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ABSTRACT

A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed.
After providing an extensive review of the existing scientific and technical literature on this subject, the proposed
integrated technology is described together with the related process flow diagram, the criteria used to select a tar-
get facility for its implementation and the outcomes of the laboratory studies conducted to analyze emulsion for-
mation and separation kinetics. Moreover, the outcomes of numerical simulations performed using Ansys CFX
software are also presented. According to these results, using the proposed approach the incremental oil produc-
tion may reach 1.2 t/day (with a 13% increase) and more, even at low flow rates (less than 10 t/day), thereby pro-
viding evidence for the benefits associated with this integrated technology.
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1 Introduction

Oil and gas producers are currently focusing on improving oil production efficiency amid the slumping
demand for hydrocarbons and relatively low hydrocarbon prices [1–5]. Oil production efficiency relies on
several factors, including the operating conditions of producing wells determining the choice of surface
and subsurface equipment, its operating parameters, hydrocarbon properties, etc. [6,7]. Ongoing industry
trends are focused on improving oil production efficiency without replacing downhole pumping
equipment or changing the existing oil gathering, transportation, and treatment system [8–11]. The
development of more advanced equipment and technologies sets the stage for enhanced oil recovery
without having to refocus production processes by optimising existing equipment operation.

Many technologies known to improve oil production efficiency [12–17] are classified according to the type
of problem solved. For example, chemical additives like demulsifiers, corrosion and asphaltene, and resin and
paraffin deposition inhibitors are widely used in oil production with high viscosity, high asphaltene, resin and
paraffin content, and high corrosiveness [18–20]. The choice of technology depends on the specific conditions
of the production of hydrocarbons and their physical and chemical properties. Chemical agents and additives
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may be used to get rid of a particular complicating factor or several factors simultaneously (combined-effect
chemicals). The critical factor contributing to treatment success and efficiency is the choice of chemical
[21,22]. The works [23–28] selected a demulsifier grade and determined consumption to inhibit
emulsification during water-in-oil emulsion production and transportation, which showed a high degree of
breakdown at the in-pipe demulsification stage and during oil treatment.

As previously noted, a high gas content at downhole pumping equipment intake results in a lower oil
production efficiency [29–35]. The key methods to combat the harmful effect of gas include lowering
submersible equipment below the dynamic fluid level, using special ESP stages designed for efficient
operation in gas-saturated media, installing booster devices (gas separators and gas dispersants), and
using ESP sections of different sizes, etc. [36–39]. These methods have been proven to have a high
practical efficiency [40,41].

Jet pumps are now widely used across the entire oil recovery, gathering, transportation, and treatment
chain [42–51]. The key priority in jet pump development lies in design upgrade [52–56]. Much attention
in modern research is paid to a thorough study of the flow process in jet pumps [57,58]. In this context,
this work focuses on the development and scientific validation of a waterflooding-based integrated
enhanced oil recovery technology using a high-pressure ejector to improve oil production efficiency.

2 Materials and Methods

2.1 Description of the Integrated Technology
Field waterflooding allows retaining a high energy potential due to the high pressure in the piping

system. The authors propose to efficiently use waterflooding system energy as an active medium of the
surface jet pump; the passive medium here is the water-in-oil emulsion from the gathering line after the
automatic well pad meter station. The proposed technology has several advantages, including less capital
expenditures and the ability to use existing well pads and well infrastructure.

The process flow diagram is shown in Fig. 1.
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Figure 1: Integrated technology process flow diagram
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The technology is implemented as follows: a well pad is equipped with a high-pressure surface ejector,
where the active medium is a chemical from the reservoir pressure maintenance system and the passive
medium is a gas-liquid mixture from the producing well. A chemical feed unit mounted on the producing
well flow line helps avoid the formation of a stable emulsion when implementing the technology due to
intensive dispersion and demulsifier stirring in the high-pressure ejector. The described technology will
allow reducing the linear pressure of the producing well, which provides conditions for annular pressure
decline and an increase in submergence depth of the downhole pumping equipment below the dynamic
fluid level. The downhole pumping equipment submergence under dynamic fluid level enhances the
reliability of the submersible equipment, reduces failure rates, and drives up well fluid withdrawal.

A technology for annulus gas pump-out using a downhole jet pump [59] already exists. The module
includes a pipe string fitted with a jet pump. The lack of anytime personnel access to the module imposes
certain technical constraints, complicates operation and process control, and leads to poor maintainability.

