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ABSTRACT

In this study, three computational approaches for the optimization of a thermal conduction problem are critically com-
pared. These include a Direct Method (DM), a Genetic Algorithm (GA), and a Pattern Search (PS) technique. The
optimization aims to minimize the maximum temperature of a hot medium (a medium with uniform heat generation)
using a constant amount of high conductivity materials (playing the role of fixed factor constraining the considered
problem). The principal goal of this paper is to determine the most efficient and fastest option among the considered
ones. It is shown that the examined three methods approximately lead to the same result in terms of maximum tem-
perature. However, when the number of optimization variables is low, the DM is the fastest one. An increment in the
complexity of the design and the number of degrees of freedom (DOF) can make the DM impractical. Results also
show that the PS algorithm becomes faster than the GA as the number of variables for the optimization rises.
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Nomenclature
A Area (m2)
H Height (m)
k Thermal conductivity (W.m−1.K−1)
L Length (m)
c Coordinate normal to the surfaces (m)
N Number
q″′ Volumetric uniform heat generation in the piece (W.m−3)
V Volume (m3)
W Width (m)
x, y, z Cartesian coordinates (m)

Greek Symbols
β Thermal conductivity ratio, kh/kl
θ Temperature (K)
ω Volume fraction occupied by the inserts
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Subscripts
0 Hot medium
B Branches
H High conductivity material (inserts)
L Low conductivity material (hot medium)
Max Maximum
Min Minimum
N Each branch
S Segments
T Total (hot medium and conductive pathway)

Superscripts
− Dimensionless variables

1 Introduction

The failure of electronic chips manifested as increased device temperature is a significant concern today.
Accordingly, many researchers seek new cooling solutions. Convection cooling methods famously suffer
many disadvantages that render them impractical: high-volume occupancy and impairing electronic chips’
efficiency. However, there is an alternating manner using inserts (highly conductive materials) with a
unique advantage: low volume occupancy.

Because of the complexity of suggested structures and consequently multiplicity of optimization
parameters, recently, some researchers have employed optimization algorithms to introduce valuable
solutions to heat transfer problems [1–3]. Bejan et al. proposed cooling hot mediums by inserts for the first
time [4] and introduced the constructal law (CL) [5], attracting many authors to this law, including [6–11].

As the suggested configuration of inserts gets complicated, the significance of choosing the most
efficient method for optimizing the geometrical shape of high conductivity inserts with lower time cost is
more than ever. With the growth and development of computers in engineering applications, optimization
algorithms have become an inseparable part of solving various problems [12]. With the many
optimization methods used in engineering, identifying the perfect method specific to problems is a serious
challenge. Optimization algorithms are commonly selected to solve optimization problems since they
have numerous optimization variables.

Optimization algorithms are generally divided into derivative-free (direct) and gradient-based methods.
Gradient-based optimization algorithms are essentially simple methods that direct the search process using
derivative information. However, with the difficulty of obtaining derivatives, derivative-free methods are a
more popular alternative. Derivative-free methods employ no derivative information derived from objective
functions to find optimal solutions. In cases when derivative information of the objective function is
inaccessible or untrustworthy to obtain, these methods are very applicable. Thus, derivative-free methods
can be used when the objective function is not continuous or differentiable. The key advantage of
derivative-free optimization strategies is their potential to solve problems complicated for gradient-based
methods [13–15]. Therefore, to tackle this problem in this study, two popular derivative-free optimization
algorithms, the genetic algorithm (GA) and the pattern search (PS) algorithm, were employed. Their
efficiency was compared with the direct method (DM).

Firstly, Estrada et al. [16] presented an optimization for the geometry of asymmetric V-shaped inserts for
minimizing the peak temperature of a hot square body through the CL and GA. Their work resulted in some
optimal shapes concerning the DOF.
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Avendaño et al. [17] employed the GA, CL, and the evolutionary theory and proposed two approaches to
cool a hot medium. They found insert configurations that were superior to the I-shaped insert case [18].

Then, the innovative fast algorithm was introduced based on recursive localization of high conductivity
materials rectangular pieces [19]. The main optimization objective in that study was to minimize the thermal
resistance of a hot piece. They showed the higher efficiency and faster performance of the mentioned
algorithm than a time-consuming algorithm, such as the GA.

