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ABSTRACT

The heat transfer equation is used to determine the heat flow by conduction through a composite material along
the real axis. An analytical dimensionless analysis is implemented in the framework of a separation of variables
method (SVM). This approach leads to an Eigenvalues problem that is solved by the Newton’s method. Two types
of dynamics are found: An unsteady condition (in the form of jumps or drops in temperatures depending on the
considered case), and a permanent equilibrium (tending to the ambient temperature). The validity and effective-
ness of the proposed approach for any number of adjacent layers is also discussed. It is shown that, as expected,
the diffusion of the temperature is linked to the ratio of the thermo-physical properties of the considered layers
and their number.
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Nomenclature
i Layer’s index (i ¼ 1; 2; 3)
Ti Layer’s temperature [K]
Tamb Ambient temperature [K]
T0i Initial temperature in ith layer [K]
h0i Initial deference in temperatures [K]
hi Deference in temperatures [K]
ai Layer’s thickness [m]
ki Conductivity [W.m-1.K-1]
ai Diffusivity [m2.s-1]
Cpi Specific heat [J.Kg-1.K-1]
qi Density [Kg.m-3]
hi Convection coefficient [W.m-2.K-1]
xi ¼

ffiffiffiffiffiffiffiffiffiffiffi
a1=ai

p
Dimensionless diffusivity

ji ¼ ki=k1 Dimensionless conductivity
ci ¼ ai=a1 Dimensionless thickness
Bioti ¼ hia1=k1 Biot numbers
b Dimensionless Eigen-values
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s ¼ a1t=a21 Dimensionless time
n ¼ x=a1 Dimensionless position
Fi;�i;Fi;iþ1

eq Dimensionless initial, temporal and unsteady equilibrium temperatures respectively

1 Introduction

The heat equation, describing heat transfer by conduction, is a partial differential equation, established
by J. Fourier in the end of the 19th century after certain experiments. It has a great interest in mathematics and
physics. This transfer can be studied either in a single body or through several systems with different thermo-
physical properties. In the literature, there are several interesting works, based on certain original references
[1]. The research is varied according to the interests of the authors, such as the fractional order heat equation
in higher space-Time dimensions [2], its numerical resolution [3], and application for heat spreading of
electronic components [4]. For numerical resolution of heat equation in various conditions, Local least–
squares element differential method is used to solve heat conduction problems in composite structures
[5]. Recently, regarding the problems of realization on the site related to the use of heat sources as well
as the optimization of energy consumption, a one-dimensional model is used by Tlili et al. [6] to research
the belongings of different functional and geometrical parameters on energy consumption of flat distance
direct contact membrane distillation (DCMD) for solar desalination tasks. Furthermore, to reduce the
energy consumption in the fresh water production, using the solar energy, the same model is utilized to
examine the effect of dissimilar operational and geometrical parameters on energy consumption of flat
sheet DCMD for solar desalination purposes [7].

In our paper, the transfer problem by conduction across bilayer and three-layer materials is investigated,
adopting the same notations, as used in [8], with some small modifications. Firstly, the separation of variables
method (SVM) is used to solve the two heat equations in the two slabs with the associated boundary and
initial conditions. The total procedure is well detailed in [9,10], showing how to obtain the so-called
Eigen-problem whose dimensionless solutions called roots, are used to give the explicit form of the heat
transfer. Then, using orthogonal properties between the two space solutions, we get the integral constants,
and thus, the final form of the solutions. Subsequently, according to the material’s thermo-physical
properties [11], the transfer heat change is explained. The influence of these properties on the heat
transfer between the two layers materials is described. In the three-layer case, a new coupling function �
governing the transfer, is introduced which is a very rich subject. In the case of two layers, this function
is not defined. Finally, the correspondence between the two cases is mentioned. For simplicity, in all our
calculus, dimensionless parameters are used.