2.2 Candidate Well Selection Criteria
A substantiated implementation of the developed enhanced oil recovery technology requires a

comprehensive selection of a target for testing the development outcome. The best target is a producing
well complying with the following requirements:

–Operated with an electric submersible pump and electric screw pump, i.e., operating without a
significant pressure surge;

–Having a high linear and annular pressure;
–Having a high gas/oil ratio (above 25 m3/t);
–In-field pipeline capacity potential at minimum 40% of the existing capacity;
–Well pad located close to a free-water knockout unit or oil pre-treatment unit to avoid additional
pumping through booster pump stations.

The essential requirement for operating producing wells with electric screw pumps and submersible
pumps is maintaining consistent hydrocarbon recovery, i.e., a constant production rate and pumping head
over long-term operation. Complying with this criterion will mitigate the risks associated with the
accuracy in the choice and design of the jet pump, as well as boost the designed unit stability. The
technology is designed to be implemented at well pads located relatively close to oil treatment gathering
stations (oil pre-treatment unit and free-water knockout unit) to eliminate additional fluid transportation
and pumping through the gathering and transportation system. The pressure maintenance system situated
at the well pad can be implemented using fresh water as a working agent, which will allow additional oil
desalting and improve its quality at field treatment. Preliminary calculations of the jet pump operation
allowed determining an optimal range of well production water cut for the use of the given technology
between 50% and 80%. The specified water cut range was selected to pass to the right-hand side of the
emulsion viscosity-water cut dependency, i.e., to provide a water-in-oil emulsion to reduce the viscosity
of the transported fluid and intensify system separation kinetics [60].

2.3 Integrated Technology Target Selection
The development of criteria for efficient application of the integrated enhanced production technology

based on pressure maintenance system energy recovery allows effectively choosing a target for its
introduction and eliminating possible risks of failure to achieve the set objectives.

The objective of the research was determined in compliance with the developed criteria. Producing well
with reference #1 was selected. Producing Well #1 is operated with the ESP-25-1500 electric submersible
pump unit. The operating parameters are given in Table 1.
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The Table shows that the linear pressure equals the wellhead pressure and is 1.9 MPa. The annular
pressure is 2.3 MPa, the intake pressure at the electric submersible pump is 3.4 MPa, the fluid flow rate is
17.9 m3/day, and oil flow rate is 8.9 t/day. Analysis of well operating parameters shows that the
submersible pump effective intake pressure (difference between the intake pressure and the annular
pressure) is 1.1 MPa, which can lead to pump starvation and therefore cut time between overhaul. The
water cut is 59%, which promotes water-in-oil emulsion formation.

2.4 Water-in-Oil Emulsion Properties
The physical and chemical properties of Well #1’s water-in-oil emulsion are given in Table 2.

2.5 Preparation of Water-in-Oil Emulsion Models
Laboratory experiments were conducted on pre-sampled reservoir fluids of the implementation target.

Water-in-oil emulsion models were prepared using a dedicated laboratory stirrer. The linear speed of
emulsion stirring in the jet pump contractor was converted to the angular rotation speed of the stirrer
using the formulas:

# ¼ xR ¼ 2pmR;
m

sec

h i
(1)

m ¼ #

2pR
; ½rps� (2)

where x–angular rotational velocity, rad/s; m–rotation speed, rps; R–stirrer radius, m (0.05).

Table 1: Producing well operating parameters

No. Parameter Symbol Unit of measurement Value

1 Well 1

2 Name of formation Tl2−b
3 Pump ECP

4 Pump depth Hp m 1,541

5 Current frequency f Hz 45

6 Wellhead pressure Pwh MPa 1.9

7 Linear pressure Plin MPa 1.9

8 Fluid flow rate Qliq m3/day 19.3

9 Water cut Wc % 59

10 Oil flow rate Qoil t/day 7.9

11 Intake pressure (pump) Pint MPa 3.4

12 Bottom-hole pressure Pbh MPa 4.9

13 Dynamic fluid level Hfl m 1,491

14 Annular pressure Pan MPa 2.3

15 Formation pressure Pform MPa 11.1

16 Static fluid level Hst m 207

17 Pressure drawdown Pd MPa 6.2

18 Productivity index (PI) Kprod m3/(MPa⋅day) 3.7
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The average speed of emulsion flow in the jet pump contractor is 15–20 m/s, which is equal to 2,800–
3,800 rpm of the stirrer. All laboratory tests were carried out at an emulsion temperature of 10°С, which
corresponds to the average annual temperature of the emulsion in the target technology implementation area.

