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ABSTRACT

This paper is devoted to the analysis of the heat transfer and Navier’s slip effects in a non-Newtonian Jeffrey fluid
flowing past a stretching/shrinking sheet. The nanoparticles, namely, Cu and Al2O3 are used with a water-based
fluid with Prandtl number 6.272. Velocity slip flow is assumed to occur when the characteristic size of the flow
system is small or the flow pressure is very small. By using the similarity transformations, the governing nonlinear
PDEs are turned into ordinary differential equations (ODE’s). Analytical results are presented and analyzed for
various values of physical parameters: Prandtl number, Radiation parameter, stretching/shrinking parameter
and mass transpiration for the flow and heat transfer. The considered problem is relevant to various physical
applications in the field of engineering, e.g., the production of certain materials, the preparation of plastic and
rubber sheets and glass blowing. It is shown that the considered nanofluid increases the thermal efficiency.
The nanoparticles act as a heater by increasing the solid volume fraction and thermal radiation. Vice versa, they
can act as a cooler if the strength of magnetic field is increased. The flow strength decreases by increasing the
values of Deborah number.
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Nomenclature
A and B coefficients of first and second order slip, respectively
a and b constants
B0 uniform magnetic field (Tesla)
CP specific heat at constant pressure (JKg−1K−1)
c constant
Erfc complementary error function
k solution domain
k� mean absorption coefficient
l1 and l2 first and second order slip, respectively
Pr Prandtl number

ðlCPÞf
jf

� �
Q Chandrasekhar’s number

rf B2
0

qf c

� �
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qr radiative heat flux
qw local heat flux (wm−2)
R thermal radiation
T∞ ambient temperature (K)
Tw temperature at wall (K)
T temperature (K)
uw(x) velocity at wall
ue(x) potential velocity
vw mass flux (ms−1)
VC mass transpiration
(u, v) components of velocity (ms−1)
(x, y) Cartesian coordinate (m)

Greek symbols
σ electrical conductivity (Sm−1)
r� Stefan-Boltzmann constant (Wm−2K−4)
λ stretching/shrinking parameter
ξ1 and ξ2 related to relaxation parameter
β Deborah number (cξ2)
Λ strength parameter a

c

� �
η similarity variable
νnf kinematic viscosity of nanofluid (m2s−1)
νf kinematic viscosity of base fluid (m2s−1)
ρnf density of nanofluid (kgm−3)
ρf density of base fluid (kgm−3)
anf thermal diffusivity of nanofluid.
μnf dynamic viscosity of nanofluid (kgm−1S−1)
μf dynamic viscosity of base fluid (kgm−1S−1)
κ thermal conductivity (W/mK)

K temperature jump K0

ffiffiffi
a
mf

q� �
τw skin friction
τ inclined angle

Subscripts
w quantities at wall
∞ quantities at freestream
f fluid
nf snanofluid

Abbeviations
MHD magnetohydrodynamics
ODE ordinary differential equation
PDE partial differential equation
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1 Introduction

In the recent few eras the researchers show much interest on the flow of non-Newtonian fluids. This
interest is growing like a stem of a tree because of its huge technological and industrial applications in
many fields such as engineering applications, exchanger of heat, extrusion of metal and polymer process,
manufacturing of paper, cable coating and so on. Numerous investigations take place on the flow of a
fluid through a stretching/shrinking surface. Most of them agreed that Sakiadis [1] conducted the first
investigation on the flow of a fluid induced by a moving surface. The flow of a fluid due to a stretching
sheet is analyzed by Crane [2]. In this he studied the flow due to a sheet with constant speed from a slit
into a fluid at rest. Motivated by Crane’s work, many researchers conducted an experiment on the flow
caused by the stretching/shrinking sheet. See the examples of Mahabaleshwar et al. [3,4] and Amkadni
et al. [5]. Further, many more investigations take place on the flow of a stretching/shrinking sheet in the
presence of MHD. Pavlov [6,7] primarily examined the stretching wall problem in the presence of MHD,
this study describes the flow of a conducting fluid through a deformation of a plane elastic surface in a
transverse magnetic field and it is analyzed in the approximation of boundary layer theory. Later
Mahabaleshwar et al. [8,9] investigated the flow problem in the presence of MHD, this study describes
the characteristics of heat and MHD imposed on the stretching sheet and it is solved analytically. Fang
et al. [10] examined the magnetohydrodynamic flow in the presence of slip condition through a
permeable stretching surface and the solution is solved analytically by inclusion of MHD and radiation.
Smith [11] 1st work on the effect of radiation in a boundary layer flow, this work describes the radiation
in the boundary layer on aerodynamic heat transfer. After this huge research was conducted on radiation.
Siddheshwar et al. [12], worked on MHD flow and heat transfer in a viscoelastic liquid past a stretching
sheet in the presence of radiation. Later Mahabaleshwar et al. [13] various methods have been conducted
to improve the thermal conductivity of flow fluid by adding nano sized particles inside the liquids: then
these liquids are called nanofluids. see the two examples of research on nanofluids [14,15]. Recently
many works have been conducted on nanofluids, hybrid nanofluids and carbon nanotubes with a variety
of boundary conditions under many situations such as MHD and thermal radiation, mass transpiration and
so on. Mahabaleshwar et al. [16–18] and Anusha et al. [19] worked on role of brinkmann model with
non-Newtonian fluid flow in the presence of porous medium with heat transfer and the effect of hybrid
nanofluid flow with superlinear stretching sheet and Navier’s slip effects on flow of a fluid with thermal
radiation and mass transpiration.