2 Bilayer Material

We consider a material composed of two different regions S1, and S2 , as shown in Fig. 1, with a perfect
thermal contact [12,13]. The thermo-physical properties of both layers are the Conductivity ki, diffusivity ai,
specific heat Cpi, density qi, and thickness ai. The convection coefficients, in both sides, are hi, where i refers
the region. Both layers are maintained, respectively, at the two initial temperatures T01, and T02. For
simplicity, this change of variable is used

hiðx; tÞ ¼ Tamb � Ti x; tð Þ (1)

where, Tamb is the ambient temperature, assumed to be constant and uniform, and Ti is the space-time
depending temperature of i layer. We will omit the dependence ðx; tÞ below and it will be automatic.
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The one-dimensional heat conduction without thermal source for the two slabs, is given by [1]

@2hi
@x2

¼ 1

ai

@hi
@t

(2)

with the set of boundary conditions (BCs) [8] at the edges

�k1
@h1
@x

����
x¼�a1

þ h1h1jx¼�a1
¼ 0 (3)

k2
@h2
@x

����
x¼a2

þ h2h2jx¼a2
¼ 0; (4)

and on the contact surface, we have

h2jx¼0 ¼ h1jx¼0 (5)

k1
@h1
@x

����
x¼0

¼ k2
@h2
@x

����
x¼0

(6)

The initial conditions (ICs), for each layer, are supposed constants

h0i ¼ Tamb � T0i (7)

We have now, a full solvable system constructed by Eqs. (2)–(7). The analytic solutions are

hi x; tð Þ ¼ Xi xð Þ:Gi tð Þ (8)

For each layer, the solutions are obtained easily by SVM, where

Xi xð Þ ¼ Ai cos kixð Þ þ Bi sinðkixÞ (9)

Gi tð Þ ¼ expð�aik
2
i tÞ (10)

ai is kept for the time part. We have chosen negative constants�k2i by the convergence stress inGiðtÞ. Ai

and Bi are integration constants. We have t � 0, and �a1 � x � 0 for the first layer (i ¼ 1), and 0 � x � a2
for the second one (i ¼ 2).

Dimensionless calculus has been used for several reasons and purposes. We are talking about: The
simplicity of the calculations, the reduction of the parameters, the permanent verification of the
homogeneity of the equations, the writing of the formulas will be more compact and more significant as
well as the ease of reading the curves because the intervals of variations of the solution temperatures are
reduced to acute and positive intervals. Then, the dimensionless group is defined by [10].

Figure 1: Representation of bilayer material
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x ¼
ffiffiffiffiffi
a1
a2

r
(11)

j ¼ k2=k1 (12)

c ¼ a2=a1 (13)

and the Biot numbers

Bioti ¼ hia1
k1

(14)

Then, after some manipulations (see [12] for full detail), we can reduce our problem to the determination
of the constants

bn ¼ a1k1;n; n. 0; (15)

called Eigen values, representing the non-vanishing dimensionless roots of the function

E bð Þ ¼ P1 bð Þ þ P2 bð Þ
jx

(16)

With

Pi bð Þ ¼ ðjxÞi�1b þ BiotitgððxcÞi�1bÞ
Bioti � jxð Þi�1btgð xcð Þi�1bÞ (17)

We reconstruct our solutions under the dimensionless form, as

X1;n nð Þ ¼ P1 bnð Þ cos bnnð Þ þ sin bnnð Þ

X2;n nð Þ ¼ P1 bnð Þ cos xbnnð Þ þ 1

jx
sinðxbnnÞ

G1;n sð Þ ¼ G2;n sð Þ ¼ expð�b2nsÞ (18)

where, we introduce the space-time dimensionless coordinates: n ¼ x
a1
, and s ¼ a1

a21
t, with s � 0, and

�1 � n � 0 for the first layer, and 0 � n � c for the second one. The final dimensionless solution is then
a linear combination with respect to n of the space-time solutions of Eq. (18)

�i n; sð Þ ¼
X1

n¼1
CnXi;n nð ÞGi;n sð Þ (19)

The determination of Cn can be done by using initial conditions Eq. (7) and the orthogonal property
of Xi;n [8]. The first 20 Eigen-values of the function E bð Þ for x ¼ 0:5;j ¼ 1:5; c ¼ 1:5;Biot1 ¼ 1:5,
and Biot2 ¼ 2:5 are calculated by implementation Newton method in Maple software. They are collected
in Table 1.