2.6 Dispersion Analysis
The intensity of stable water-in-oil emulsions formation of the research target was determined by

dispersion analysis by varying the stirrer rpm. The average diameter was determined using a trinocular
laboratory microscope. A fragment (up to 1 ml) of the emulsion was withdrawn from the prepared stirred
sample for 30–60 s and transferred to a slide.

2.7 Bottle Test
The water-in-oil emulsion separation kinetics were analysed using the bottle test technique, which

essentially consists in determining the volume of the water separated from the water-in-oil emulsion
prepared in a stirrer in graduated cylinders over time. The emulsion dehydration degree is defined as the
ratio of the free separated water volume to the total volume of water in the sample [61].

2.8 Calculation of oil Production Increase
The oil production increase potential resulting from the annular pressure drop is calculated using the

formula [62]:

DQoil ¼ Kprod � DPan � ð100�W Þ
100

� qoil � 10�3 (3)

where DQoil–oil flow rate theoretical increase, t/day; Kprod–productivity index, m3/(MPa⋅day); DPan–change
in annular pressure, MPa; W–water cut, %; qoil–oil density, kg/m

3.

2.9 Jet Pump Mathematical Model
The paper solves the problem of determining the characteristics of multiphase flow: including oil and

water, formed in an oil jet pump. Oil and water are considered as continuous fluid, to describe the motion
of which the Eulerian approach is used. Both fluids are incompressible. The simulated process is
considered isothermal. The steady-state multiphase flow is determined in the research, transients are not
considered.

Table 2: Physical and chemical properties of water-in-oil emulsion of selected target

No. Parameter Unit of measurement Value

1 Oil density under surface conditions at 20°С kg/m3 864

2 Produced water density under surface conditions at 20°С kg/m3 1,177

3 Water cut % vol. 59

4 Salt content mg/dm3 430

5 Gas content in oil m3/t 68

6 Saturation pressure MPa 9.74

7 Paraffin content in oil % 3.19

8 Resin content in oil % 3.77

9 Asphaltene content in oil % 15.31
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The modeling uses an approach which means that each fluid is possessed its own flow field. The
behavior of each fluid is described by its own system of the Navier-Stokes equations. The components of
the velocity and pressure vectors are determined in the Navier-Stokes equations while the fluids interact
with each other through interfacial forces.

Further, the α phase will mean water, and the β phase–oil, the volume fraction of the phases in the control
volume will be denoted as ra and rb, respectively.

The mathematical formulation of the problem being solved is written in the form of the following
Reynolds Averaged Navier-Stokes equations:

Momentum equations for a phase:

ra r � ðrað~Ua � ~UaÞÞ ¼ �ra rpa þr � ðra la eff ðr~Ua þ ðr~UaÞTÞÞ þ ~Ma; (4)

where for phase α are denoted ra– the material density, pa–pressure, ~Ua ¼ fUax; Uay; Uazg–fluid velocity
vector, ~Ma –interfacial forces acting on phase a due to the presence of phase b, la eff –effective viscosity,
«�»-the dyadic operator (or tensor product) of two vector, «rpa»–gradient, «r�»–divergence.

Continuity equations:

ra r � ðra~UaÞ ¼ 0: (5)

Eqs. (4) and (5) for the β phase are written similarly, but the α index changes to β.

Volume conservation equation:

ra þ rb ¼ 1: (6)

It is assumed that both phases have the same pressure field:

pa ¼ pb ¼ p: (7)

2.9.1 The Mixture Model for the Description Interfacial Transfer of Momentum
For the description inhomogeneous multiphase flow is used a mixture model that treats both phases a, b

symmetrically. Interphase momentum transfer ~Ma, occurs due to interfacial forces acting on phase a, due to
interaction with another phase b) and is defined as:

~Ma ¼ CD rab Aab j~Ub � ~Uajð~Ub � ~UaÞ; (8)

where CD–the coefficient of resistance assumed to be equal to CD ¼ 0.44; rab–the density of the mixture,
defined as:

rab ¼ rara þ rbrb; (9)

Aab–the surface area per unit volume is calculated from:

Aab ¼ rarb
dab

; (10)

where dab–an interfacial length scale.