Apart from these research some of the researchers conducted an experiment on Jeffrey fluid. The
magnetohydrodynamics effects and other physical mechanisms show huge significance in many Jeffrey
fluid applications. Jeffrey fluid past a Narrow tube with a Magnetic field is examined in [20]. Peristaltic
flow of chyme in the small intestine with magnetic field and their characteristics explained in [21].
Kumar et al. [22] described incompressible Jeffrey fluid flow in the presence of a magnetic field with the
annulus of rotating concentric.

Inspired by the above research papers the present work is to extend the articles [23,24], this work fulfills
the impact of inclined MHD and second order slip in the presence of nanofluid. The governing PDEs of the
problems are transformed into ODEs with the help of similarity variables; the whole investigation takes place
on Cu-water nanofluid. The flow is caused due to stretching/shrinking sheets, with the help of suitable
similarity transformation. The resulting ODEs are solved analytically to get the solution domain, this
solution domain is used in heat equation and solved direct integration technique to obtain exact solution.
The results of Cf and Nu can be attained with the help of graphs.

2 Physical Modeling and Governing Equations

In the current work Jeffrey nanofluid flow is taken into account. This flow is a laminar steady state and it
is emerging towards the x-axis near the stagnation point in the presence of Cu-water nanofluid. The flow is
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caused through a permeable stretching/shrinking surface lying at y = 0, the flow configuration is physically
explained in Fig. 1. Also the nanofluids quantities are represented at Table 1. The uniformmagnetic field B0 is
inserted at the deforming velocity of the wall uw(x). Along with potential velocity ue(x), assume the uniform
ambient temperature T∞ at the for field. The governing Navier’s stokes equations are given below:

@u

@x
þ @u

@y
¼ 0; (1)

u
@u

@x
þ v

@u

@y
¼ ue

@ue
@x

� rnf B2
0

qnf
Sin½s�2ðu� ueÞ

þ mnf
1þ n1

@2u

@y2

	
þ n2 u

@3u

@x@y2

�
� @u

@x

@2u

@y2
þ @u

@y

@2u

@x@y
þ v

@3u

@y3



;

(2)

u
@T

@x
þ v

@T

@y
¼ anf

@2T

@y2
� 1

ðqCPÞnf
@qr
@y

; (3)

the applied boundary conditions (see [25,26])

u ¼ kcxþ A
@u

@y
þ B

@2u

@y2
¼ 0 ; v ¼ vw; T ¼ TwðxÞ at y ¼ 0

u ¼ ueðxÞ ¼ ax;
@u

@y
! 0; T ! T1; as y ! 1

9>>=
>>;: (4)

It is mentioned that there are two boundary conditions exist for wall temperature Tw(x), either it is
constant or evolving with x linearly via Tw(x) = Tw + bx. T denotes the temperature of the fluid, and vw

Figure 1: Physical representation of jeffrey fluid flow

Table 1: Thermophysical properties of nanofluids (see Mahabaleshwar et al. [15])

Sr. No. Physical properties Liquid phase Copper Alumina

1 Cp (J/kgK) 4179 385 765

2 ρ (kg/m3) 997.1 8933 3970

3 κ (W/mK) 0.613 400 40

4 σ (Sm−1) 0.05 5.97 × 107
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denotes the mass flux velocity with vw < 0 represents suction and vw < 0 represents injection. For the purpose
of obtaining exact solutions the fluid properties are assumed to be constant, ξ1 and ξ2 are associated to
relaxation parameters., at lastly stretching case is represented by λ = 1 and shrinking case by λ = −1.