An order higher than 20 roots can be reached, having a small influence on the result (see Section 4.1).
We note that initially, there is an unsteady equilibrium temperature between the two slabs. It is analytically
given by [12]
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T1;2
eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1q1Cp1

p
T01 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2q2Cp2

p
T02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1q1Cp1
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2q2Cp2
p (20)

where, Cpi and qi (i ¼ 1; 2) are, respectively, the specific heat and density material. Since the thermal
diffusivity is related on these properties and ki by the relation ai ¼ ki=qiCpi, we obtain by simple calculus
the dimensionless unsteady equilibrium temperature as

F1;2
eq ¼ Tamb � Teq

Tamb � T01
¼

ffiffiffiffiffiffiffi
jx

p
F2 þ 1ffiffiffiffiffiffiffi

jx
p þ 1

(21)

where, the dimensionless initial temperatures Fi ¼ h0i=h01 is defined. After sufficient time, all temperatures
go to Tamb (the thermal equilibrium), and�i goes to 0. We can regroup the temperatures in the two layers in a
single expression, describing the whole material as

�ðn; sÞ ¼ �1 n; sð Þif �1 � n � 0
�2 n; sð Þ if 0 � n � c

�
(22)

The error is defined as the relative difference, at zero time, between calculated temperature, obtained by
Eq. (22), and our initial conditions (F1 ¼ 1 for the first layer and F2 for the second one) are

Table 1: First 20 roots of E bð Þ for x ¼ 0:5; j ¼ 1:5; c ¼ 1:5;Biot1 ¼ 1:5, and Biot2 ¼ 2:5

n bn
1 1.174564997

2 2.670341640

3 4.100755655

4 5.902293511

5 7.463000332

6 9.311800164

7 10.99791545

8 12.76394020

9 14.59650467

10 16.25466773

11 18.18431142

12 19.80816753

13 21.72556781

14 23.42691725

15 25.23379476

16 27.07242465

17 28.75147230

18 30.68935659

19 32.32010618

20 34.24837236
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EðnÞ ¼ 1��1ðn; 0Þ if � 1 � n � 0
1
F2

F2 ��2ðn; 0Þð Þ if 0 � n � c

�
(23)

As can be seen, E becomes negligible as soon as we exceed the 20th root, the reason why, we stopped in
the sum (Eq. (19)) at order 20.

3 Three-Layer Material

The same reasoning can be used, for the case of three-layer material. We consider a material composed
of three different regions S1, S2 and S3, as shown in Fig. 2, with perfect contact between any two adjacent
regions. The three layers are, respectively, maintained at the initial constant temperatures T01, T02 and T03. So
we generalize the first case by adding the index i ¼ 3 of the third region. The dimensionless group is
extended to xi; ji; ci;Biot1;Biot3;Fif g for i ¼ 2; 3. Therefore, we have

xi ¼
ffiffiffiffiffi
a1
ai

r
; (24)

ji ¼ ki
k1
; (25)

ci ¼
ai
a1

(26)

with s � 0 for all layers, �1 � n � 0, 0 � n � c1 , and c1 � n � c2 for the first, second, and third layers,
respectively. In that notation, our problem becomes greatly simplified as an Eigen problem

E bð Þ ¼ cosðx2c2bÞ � j2x2P1ðbÞ sinðx2c2bÞ
sin x2c2bð Þ þ j2x2P1ðbÞ cosðx2c2bÞ

� j3x3 cosðx3c2bÞ þ P3ðbÞ sinðx3c2bÞ
j2x2 sin x3c2bð Þ � P3ðbÞ cosðx3c2bÞ

¼ 0 (27)

where, P3ðbÞ is expressed by

P3ðbÞ ¼ j3x3bþ Biot3tgðc3x3bÞ
Biot3 � j3x3btgðc3x3bÞ (28)

Thus, the temporal and space solutions take, according to the Eigen values set bnf g, the forms

G1;n sð Þ ¼ G2;n sð Þ ¼ G3;n sð Þ ¼ expð�b2nsÞ,
X1;n nð Þ ¼ P1 bnð Þ cos bnnð Þ þ sin bnnð Þ,
X2;n nð Þ ¼ P1 bnð Þ cos x2bnnð Þ þ 1

j2x2
sinðx2bnnÞ, and

X3;n nð Þ ¼ �ðbnÞ �P3 bnð Þ cos x3bnnð Þ þ sinðx3bnnÞf g (29)

�ðbnÞ is a coupling function, defined as

� bnð Þ ¼ j2x2P1 bnð Þ cos x2c2bnð Þ þ sinðx2c2bnÞ
j2x2 sin x3c2bnð Þ � P3 bnð Þ cosðx3c2bnÞð Þ (30)

The final dimensionless solution is expanded as a linear combination of products of the temporal and
space parts

�i n; sð Þ ¼
X1

n¼1
CnXi;n nð ÞGi;n sð Þ (31)

We can regroup, similarly as Eq. (22), the three temperatures in a single expression, describing the whole
material as
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�ðn; sÞ ¼
�1 n; sð Þif �1 � n � 0
�2 n; sð Þ if 0 � n � c2
�3 n; sð Þ if c2 � n � c3