Recently, two distinguished types for tree-shaped inserts with non-uniform unequal branches, intruding
a hot square body, have been presented in [20], where the PS optimization algorithm was employed to
minimize the body’s hotspot temperature. The results indicated that the minimized peak temperature of
the designed configurations was up to 61% less than the minimized hotspots presented in relevant
previous research. Also, the unequal branches were superior to those with equal branch length.

Furthermore, some researchers have used an optimization algorithm to solve thermal optimization
problems: covariance matrix adaptation evolution strategy (CMA-ES), which is an evolution strategy to
solve heat transfer problems [21,22].

In the current research work, the principal goal is to compare and choose the most efficient and fastest
numerical optimization method for the particular problem of cooling electronics using highly conductive
inserts in the form of multiple tree-shaped of unequal branches with the constraint of a finite extent of
high conductivity materials. Since optimization algorithms are very diverse, the results of this study can
help thermal optimization studies select the most efficient optimization method. As mentioned,
mathematical modeling was not the main purpose of the problem in this work, but it has been given in
the following to better dissect the problem. To that end, the study examined three methods, including
DM, GA, and PS optimization algorithms, to find the most cost-effective method with an optimal design
corresponding to the minimum thermal resistance of the hot body.

2 Problem Definition and Mathematical Formulation

Suppose a square body with uniform heat generation (Fig. 1). The thickness of the bodyW is sufficiently
long compared to length L0 and height H0 of total volume. The low conductivity body (thermal conductivity
kl) is squared (L0 =H0) and intruded by unequal multiple conductive branches (thermal conductivity kh). Heat
is generated uniformly in the medium with the volumetric rate q’’’ (W/m3), and a heat sink with the minimum
temperature T0 situated in the rim removes the generated heat. The outward body surfaces are perfectly
adiabatic (Fig. 1).

Sake of selecting unequal branches returns to Bejan’s CL [5], which states that raising DOF increases
system efficiency. Hence, the Nb number of branches with the various length of Ln and the equal height of
Hn =H0/Nb, embedded into the body (Fig. 1). In this problem, the initial length of every branch begins from
the symmetry line. Moreover, one-half of the geometry is assumed due to the symmetry condition (Fig. 2).
The total volume of the entire system (hot piece and conductive inserts) is fixed.

Vt ¼ Vl þ Vh ¼ WL20ðconstantÞ (1)

where l and h return to the low conductivity material (body) and the high conductivity material (inserts),
respectively. For the sake of simplifying the problem, the variation of all parameters perpendicular to the
plane of Fig. 1 is assumed negligible. So, the total area of the entire system is fixed:

At ¼ Al þ Ah ¼ L20ðconstantÞ (2)

FDMP, 2023, vol.19, no.1 235



Y

L0
X

H0

High thermal 
conductivity

materials

Insulated
boundaries

H1=H0/Nb

H2=H0/Nb

L1/2

L2/2

LNb/2HN=H0/Nb

Heat sink 
(T0)

Figure 1: Hot medium with highly conductive unequal branches

Y

L0/2

High thermal
conductivity

materials

Insulated
boundaries

H1=H0/Nb

Heat sink 
(T0)

X

H0

L1/2

Symmetry
line

Figure 2: Computational domain of the cooling problem of a hot medium with highly conductive unequal
branches (half of the geometry)

236 FDMP, 2023, vol.19, no.1



The area allocated to highly thermal conductive branches is fixed:

Ah ¼
XNb

n¼1

HnLn ¼ L0
Nb

XNb

n¼1

Ln (3)

The fraction ω for the area allocated to the inserts is described as the high conductivity inserts embedded
in the whole body:

x ¼ Vh

Vt
¼ Ah

At
(4)

Rising the body’s temperature through the thermal resistance of the piece higher than the minimal
system temperature (heat sink temperature T0) is the point that might damage the electronic chip or affect
its performance. Therefore, the main aim is to find the optimal configuration of inserts that facilitate the
heat flow access through the inserts by finding an optimal (efficient and fast) numerical optimization method.