The Rosseland’s formulation for the radiative heat flux can be simplified for radiation as
(see [27–32])

qr ¼ � 4r�

3k�
@T 4

@z
; (5a)

where, T4 is expressed in the form of linear function of the temperature. Increasing the term T4 in the
form of Taylor series and also some terms are ignored.

T4 ¼ 4T3
1T � 3T 4

1; (5b)

Substituting Eqs. (5a) and (5b) in Eq. (3) and the following suitable transformation applied to get the
ordinary differential equations:

g ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1þ n1Þ

mf

s
; u ¼ cxf 0ðgÞ;

v ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cmf
ð1þ n1Þ

r
; hðgÞ ¼ T � T1

Tw � T1

9>>>=
>>>;
; (5c)

on applying these similarity transformations to the Eqs. (1) to (4), then these equations are simplified to

C3f
000 þ C3bðf 002 � ff ivÞ � f 02 þ ff 00 � C1

C2
QSin2ðsÞðf 0 � �Þ þ �2 ¼ 0; (6)

ðC5 þ RÞh00 þ C4 Pr f h
0 ¼ 0; (7)

ðC5 þ RÞh00 þ C4 Prðf h0 � f 0hÞ ¼ 0; (8)

the constant parameters inserted in the Eqs. (5) to (7), can be defined as

C1 ¼ rnf
rf

; C2 ¼
qnf
qf

; C3 ¼ mnf
mf

; C4 ¼ jnf
jf

; C5 ¼
ðqCPÞnf
ðqCPÞf

;

Q ¼ rB2
0

qc
; R ¼ 16r�T3

1
3k�jf

; Pr ¼ ðlCPÞf
jf

:

The BC’s transformed to

f ð0Þ ¼ VC; f 0ð0Þ ¼ kþ l1f 00ð0Þ þ l2f 000ð0Þ at y ¼ 0
f 0ð1Þ ¼ �; f 00ð1Þ ! 0; hð1Þ ! 0 as ! 0

�
: (9)

Here vw ¼ �
ffiffiffiffiffiffiffiffiffiffi
cmf

ð1þn1Þ
q

is the wall transpiration, l1 ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffi
cð1þn1Þ

mf

q
; l2 ¼ B cð1þn1Þ

mf
are the first and second

order slip, respectively, b; VC; Pr; � are the highly dominating parameters of the Jeffrey fluid flow:

3 Physical Quantities of Interest

The skin friction coefficient Cf and Local Nusselt number Nux is given by

Cf ¼ sw
qf u2eðxÞ

; Nux ¼ xqw
af ðTw � T1Þ ; (10)
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where

sw ¼ lnf
@u

@y

� �
y¼0

qw ¼ �anf
@T

@y

� �
y¼0

; (11)

Substituting, Eq. (11) in Eq. (10), after some manipulation the Cf and Nux are given by

CfRe
1=2
x ¼ C3f

00ð0Þ
NuxRe

�1=2
x ¼ �C4

C5
h0ð0Þ; (12)

4 An Analytical Solution for Momentum and Energy Equations

Let us assume the solution of the Eq. (6)

f ðgÞ ¼ VC þ �gþ k� �

kð1þ l1k � l2k2Þ f1� expð�kgÞg; (13)

in order to get the algebraic formula connecting with the physical parameters by equating Eqs. (13) into (6).
The constraint k must be positive to achieve the solution.

ðk� �Þ �ðc3l2bVC þ g�bc3l2Þk5 þ ðc3l1bVC � c3l2 þ g�l1bc3Þk4
�

þ ðc3bVC þ l1c3 þ VCl2 þ g�bc3 þ g�l2Þk3 þ dc3bþ l2
c1
c2
Qsin2ðsÞ þ c3

�

�VCl1 þ 2�l2 � c3b�� g�l1Þk2 þ �l1
c1
c2
Qsin2ðsÞ � VC � 2�l1 � g�

� �
k

�k� c1
c2
Qsin2ðsÞ � �

�
¼ 0;

(14)

For limiting case Λ = 0, then Eqs. (13) and (14) reduce to

f ðgÞ ¼ VC þ k½1� expð�kgÞ�
kð1þ l1k � l2k2Þ ; provided k. 0; (15)

�c3l2bVCk
5 þ ðc3l1bVC � c3l2Þk4 þ ðc3bVC þ l1c3 þ VCl2Þk3 þ dc3bþ l2

c1
c2
Qsin2ðsÞ

�

:

