m)

p(m|dg) = P(dose) o p(dops|m)p(m) (5)
where,

1 1
p(m|dgps) o< exp [ — 5 (dobs — g(m))Tcz_)l (dobs — g(m)) — 5 (m — mprior)ch\jll (m — my,ir) (6)

where, Cy; is the correlation matrix of model parameters; Cp, is the covariance matrix of measuring errors.
Thus, in the history matching process, the following formula should be minimized:

f(m) = % (dobs - g(m))TCBI (dobs - g(m)) + % (m - n‘lprior)TC]:/[1 (m - mprior) (7)
where, m i, is the prior estimation vector of reservoir model. In the history matching process, the prior
model was often used as the initial value of the continuous iteratives. Since myyo, Often follows the
multivariate Gaussian distribution in practical applications, the average values of these prior model
parameter that represented the prior geological features would be optimized as the initial value. In this
paper, m is used instead of Mpyior:

R
m = ﬁ Z m; = Myprior (8)
"=l

In general, the actual reservoir parameters often have high dimensionality, making it pretty difficult to
directly calculate the Cy;. In the past, many methods such as K-L decomposition method, discrete cosine
transform method and gradual deformation method have been applied to reduce the dimensionality of the
parameters in history matching. In this paper, efficient SVD decomposition method in PCA was
introduced to parameterize the reservoir model and to deconstruct the Cy; to make N,, non-zero singular
values. Cy; was calculated as following:

Cu ~ U, A2UT 9)

N —1

where, Ay, is the diagonal matrix, in which diagonal elements are singular values; U,, is the singular matrix.
Herein, we defined a vector w, and m could be expressed by w:

w = /N, — 1A,"U! (m — m) (10)

The objective function can be approximately converted to:
_ 1 T 1 r
f(w) —E(dobs_g(w)) CD (dobs_g(w))"i_iw w (11)

The maximum posteriori estimation myap could be inversely calculated after the maximum posteriori
estimation wy ap Was obtained by minimizing Eq. (11):

myap = M + Awpap (12)
WAW
where, A = L
N, —1

2.2.2 Correction Method to Correct Gradients
In the numerical simulation process, the production data generated by the reservoir model based on the
model parameters m generally followed the following relationship:

g(m) = Gm (13)
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where, g(m) is the simulated data; G is the sensitivity matrix of g(m). The gradient of Eq. (11) can be
written as

Vf(w) = w + GyCp' (g(w) — dobs) (14)

where, G, is the sensitivity coefficient matrix of g(w). At the / iteration step, the variable could be updated
by:

w =w — oy (W+GLCh' (g(W) — dobs)) (1

where, 0, is the step size in search. In the previous study, the sensitivity matrix G was constructed over the m
field. After parameterization, it was necessary to transfer the sensitivity matrix over m field to over w field,
that was, transferring G to G,,. Herein, we defined p(m) as the sensitivity localization function over the m-
field: p(m)= [pl, 02, ...de]. The gradient of p(m) is:

I Opx,
6m1 aInl
ap o . % : j=1,...Ny
om : om; ’ (izl,...Nm (16)
Op, » L
8m]vm 8mNm

where, Ny is the number of the observation data. After the single-well sensitive area was obtained by FMM,

the sensitivity gradient beyond the sensitivity area was defined as 9P _. Based on the flight time, a

om

exponential model was used to obtain the single-well sensitivity localization correlation model inside the
sensitivity area:

8p exp[—3 T(m)/Tref(m) T e F}
om0 T¢F, (a7

where, F; is the sensitive area of well j generated by FMM; Ti¢ is the maximum flight time within the
sensitive area of well j, which is related to the static parameter field m. It was also worth noting that the
flight time could be normalized to make the localization model more applicable.

Then we defined p(w) as the sensitivity localization function over the w field. Set:

dp
Vw =— 18
(p(w)) = o (18)
and
dp
m =_ 1
Vin(p(m)) == - (19)
According to the chain rule to solve the partial derivatives:
Vw(p(w)) = Vy (mT(W)) Vi (p(m)) (20)
where, V,,(m"(w)) = AT. Therefore, localized analytical gradient considering the single-well sensitive area

9
ow

could be obtained by the Schur product between and G!. The latest updated variables were:
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wi=w — o (Wl-i- <% O GVTV> Cp'(g(w) — dobs)) (21)