The steady-state two-dimensional conduction equation for the area of lowly conductive materials
(piece) is:

@2hl
@�x2

þ @2hl
@�y2

þ 1 ¼ 0 (5)

The steady-state equation of thermal conduction for the domain of high conductivity inserts with no
heat-generating can be given as:

@2hh
@�x2

þ @2hh
@�y2

¼ 0 (6)

where:

h ¼ h� h0
q000At=kl

(7)

ð�x; �y; cÞ ¼ ðx; y; cÞ
A1=2
t

(8)

The boundary conditions for the outer adiabatic surfaces give:

@h
@c

¼ 0 (9)

The boundary condition of the heat sink is:

h ¼ 0 (10)

Continuity in temperature and heat flux at the interface gives:

@hl
@�n

¼ b
@hh
@�n

(11)

hl ¼ hh (12)
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where the fraction β described as:

b ¼ kh=kl (13)

The purpose of optimization is to determine the length (end) of each branch for two specified branches’
number Nb= 5, 10 and several cases of β = 100, ω = 0.1, β = 200, ω = 0.2 and β = 300, ω = 0.05 with respect
to the constraint of constant volume fraction for minimizing the maximum dimensionless temperature:

hmax ¼ hmax � h0
q000At=kl

(14)

The numerical simulation performed was based on the finite element method (FEM) developed in the
MATLAB PDE toolbox environment. The governing equations of heat conduction for the body and
conductive pathways (Eqs. (5) and (6)) are solved numerically considering the set of boundary conditions
(Eqs. (9)–(12)). The objective function of the problem is the maximum dimensionless temperature of the
body (Eq. (14)), and the constraints of the problem are the total area of the entire system and the area of
highly conductive materials (Eqs. (2) and (3)). The grid contains non-uniform triangular elements, and the
appropriate mesh size was determined by incrementing the elements’ number until the successive
refinements criterion was met.

h
jþ1
max � h

j
max

h
j
max

�����

�����, 5� 10�4 (15)

where “j” refers to the current element size and “j+1” refers to the latter element size. As shown in Table 1, in
the mesh-size independence study, independence from meshing is well met.

Besides, the results were compared with the numerical results in [18] (Table 2) to test the accuracy of the
current work for multiple cases of β and ω.

Table 1: The grid independence study (x ¼ 0:1; b ¼ 100 and Nb ¼ 10)

Number of elements h j
max jh j

max � h jþ1
max=h

j
maxj

6780 0.119533 6.94 × 10−4

11442 0.119616 7.18 × 10−4

24870 0.119702 3.17 × 10−4

43884 0.119740 –

Table 2: Comparison between the results of this numerical work and Almogbel et al. [18] work

b x hmax ðpresent workÞ hmax ðAlmogbel and BejanÞ
300 0.05 0.143 0.145

300 0.1 0.124 0.125

300 0.2 0.104 0.105

100 0.1 0.150 0.150
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3 Proposed Optimization Methodologies

The proper selection of an optimization algorithm is crucial to solving an optimization problem. As
previously mentioned, the optimization aims to minimize Eq. (14) (peak dimensionless temperature). The
design variables include the number of branches (Nb), the volume fraction (ω), the thermal conductivity
ratio (β), and the length of each branch (Ln). Three popular and practical optimization methods were
considered:

� Direct Method (DM): This method is statically guaranteed to find the optimal hotspot dimensionless
temperature. However, this approach is not efficient in its search strategy. It determines all possible
modes for the geometrical arrangement of conductive branches concerning the constraint of a
constant extent of high conductivity materials. In this method, highly conductive branches are
composed of several segments that increment in the number of segments cause an increase in the
DOF, and consequently, the minimized hot spot temperature is expected to decline. It determines
all possible modes in three numbers of segments. In the first possible number of segments, all
possible modes are determined. However, in the subsequent numbers of segments, the previous
results of the determined length of each branch are used as a primary point for the latter case,
indicating that the obtained length in the number of segments Ns is used for the case with the
number of segments 2Ns. In this method, Ns is the additional design variable.

� Pattern Search (PS): Patterns search is a systematic direct search type that dynamically generates and
maintains multi-dimensional search directions. The PS algorithm does not explore the global structure
of the objective function and can get attracted by any minimum, whether global or local [23,24]. The
PS algorithm is employed in the MATLAB environment.