þ c3�VCl1Þk2 þ �l1
c1
c2
Qsin2ðsÞ � VC

� �
k�k� c1

c2
Qsin2ðsÞ � �

�
¼ 0

(16)

Further, we assuming the solution of temperature equation

hðgÞ ¼ expð�kgÞ; (17)

Substituting (13) and (17), in (8), then we found the solution as

kC4 Prþk½PrC4VC � kðC5 þ RÞ�ð1þ l1k � l2k
2Þ ¼ 0; (18)
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After some manipulation on equating (16) and (18), we get the root of the equation as

k ¼


C2ðC5þRÞ� PrC2C3C4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPrC2C3C4�C2ðC5þRÞÞ2 � 4bC1C2C3C4ðC5þRÞPrQSin½s�2

q
2bC2C3ðC5þRÞ

vuut
(19)

VC ¼ kðC5 þ RÞ
PrC4

� k
kð1þ l1k � l2k2Þ ; (20)

where, k > 0 is independent of λ, l1 and l2, and also the Parameter VC will change with these parameters, the
Cf and Nu are then becomes

� f 00ð0Þ ¼ kk
1þ l1k � l2k2

; �h0ð0Þ ¼ k; (21)

Therefore, the Cf will decreases by increasing first and second order slip

Next we take particular case Λ = 1, and λ = 1, then Eq. (13) becomes

f ðgÞ ¼ VC þ g; (22)

Substituting this in Eq. (7), the solution obtained as

hðgÞ ¼
Erfc

ffiffiffi
d

p ðVC þ gÞffiffiffi
2

p
" #

Erfc

ffiffiffi
d

p
VCffiffiffi
2

p
" # where d ¼ PrC4

ðC5 þ RÞ

9>>>>=
>>>>;
: (23)

where Erfc ¼ 1� Erf ðtÞ ¼ � 2ffiffi
p

p
R1
0
e�t2dt means the complementary error function, hence we get the

analytical expression as

h0ð0Þ ¼ �
exp � dV 2

C

2

	 
 ffiffiffi
2

p

r ffiffiffi
d

p

Erfc

ffiffiffi
d

p
VCffiffiffi
2

p
" #

8>>>><
>>>>:

9>>>>=
>>>>;
: (24)

5 Figures and Discussions

The Jeffrey nanofluid flow is considered in the current investigation, the impact of inclined MHD and
second order slip is taken into account with this flow in the presence of Cu-water nanofluid. The flow is
conducted due to a stretching/shrinking sheet. The governing PDEs are mapped into ODEs with the help
of similarity transfromations, the momentum equation of this problem is verified exactly to get solution
domain. By using direct integration technique to verify the energy equation and also the solution domain
connected with heat equation through f(η). To understand the problem tharougly skin friction and Nusselt
number can be verified. The results of this investigation can be conducted with the help of graphs on
varying the different parameters.
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Figs. 2 and 3 demonstrate that the impact of f(η) on similarity variable η for stretching and shrinking
case. In Fig. 2a it is observed that the stretching case condition, i.e., λ = 1, in this the flow of a fluid
increases with increase of Radiation parameter R, and also the boundary layer thickness is away from the
x-axis. Here the flow fluid increases with increase of β value. Whereas Fig. 2b indicates the shrinking
case λ = −1, in this also in this the flow of a fluid increases with increase of Radiation parameter R, and
also the boundary layer thickness is away from the x-axis. But the flow fluid decreases with increase of β
value. Thermal radiation is much impact on fields it increases the flow velocity and heat transfer rate.

Figure 2: The impact of transverse velocity on similarity variable η for unlike values of radiation parameter
R, at (a) stretching case λ = 1, and (b) shrinking case λ = −1
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Figs. 3a and 3b analyse the flow of a fluid with unlike values of inclined angle τ for stretching and
shrinking case, respectively. In both stretching and shrinking case the transverse velocity decreases with
increase of inclined angle τ, and boundary value thickness is towards the x-axis.

The effect of tangential velocity on similarity variable η can be represented by Figs. 4 and 5. In Figs. 5a
and 5b it is indicating that the tangential velocity decreases for stretching case and it is increased for shrinking
case when we varying the Chandrasekhar’s number Q, respectively, boundary layer thickness is away from
the x-axis in stretching case, and boundary layer thickness is towards the x-axis in shrinking case. Figs. 6a
and 6b represent the stretching case and shrinking case, respectively. In Fig. 6a it is observed that the
tangential velocity increases with increases of inclined angle τ and this effect is reversed in Fig. 6b, also
boundary layer thickness is away and towards the x-axis, respectively.