3 Case Study

3.1 Conceptual Case

A two-dimensional heterogeneous reservoir model with three reservoir fluids, oil, gas and water was first
constructed to verify the proposed method. The size of this model was set to be 20 x 30 x 1. The grid size is,
Dx = Dy = 80 m, and Dz = 30 m. We selected twenty prior reservoir realizations and a real model that
provided the observation data. The real permeability field of the model was shown in Fig. 4a, which was
of strong heterogeneity with high permeability zones. Fig. 4b was the average permeability field of
twenty reservoir models. The average model was to be used as the initial model for history matching.
Fig. 4c was the permeability field of a specific model. For all of models, the average porosity was 0.2,
the initial water saturation was 0.2, and the gas was dissolved gas. More fluid physical properties could
be seen in Table 1 and Fig. 3. There were one injection well and five production wells. The injection rate
was a constant of 500 m’/d. The liquid flow rate of the production wells, 100 m’/d. A total of
1200 parameters including permeability and porosity were to be estimated by matching the actual
production data.
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Figure 3: Fluid physical properties (a) oil-water relative permeability (b) oil-gas relative permeability
(c) the dissolved gas-oil ratio vs. pressure
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Figure 4: Log-permeability field (a) true model (b) average model (c) a specific model

Table 1: Reservoir and fluid physical properties

Properties Value Properties Value
Initial reservoir pressure, psi 3503 Water viscosity, cp 0.5
Initial water saturation 0.2 Gas viscosity, cp 0.012
Initial gas saturation 0.1 Water density, [b/ft® 62.428
Rock compressibility 3.1x107" Oil density, Ib/ft’ 56.93
Water compressibility 3.74 x 107° Gas density, 1b/ft’ 0.0516

In the history matching process, the FMM method was firstly used to calculate the flight time. Taking the
injection well in the average model as an example (Fig. 5), the flight time was found to be related to
permeability field. According to Eq. (1), the calculated migration velocity of the pressure wave was also
related to the reservoir permeability. Generally speaking, higher permeability corresponds to better
reservoir physical properties, and the flight time would be shorter. Based on the flight time, the sensitive
area of each single well was then determined to localize the reservoir, as shown in Fig. 6. It was also
worth mentioning that it only took 1.3 s to calculate the flight time without any numerical simulation
runs, indicating the higher efficiency of FMM for sensitive area division as compared to the traditional
methods based on experience, seismic data [32] or Voronoi diagram [33].

Flight time Well index
35 6
3 5
25
P4

© L4
2
15 S
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Figure 5: The flight time Figure 6: Single-well sensitive area
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Subsequently, the PCA method was used to reduce the dimensionality of the parameters included in the
reservoir model. In order to verify the effectiveness of the proposed method to weaken the pseudo-
correlation, the finite difference method (FDM), simultaneous perturbation stochastic approximation
(SPSA) [34,35], localized analytic gradient method (LAGM) and analytical gradient method without
considering sensitive area (AGM) were adopted respectively to estimate the gradient of the objective
function and to perform the history matching with 70 iterations. AGM refers to that the variable is
updated by Eq. (15), and LAGM refers to that the variable is updated by Eq. (21). Some details about
SPSA algorithm were listed in the Appendix A. For the four algorithms, the iteration step was set to 0.5.
Figs. 7 and 8 were the calculated gradient by the four algorithms and its gradient correlation coefficient
of each variable at the 10™ and the 70" iteration step. Among them, the gradient calculated by FDM
marked by red circles was considered as the true gradient. It was easy to notice that the LAGM gave a
closer correlation with the true gradient than AGM and SPSA. For the calculated gradient correlation
between FDM and the other three algorithms at the 10™ iteration step, the SPSA marked by yellow line
was 0.095, the AGM marked by gray line was 0.181, and the LAGM marked by blue line was 0.417.
Similarly, at the 70" iteration step, the SPSA algorithm was 0.064, the AGM was 0.105, and the LAGM
was 0.325. The results implied that the LAGM could effectively eliminate the pseudo correlation of the
gradient. Fig. 9 was the convergence performance of the three algorithms within 70 iterations. In this
example, LAGM and AGM yielded a final objective function value of about 7187. But LAGM showed a
faster convergence speed, implying that LAGM had a higher computational efficiency for history
matching process. The value of the final objective function obtained by SPSA was about 16601. Because
SPSA required to perturb the variables synchronously for many times to obtain the approximate gradient,
it often converged locally and required a higher computational cost. Also, it was tough to directly
calculate the true gradient in history matching due to the huge numbers of reservoir parameters. Thus,
parameterizing reservoir model and then modifying gradient might be a good choice for heavy reservoir
history matching problem.
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Figure 7: Calculated gradient information at 10" iteration step (a) Calculated normalized gradient for four
algorithms (b) Gradient correlation coefficient between FDM and LAGM, AGM and SPSA