The PS algorithm needs a primary guess as a starting point for each branch. Accordingly, at the
beginning of the optimization with Nb = 5, the primary guess for all branches considered equal lengths
(�L1 ¼ �L2 ¼; . . . ;¼ �LNb). After that, the optimal lengths obtained from Nb = 5 are utilized as the initial
optimization point in Nb = 10. Therefore, we can nominate this procedure as an evolutionary method.

� Genetic Algorithm (GA): The GA is an exploratory search approach based on the theory of natural
evolution. GA is a random algorithm that frequently adjusts a population of individual solutions. It
means at each step, the GA randomly chooses individuals from the current population as parents
and utilizes them as the next generation children [25]. In other words, the GAs are population-
based search strategies that maintain the locations and values of a set of points in a function space.
The comparison standard for which old points are discarded or new points are generated depends
on the current population [26].

Unlike the PS algorithm, the GA does not need any initial guess. GA is also employed in MATLAB
software.

4 Results and Discussion

Here, this section presents the minimal peak temperature corresponding to the optimal structures of
branches obtained from three different numerical methods and their execution times for each case presented.
Afterward, the results obtained from each optimization method were compared together. The computer
specification on which these three methods were run was Intel Corei5-3320M CPU and 4 GB RAM.

The optimization results were obtained from DM, GA, and PS numerical processes. In the DM, three
levels for the number of segments Ns are supposed. With the increment in the number of segments Ns,
the maximum temperature max is predicted to decrease at a lower degree due to the increase in the DOF.
However, an increment in the number of segments causes more accuracy in the DM, despite increasing
the runtime.
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Tables 3–5 show the minimal dimensionless maximum temperature respectively for three cases of
β = 200, ω = 0.2, β = 100, ω = 0.1, and β = 300, ω = 0.05 while Nb= 5, 10 and for three numerical methods
of DM (in the number of segments Ns = 10, 20, 40), GA and PS.

For the case β = 200, ω = 0.2 in Table 3, it can be found that the first possible number of segments is
Ns = 10. For the cases, β = 100, ω = 0.1 (Table 4), and β = 300, ω = 0.05 (Table 5), the first possible
number of segments are Ns = 20 and Ns = 40, respectively.

As expected, the minimized hotspot dimensionless temperature hmax;min declined by an increment in the
number of segments for all three cases. Also, the increase in the Nb decreased the body’s minimized peak
temperature.

In Tables 3–5, discovered that the minimal peak dimensionless temperature of DM and PS are very close
together and they are less than the magnitude of minimum peak temperature obtained from the GA method
that it can be assumed that the minimized hotspot obtained from the DM and PS methods are approximately
equal. Thus, the execution time (runtime) is the important parameter to select the most efficient method for
optimizing this problem.

Table 3: The minimized dimensionless maximum excess of temperature obtained from optimization methods
for case β = 200, ω = 0.2

Number of branches

Minimum dimensionless maximum excess of temperature (hmax,min)

Direct method
Genetic algorithm Pattern search

Ns = 10 Ns = 20 Ns = 40

Nb = 5 0.076 0.073 0.070 0.078 0.078

Nb = 10 0.057 0.048 0.044 0.046 0.044

Table 4: The minimized dimensionless maximum excess of temperature obtained from optimization methods
for case b = 100, ω = 0.1

Number of branches

Minimum dimensionless maximum excess of temperature (hmax,min)

Direct method
Genetic algorithm Pattern search

Ns = 10 Ns = 20 Ns = 40

Nb = 5 – 0.135 0.134 0.135 0.132

Nb = 10 – 0.126 0.110 0.131 0.112

Table 5: The minimized dimensionless maximum excess of temperature obtained from optimization methods
for case β = 300, ω = 0.05

Number of branches

Minimum dimensionless maximum excess of temperature (hmax,min)

Direct method
Genetic algorithm Pattern search

Ns = 10 Ns = 20 Ns = 40

Nb = 5 – – 0.136 0.134 0.135

Nb = 10 – – 0.134 0.133 0.131
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The execution time is a critical factor in selecting the most efficient numerical optimization method. The
runtime of cases of β = 200, ω = 0.2, β = 100, ω = 0.1 and β = 300, ω = 0.05 presented in Tables 6–8,
respectively, whenNb = 5, 10 and three methods of DM, in three number of segments Ns = 10, 20, 40, GA and PS.