In the applied mixture model, it is assumed that the interfacial forces ~Mb, acting on the β phase from the
a side are opposite to ~Ma, are defined as:

~Mb ¼ �~Ma (11)
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The independent variables in Eqs. (4)–(7) are the volume fractions ra and rb, 6 components of the
velocity vectors fUax; Uay; Uazg, fUbx; Uby; Ubzg, pressures pa and pb, effective viscosities la eff ,
lb eff , there are a total of 12 unknowns for 10 given equations (3 equations in components of the form
(4) and one equation of the form (5) for phase a, imilar equations for phase b, also by one Eqs. (6) and
(7). In order to determine the values of effective viscosities, the system of Navier-Stokes equations
presented for a multiphase flow is closed using the equations of a phase-dependent turbulent model.

2.9.2 Turbulence Model
The eddy viscosity hypothesis is assumed to hold for each turbulent phase. Diffusion of momentum in

phase a is governed by an effective viscosity:

la eff ¼ la þ lta; (12)

where la–molecular (dynamic) viscosity, а lta–turbulent viscosity for phase a.

The research uses a k-ε turbulence model (k-ε model) with wall functions:

lta ¼ cl ra
k2a
ea

� �
; (13)

where cl ¼ 0:09� k � e turbulence model constant, ka–turbulence kinetic energy per unit mass, ea–
turbulence dissipation rate.

2.9.3 Turbulence Dissipation Rate
The transport equations for k and e in a turbulent phase will be written as:

r � ra ra Ua
�!

ka � la þ
lta
rk

� �
rka

� �� �
¼ raðPa � ra eaÞ; (14)

r � ra ra Ua
�!

ea � la þ
lta
re

� �
rea

� �� �
¼ ra

ea
ka

ðCe1Pa � Ce2 ra eaÞ; (15)

where rk ¼ 1:0; re ¼ 1:3; Ce1 ¼ 1:44; Ce2 ¼ 1:92–turbulent model parameters.

For the b phase, the equations will be written similarly to (12)–(15).

2.9.4 Boundary Conditions
At the area boundary through which water is supplied to the domain, the bulk mass flow rate is set 1 kg/s,

also volume fraction of water and oil ra ¼ 1 and rb ¼ 0.

At the area boundary through which oil is supplied to the domain, the bulk mass flow rate is set 0.116 kg/s,
also volume fraction of water and oil ra ¼ 1 and rb ¼ 0.

A relative pressure of 1.9 MPa is set at the exit from the design area.

At the remaining boundaries of the domain, the conditions for complete adhesion to smooth walls are set.

3 Results and Discussion

3.1 Dispersion Analysis Results
The variation of the average diameter of water globules in the simulated emulsion and its specific surface

area as a function of rpm is shown in Fig. 2. The tests were carried out using an original emulsion with a water
cut of 59%.
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The diameter of the water globules in the emulsion expands to 156 μm at 1,500 rpm and then gradually
decreases to 89 μm as the stirrer speeds up to 2,800 rpm, which indicates an intensification of dispersion
processes and an increase in emulsion stability. Fig. 3 shows an example of a processed photomicrograph
from the built-in digital camera of the microscope.

Due to the time available, the sampling technique, and emulsion fragment application onto the slide, the
dispersed phase micro-droplets were able to coalesce, as illustrated by the results given in Fig. 3 (values
range with stirrer speed up to 1,500 rpm). Emulsion samples to the right of the 1,500 rpm range were
more persistent and remained stable for the given time.

3.2 Results of Separation Kinetics
Water-in-oil emulsion separation kinetics at different oil/water volume ratios were analysed using the

above bottle test. Fig. 4 shows the change in the emulsion dehydration degree as a function of separation
time at different oil/water volume ratios.
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Figure 2: Variation of emulsion dispersion and specific surface area at various stirrer rpm

Figure 3: Water-in-oil emulsion photomicrograph taken on a Levenhuk MED D10T microscope at 1,000
rpm and 4× magnification, d, mm
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All emulsion types created are susceptible to self-breaking to a dehydration degree of 96–97% within a
short period of time (6 min), which signifies the formation of an unstable emulsion when implementing the
integrated technology. Thus, the stirring-derived product comprising well crude oil and an additional volume
of water from the pressure maintenance system will be subject to natural in-pipe demulsification during
transportation across the gathering system.