The final permeability estimates calculated by the three algorithms were presented in Fig. 10. The true
model was obtained by FDM. By visual comparations, LAGM could reflect heterogeneous characteristics
more accurate than AGM. In contrast, the permeability field obtained by SPSA gave more prominent
heterogeneous characteristics. However, the obtained permeability field generated by SPSA was totally
different as the true model in the upper left corner and lower right corner. The production predictions by
the three algorithms were provided in Fig. 11. In this figure, the predictions of the initial model /n were
marked by grey line. The observation data simulated by the true model was marked by the red circle.
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LAGM gave better history matching quality than the other two algorithms. However, for P3 well, no
algorithms produced good results. Table 2 also showed that LAGM had higher calculation accuracy than
the other two algorithms. This case mainly proved that the proposed method could effectively weaken the
pseudo correlation and further improve the quality of history matching by using the single-well sensitive
area and modified gradient.
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Figure 8: Calculated gradient information at 70 iteration step (a) Calculated normalized gradient for four
algorithms (b) Gradient correlation coefficient between FDM and LAGM, AGM and SPSA
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Figure 9: Objective function vs. the iteration steps

3.2 Field Case

The Brugge oilfield was developed by TNO as a benchmark for closed-loop reservoir management
test. Fig. 12 was the top structure of this reservoir. The grid represents the reservoir was divided into
139 x 48 x 9 grids, and the number of active grids is 44550. There are 20 production wells in the center
and 10 injection wells at the edge to replenish energy within a lifetime of 7300 days. The injection rate
was set to be 4000 m*/day and the production rate was 600 m*/day. In the history matching process, the
variance of the measuring error was a fixed value of 0.05 over the observation data. The grid planar
permeability was set to be the estimated parameter. Similar to the previously discussed example,
40 reservoir parameters were applied. Fig. 14a was the log-permeability field of the average model.
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Figure 10: Log-permeability field of the history-matched model based on four algorithms (a) true model
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Then, FMM was introduced to calculate the flight time and to determine the single-well sensitive area.
The sensitivity area of the first layer of the average model was shown in Fig. 13. The calculated flight time
between grids with very long spatial distance was small due to the influence of strongly heterogeneous grids,
resulting in noises. Therefore, we artificially eliminated some small noise in each area to improve the quality
of history matching. Fig. 14 was the posterior estimate of permeability parameters generated by LAGM,
AGM and SPSA algorithms at the 300™ iteration step. LAGM and AGM gave very similar results in the
MAP estimates, while SPSA gave more prominent heterogeneous characteristics. Fig. 15 was the
matched production data of six wells. The production performances simulated by the average model
diverted from the observations. LAGM algorithm showed better prediction results compared to other two
algorithms. Table 3 presented the calculation accuracy of the three algorithms, indicating that LAGM had
higher calculation accuracy in applications.
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Table 2: History matching accuracy at 70™ iteration step of LAGM, AGM and SPSA algorithms

Algorithms Accuracy
LAGM 95.64%
AGM 92.15%
SPSA 86.31%
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Table 3: Comparisons of history matching accuracy of LAGM, AGM and SPSA algorithms

Algorithms

Accuracy

LAGM
AGM
SPSA

92.35%
86.23%
83.25%
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4 Conclusion

In this paper, we firstly reviewed the theorem of FMM and briefly introduced the sensitive area division
method. Subsequently, we established a history matching mathematical model based on Bayesian
framework. A parameterization method was used to reduce the dimensionality of original model
parameters. By integrating the sensitive area information, the gradient of history matching could be better
modified. The proposed approach was actually a two-step history matching method and no numerical
simulation runs were required in the pretreatment process. To evaluate the feasibility of the presented
method, a conceptual case of water drive in a heterogeneous two-dimensional reservoir and a real field
case were tested. The results showed that the presented approach had higher accuracy and computational
efficiency as compared to non-localized gradient method and gradient free algorithm. Moreover, the
presented idea could also be used in other history matching algorithms, such as ENKF, ES-MDA, and so
on. It was worth noting that parameterizing reservoir model and then modifying gradient may be a good
choice for heavy reservoir history matching problem.
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Appendix A: SPSA algorithm

As an approximate-gradient iterative optimization algorithm, SPSA can ensure that the optimization
direction is always the uphill direction through the simultaneous disturbance of components of variable.
For the /th iteration, the stochastic gradient of the target function in Eq. (11) can be calculated by

I B I
& (wl) :f(w + C;Az)zclf(w C1A1) A;] (A-1)

where A; is the random column vector that satisfies the +1 Bernoulli distribution; ¢; is the positive coefficient
controlling perturbation size with the fixed value of 0.101. The variable w is updated through steepest
descent

wil =w + OC[+]§'I (wl) (A-2)

where a; is the iteration step size with the fixed value of 0.5; the average gradient is defined by

C I
> & (w) (A-3)
=1

where p is the number of perturbation at each iteration with a fixed value of 5.
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