Since the results obtained from DM in the first possible number of segments Ns, used in the latter number
of segments 2Ns, and so on, the runtime of DM is the sum of runtimes of all number of segments. Thus, for
the DM, the total time is considered.

As shown in Tables 6–8 and Figs. 3–5, the total execution time for optimizing the maximum
dimensionless temperature by DM is fewer than the two other optimization algorithms (GA & PS). In
Nb= 5, the runtime for the optimization with GA is much more than the two other algorithms. For
example, for case β = 200, ω = 0.2 in Nb= 5, the DM and about ten times greater than the PS algorithm.
Nevertheless, the difference between the PS algorithm and the DM is much smaller and about two times.
It means for Nb = 5, because of the approximate equality between minimal hot spot dimensionless
temperature obtained from three optimization algorithms, the DM is the fastest method. But in Nb = 10,
the proposition is quite different from the state Nb = 5. As presented in Tables 6–8, it can be detected that
the total execution time for the DM is a huge amount, especially compared to the PS algorithm. For
example, for the case β = 200, ω = 0.2, the execution time for the DM in Nb = 10 is more than 554 times
greater than the PS algorithm that is a huge difference. Also, the difference between the PS and the GA is
fewer and about 121 times: as the Nb increases, the runtime of each three methods will increase in a very

Table 6: The execution time of optimization methods for case β = 200, ω = 0.2

Number of branches

Execution time (Runtime) (s)

Direct method
Genetic algorithm Pattern search

Ns = 10 Ns = 20 Ns = 40 Total

Nb = 5 137.7 62.1 62.6 262.4 5317.2 543.3

Nb = 10 159078.5 93786.9 102976.4 355841.7 77795.7 642.0

Table 7: The execution time of optimization methods for case β = 100, ω = 0.1

Number of branches

Execution time (Runtime) (s)

Direct method
Genetic algorithm Pattern search

Ns = 10 Ns = 20 Ns = 40 Total

Nb = 5 – 138.899 42.729 181.628 2836.556 351.348

Nb = 10 – 133982.479 94373.005 228355.484 70756.016 1828.106

Table 8: The execution of optimization methods for case β = 300, ω = 0.05

Number of branches

Execution time (Runtime) (s)

Direct method
Genetic algorithm Pattern search

Ns = 10 Ns = 20 Ns = 40 Total

Nb = 5 – – 146.2 146.2 2582.4 315.0

Nb = 10 – – 141189.3 141189.3 43772.8 688.7
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different amount, indicating that optimization algorithms such as PS and GA are more efficient and
applicable in cases of the multiplicity of optimization parameters. Thus, the increase in execution time of
the PS algorithm, as the Nb increases, is less than the two other methods (Figs. 3–5).
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Figure 3: The execution time of optimization methods for case β = 200, ω = 0.2
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Figure 5: The execution time of optimization methods for case β = 300, ω = 0.05
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5 Conclusions

In this research, the CL and three numerical optimization methods, including DM, GA, and PS, were
employed to optimize the configuration of highly conductive branches intruding a hot medium. Then the
minimized hot spot temperature corresponding to the optimal arrangement was obtained. The suggested
insert design was tree-shaped with multiple non-uniform branches, all of which began from the middle
plane of the body. The main goal was to compare and find the most efficient and fastest numerical
optimization approach.

The study results indicated that DM and PS methods could reach an acceptable and roughly equal result
and outperform the GA method. Even though the DM was faster in the lower number of branches, raising the
Nb increased this method’s execution time. The study findings show that the optimization algorithms,
especially PS, are more efficient than DM by an increment in the complexity of structures. When the
optimization parameters increased, the DM was computationally expensive. The results indicate that
when β = 200, ω = 0.2, and Nb = 10, the runtime of DM is more than 554 times greater than PS, and the
runtime of GA is about 121 times greater than PS. It can be concluded that raising the DOF causes a
considerable difference between the PS method and the two other methods, especially DM.

Funding Statement: The authors received no specific funding for this study.
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