8<
: (32)

Note that the unsteady equilibrium temperature, between any two adjacent slabs i, i+1 (i ¼ 1; 2), is
given by

Ti;iþ1
eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiqiCpi

p
T0i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiþ1qiþ1Cpiþ1

p
T0;iþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kiqiCpi
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kiþ1qiþ1Cpiþ1

p (33)

The final dimensionless solution is expanded as a linear combination of products of the temporal and
space parts. Therefore, the dimensionless unsteady equilibrium temperature is

Fi;iþ1
eq ¼ Tamb � Ti;iþ1

eq

Tamb � T01
¼

ffiffiffiffiffiffiffi
jx

p
Fiþ1 þ 1ffiffiffiffiffiffiffi
jx

p þ 1
(34)

The error is defined by

EðnÞ ¼
1��1ðn; 0Þ if � 1 � n � 0
1
F2

F2 ��2ðn; 0Þð Þ if 0 � n � c2
1
F3

F3 ��3ðn; 0Þð Þ if c2 � n � c3

8<
: (35)

4 Results and Discussions

4.1 Bilayer Material
By taking the instance, presented in Table 1, and for Tamb ¼ 300K;T01 ¼ 400K; T02 ¼ 500K, we find

F2 ¼ 2 and the unsteady equilibrium (Eq. (21)) of F1;2
eq � 1:43 is obtained. The values of the

dimensionless ratios are chosen so that the calculation by the method of does not ascert in order that one
can choose close or distant between them. Fig. 3 is a 3D representation of temperature evolution. Fig. 4
shows the temperature evolution and its error with respect to dimensionless position. For different times,
as shown in Fig. 4a, the unsteady equilibrium between the two slabs around the point ð0; 1:4Þ is
observed, which is in excellent agreement with F1;2

eq , mentioned above. The thermal equilibrium is the
cooling of both layers until reaching ambient temperature, approximately achieved after a dimensionless
time s ¼ 2. If a1 is in the order of millimeters, the real time t will be in that of s since in general a is in
the order of 10�6 order.

Figs. 4b and 4c represent the temperature in term of time at selected points, in both layers. From Fig. 4b,
the unsteady equilibrium can clearly be seen.

Figure 2: Representation of three-layer material
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To reach that, in the first layer, the temperature increases, proportionally to the distance from the contact
surface, with small values, called temperature jumps, while the taken time is inversely proportional to this
distance. Hence, the final thermal equilibrium is achieved. For the second layer, the temperature
converges to the equilibrium one, with a much slower pace, due to its thickness that is greater than that
of the first layer.

We also emphasize that the unsteady equilibrium is clear, for n ¼ 0, as illustrated in the two figures (Figs.
4b and 4c), whereas it does not appear, for the point n ¼ �1, because it is far away from the contact surface. In
addition, Fig. 4d shows the error on the temperature, for T01 ¼ T02 ¼ 400K. Its value in the open interval
½�1; 1:5� is less than 0.5%, and this explains why 20 roots are sufficient in the sum Eq. (19).

The heat transfer, in bilayer material, is well described according to thermo-physical properties (Eqs.
(11)–(14)) of the two layers (cf. Section 2). For equal ICs, (from full Maple procedure) its behavior is
presented according to the number of roots in the solution, and parameter, keeping the others constants
(Fig. 5). This parametric study consists in fixing a thermo-physical property such as the conductivity, and
diffusivity, of the first layer with changing that of the other [12,13].

The error with respect to the number of roots Nr is illustrated in Fig. 5a, with determined thermo-
physical property, taken by de Monte in [8]: j ¼ 2; c ¼ 2;x ¼ 1;Biot1 ¼ 1, and Biot2 ¼ 2. According to
these curves, we conclude, as we have previously reported, that 20 roots is sufficient to have a good
description of the phenomenon. In Fig. 5b, we describe how the heat flux reacts as a function of j. We
notice that if we increase the j values for chosen time (s ¼ 0:67), cooling process of both layers becomes
slow, specially in the second layer.

Similarly, one can observe the same reaction of heat transfer vs. the thickness report c by means of
Fig. 5c, since the thin layer cools faster than the thick one. In Fig. 5d, only three curves, for diffusely
values of 0.1, 0.5, and 0.9 at s ¼ 0:70 are represented, due to the heat transfer divergence for the other
values in Newton method. We remark that the cooling speed of composite material is inversely
proportional to the diffusivity report. The last two graphs Fig. 5e and Fig. 5f demonstrate the effect of
Biot numbers. Since they depend on convection coefficients, an increasing one of the two will leads to a
faster cooling, especially in the same layer.