3.3 Numerical Simulation
The authors performed a numerical simulation of the jet pump under given operating conditions using

the pro-grade analytical complex Ansys CFX.

The numerical solution of the presented system of differential equations with given boundary conditions
is carried out using the well-known finite volume method. A three-dimensional (3D) computational grid
consisting of tetrahedral and prismatic elements is created inside the multiphase flow domain under
consideration. During the numerical procedure, the characteristics of the multiphase flow, for example,
velocity and pressure, are determined in the nodes of the volumetric calculation grid. The change of
continuous fields of velocities, pressures, etc., inside the created elements is described by introducing
shape functions that are approximations of fields through the desired values in the grid nodes.

In the finite volume method, a control volume is formed for each node from the surrounding parts of the
elements. Next, the integration of Eqs. (4) and (5) occurs, while, Gauss’ Divergence Theorem is applied to
convert volume integrals involving divergence and gradient operators to surface integrals. The discretization
of integrals is carried out numerically using known integration schemes and given integration points. The
value of integrand expressions at integration points is determined using approximation by form functions
and advection schemes. Central differences scheme, Upwind (first or second order), QUICK, etc., are
often used as such schemes. In the calculation algorithm we use, a High resolution scheme was used for
the main equations, which is a bound second-order Upwind biased discretization and has a second order
of accuracy in the scheme used the blend factor values vary throughout the domain based on the local
solution field in order to enforce a boundedness criterion. In flow regions with low variable gradients, the
blend factor will be close to 1.0 for accuracy. In areas where the gradients change sharply, the blend
factor will be closer to 0.0 to prevent overshoots and undershoots and maintain robustness. For
turbulence equations, the first-order Upwind scheme was used.
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The Navier-Stokes equations include fluid pressure and velocities, which, in the case of
incompressibility of the medium, can be determined by solving separate equations using segregated
algorithms with an additional pressure-velocity coupling scheme (well-known numerical procedures as
SIMPLE, SIMPLEC, PISO, etc., are used) and by jointly solving all equations simultaneously in a single
numerical procedure with a common matrix. In this case, the associated solver is applied. This is the
approach used in this study, a pressure-based solver from the ANSYS CFS software is involved.

Numerical procedure uses a co-located (non-staggered) grid layout such that the control volumes are
identical for all transport equations. As discussed by Patankar [63], however, naive co-located methods
lead to a decoupled (checkerboard) pressure field. Rhie et al. [64] proposed an alternative discretization
for the mass flows to avoid the decoupling, and this discretization was modified by Majumdar [65] to
remove the dependence of the steady-state solution on the time step. A similar strategy is adopted in this
research.

The ANSYS CFX software package uses a coupled solver, which solves the hydrodynamic equations
(for u, v, w, p) as a single system. This solution approach uses a fully implicit discretization of the
equations at any given step). As a result, the solution of a system of partial differential equations is
reduced to finding a solution to a system of algebraic equations. Directly in the problem being solved, the
components of the velocity vector for water and oil, pressure, volume fractions of water and oil,
parameters k and ε of the turbulence model for the water and oil phases were the unknowns determined
in the nodes. Ansys CFX uses a Multigrid accelerated Incomplete Lower Upper factorization technique
for solving the discrete system of linearized equations. It is an iterative solver. Ansys CFX uses a
particular implementation of Algebraic Multigrid [66] called Additive Correction.

As it is mentioned earlier, the study determines the steady state solution of a multiphase flow, transients
are not considered. The corresponding mathematical formulation with defining relations is presented in the
form of Eqs. (4)–(15). However, the numerical implementation of the solution of the stationary problem,
carried out by the solver of the ANSYS CFX package, is carried out using psuedo-time as a iteration
method to converge to the final steady solution. For steady-state problems, the time-step behaves like an
‘acceleration parameter’, to guide the approximate solutions in a physically based manner to a steady-
state solution. The pseudo time method option applies an advanced form of implicit under-relaxation that
adjusts the relaxation factor dynamically during the simulation according to the flow field behavior. The
ANSYS CFX package used automatic time scale calculation, which provided slower but more guaranteed
convergence under conservative estimation conditions. Fig. 5 presents four finite meshes and their main
parameters used in modelling the ejection process.

Fig. 6 shows the outlet pressure of the jet pump nozzle in relation to the finite mesh size.