Figure 3: The impact of transverse velocity on similarity variable η for unlike values of inclined angle τ, at
(a) stretching case λ = 1, and (b) shrinking case λ = −1
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The impact of skin friction coefficient Cf on the functions Chandrasekhar’s number Q and Prandtl
number Pr can be represented from the Figs. 7a and 7b, respectively. In Fig. 7a it is clear that the Cf is
increases with increasing the inclined angle τ, and also from Fig. 7b it is conclude that the Cf is decreases
with increasing the Chandrasekhar’s number Q. Furthermore, from both of the figure we observed that
the Cf will decreases by increasing the slip parameters l1 and l2. The large values of Q causes the lesser
skin friction and lesser heat transfer rate.

Figure 4: The impact of tangential velocity on similarity variable η for unlike values of Chandrasekhar’s
number Q, at (a) stretching case λ = 1, and (b) shrinking case λ = −1
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Fig. 8 represents the impact of temperature profile θ(η) expressed in Eq. (17), on the similarity variable η,
in this it is analysed that the θ(η) increases with inclined angle τ, and the boundary value thickness is away
from the x-axis. Similarly, Figs. 8a and 8b represent the effect of temperature profile θ(η) derived in Eq. (23),
on the similarity variable η, θ(η) decreases with increase of mass transpiration VC and increases with increase
of Radiation parameter R, it is observed graphically in Figs. 8a and 8b, respectively.

Figure 5: The impact of tangential velocity on similarity variable η for unlike values of inclined angle τ, at
(a) stretching case λ = 1, and (b) shrinking case λ = −1
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Figs. 9a and 9b demonstrated that the impact of Nusselt number Nu derived from (12) and (21), on the
inclined angle τ and Radiation parameter R in the presence of a function Chandrasekhar’s number Q, and
Mass transpiration VC. In both figures the Nusselt number Nu decreases with increase of inclined angle τ
and Radiation parameter R.

Similarly, the same investigation carried out for Al2O3-water nanoparticle, it also shows the
approximately same effect when we compared with Cu-water nanoparticle. The present investigation
helps to conduct new research on nanofluids with stretching sheet problems and also direct integration
technique helps to solve heat transfer equation easily.

Figure 6: a) The effect of skin friction coefficient Cf on Chandrasekhar’s number Q for unlike values of
inclined angle τ; b) The effect of skin friction coefficient Cf on Prandtl number Pr for unlike values of
Chandrasekhar’s number Q
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Figure 8: a) The impact of temperature profile velocity θ(η) on similarity variable η for unlike values of
mass transpiration VC; b) The impact of temperature profile velocity θ(η) on similarity variable η for
unlike values of radiation parameter R

Figure 7: The impact of temperature profile velocity θ(η) on similarity variable η for unlike values of
inclined angle τ
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6 Concluding Remarks

The current article investigates the Jeffrey nanofluid flow in the presence of Cu-water nanofluid. The
nonlinear PDE’s are changed into ODEs with the help of suitable similarity transformations. Later the
momentum equation solved analytically to get the solution domain, this domain is linked with heat
equation through f(η). Then the heat equation is solved under direct integration technique to get the
solution. Additionally, inclined magnetic field and radiation term is taken into account in the whole
calculation. The foremost findings of this analysis are given below:

� Flow fluid decreases with increase of Deborah number β value.

� The skin friction coefficient Cf will decreases by increasing the slip parameters l1 and l2.

Figure 9: a) The effect of Nusselt number Nu on Chandrasekhar’s number Q for unlike values of inclined
angle τ; b) The effect of Nusselt number Nu on mass transpiration VC for unlike values of radiation
parameter R
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� The rate of heat transfer increases by adding nanofluid.
� Temperature T is not influenced by parameters λ, l1, and l2.

� The classical Crane [2] problem is obtained from Eq. (6) if Q = τ = β =Λ = 0, and C1 =C2 =C3 = 1.

� The classical Pavlov [6] problem is obtained from Eq. (6) if β =Λ = 0, τ = 90� and C1 =C2 =C3 =Q = 1.

� The Turkyilmazoglu [24] problem is obtained from Eqs. (6)–(8) if R = 0, τ = 90� and C1 =C2 =C3 = 1,
Q =M.

� The present work is help to conduct future research on nanofluid flows, and also direct integration
technique is one of the easy ways to solve the energy equation, it helps to many reasearchers.
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