The mesh size sensitivity of the jet pump model was analyzed by modelling a water-oil mixing problem
and through jet pump hydrodynamic tests using a series of models with the same geometry but different
structured mesh sizes. The main criteria of the assessment sensitivity of the model and for proving mesh
size was the jet pump outlet pressure.

Analysis of the mesh sensitivity shows that the finite mesh size affects the results of the numerical
simulation. A mesh size of 2 mm or less does not lead to a change in the final result (linear pressure–as
the resulting criterion in numerical simulation). An increasing mesh size of more than 2 mm leads to a
pressure drop at the jet pump outlet, which leads to a change in the final result by more than 50%.
Further calculations with a 2 mm mesh size are carried out. Successive calculations were carried out
under a 2 mm mesh size.

To calculate the jet pump performance, a 3D model was created and its operation was computed for the
selected target object (Well #1). The jet pump pressure and water superficial velocity distribution when
implementing the integrated technology is shown in Fig. 7.
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3.4 Oil Production Increase Calculation Results
The operating parameters of the jet pump and Well #1 are given in Table 3.

The result of the jet pump performance simulation is a decline in linear pressure from 1.9 to 0.98 MPa,
which inevitably leads to annular pressure drop in producingWell #1. The water cut then increases from 59%
to 92%, and the fluid production rate grows to 107.3 m3/day.

The theoretical flow rate increment due to the integrated technology will therefore be 1.2 t/day. This
result is possible due to the annular pressure drop from 2.3 to 1.4 MPa.

Model 1, h=1 mm, 

295179 number of elements

Model 2, h=2 mm

397702 number of elements

Model 3, h=3 mm

718936 number of elements

Model 4, h=4 mm

2855189 number of elements

Figure 5: Finite mesh used in modelling the ejection process
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Figure 7: Jet pump pressure and water superficial velocity distribution (active medium: working agent-
water; passive medium: gas-liquid mixture from Well #1)

Table 3: Operating parameters of the jet pump and Well #1

No. Parameter Unit of measurement Original (without jet pump) Integrated technology

1 Linear pressure MPa 1.9 0.98

2 Water cut % 59 92

3 Oil flow rate t/day 7.9 9.1 (potential)

4 Fluid flow rate m3/day 19.3 107.3
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4 Conclusions

1. The authors performed an extensive analysis of scientific and technical literature on the improvement
of oil production and jet pump performance. The theoretical research resulted in a description and
development of a process flow diagram of the waterflooding-based integrated enhanced oil
recovery technology. Applicability criteria for the integrated technology were developed and the
potential introduction target was selected. The integrated technology introduction target is a
producing well with a 59% water cut.

2. The laboratory studies of the intensity of stable water-in-oil emulsions formation of the target object
showed a growth in the emulsion dispersive capacity from 6.4 to 11.3 mm−1 as stirrer rotation speed
increased from 1,500 to 3,000 rpm. This confirms the increase in emulsion stability. However,
analysis of the water-in-oil emulsion separation kinetics showed the susceptibility of all emulsion
types created to self-breaking up to the dehydration degree of 96–97% within a short time
(6 min), which implies the impossibility of the formation of a stable emulsion when implementing
the integrated technology.

3. The jet pump numerical simulation and calculation for the selected target showed a linear pressure
decline from 1.9 to 0.98 MPa and an annular pressure drop from 2.3 to 1.4 MPa. Deep
submergence of downhole pumping equipment under dynamic fluid level to a depth of 92 m
allows for reliable operation of the submersible equipment, thus reducing the risk of downhole
pumping equipment failure. The integrated technology ensures a 15% increase in the oil flow rate,
i.e., additional daily growth of 1.2 tons for the selected target object.

4. Analysis of the mesh sensitivity shows that the finite mesh size affects the numerical simulation
results. A mesh size of 2 mm or less leads to no change in the final result (linear pressure–as the
resulting criterion in numerical simulation); however, a mesh size of more than 2 mm leads to a
pressure drop at the jet pump outlet, leading to a more than 50% change in the final result.

5. Implementing the described technology will allow shifting the phase inversion point, i.e., increasing
the water cut from 59% to 92%, which will promote hydrodynamic flow through the pipeline due to a
decreased viscosity of the pumped fluid.

In view of the above, the authors successfully provided a rationale for the waterflooding-based
integrated enhanced oil recovery technology, showed the main stages of scientific support of the
integrated technology introduction, and proved the positive technological effect of its implementation.
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