Figure 3: 3D representation of temperature evolution in bilayer material
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4.2 Three-Layer Material
In this case, we consider the example where j2 ¼ 2; c2 ¼ 2;x2 ¼ 1;Biot1 ¼ 1; j3 ¼ 1:5; c3 ¼ 3;x3 ¼ 1

and Biot3 ¼ 2. For ICs: Tamb ¼ 300K; T01 ¼ 400K; T02 ¼ 450K, and T03 ¼ 500K, we obtain F2 ¼ 1:5 and
F3 ¼ 2. We can represent in Fig. 6 the temperature evolution in 3D. Fig. 7 shows the temperature’s behavior
over the three slabs.

Figure 4: Temperature curves; (a): With respect to the position in different times, (b): For S1, in different
positions in the first moments, (c): For S2, in different positions in the first moments, (d): The error with
respect to the position for equal ICs
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Figure 5: Parametric study; (a): Error according to the number of the roots Nr, (b): �ðn; 0:67Þ with respect
to dimensionless conductivity, (c): �ðn; 0:29Þ with respect to dimensionless thickness, (d): �ðn; 0:70Þ with
respect to dimensionless diffusivity. (e):�ðn; 1:67Þwith respect to Biot1, (f):�ðn; 1:67Þwith respect to Biot2

986 FDMP, 2023, vol.19, no.4



Fig. 7a shows, in the first moments, the heat transit at n positions (Eq. (32)) in the material, where we can
observe the thermal equilibrium, approximately started from s ¼ 10. However, the unsteady equilibrium is
clear, as reflected in the curve s ¼ 0. At the first contact surface (between the two adjacent layers S1 and S2),
it takes place at F12

eq � 1:3 while at the second one (between S2 and S3), it takes F23
eq � 1:7. This is in

excellent agreement with Eq. (34) giving the two values of 1:33 and 1:71, for the first and second contact
surfaces, respectively. In Figs. 7b–7d, the temperature in term of the time at selected points, in the three
layers, is presented. As shown in Figs. 7b and 7c, the unsteady equilibrium in the form of temperature
jumps are observed which becomes clearer when the point is close to the contact surface (n ¼ �0:3 and
n ¼ 1:7). After some dimensionless seconds, thermal equilibrium (steady equilibrium) occurs. Since the
third layer is warmer initially, temperature jumps are not observed in Fig. 7d.

Figure 6: 3D representation of temperature evolution in three-layer material

Figure 7: (Continued)
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The continuity of � between layers (at contact surfaces) can also be observed for n ¼ 0 and n ¼ 2.
The cooling speed of points, near the outer surface, can also be observed compared to the internal points.
Finally, note that we can pass from three-layer case to bilayer case by setting c2 ¼ c3.To clarify the
accuracy of our results, the error behavior (defined by Eq. (35)), as illustrated in Fig. 8, for equal ICs
(400 K), is smaller than 0:5%.

The divergence of the graphs in the boundaries (n ¼ �1, and n ¼ 3) comes from the fact that the
solutions of the heat equation are valid only in the open interval of the variation of n.

Figure 7: Temperature’s behavior in three-layer material: (a) Heat transient in different times, (b) Heat
behavior in the first layer at the first moments in different points, (c) Heat behavior in the second layer in
different points at the first moments, (d) Heat behavior in the third layer in different points at the first
moments

Figure 8: Error with respect to the position for a three-layer material
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5 Conclusion

This analytical study shows that there is a similarity in the evolution of heat transfer between two layers
as well as between three layers. In both cases, we note that an unsteady thermal equilibrium occurs moments
before the final thermal equilibrium. Mathematically, we notice that we get the same form for the solutions,
except for the coupling function �, which appears in the case of three layers. We can also ascertain the
equivalence of: the value of the unsteady equilibrium between two adjacent layers with the value
observed over the curves. We can then predict the general behavior of heat transfer through more than
three layers, and that there will be an unsteady equilibrium between every two adjacent layers, and that
calculating the first 20 eigenvalues is sufficient to describe the evolution of heat diffusion in the studied
medium. In the case of a two layers system, the cooling was studied in term of the dimensionless thermo-
physical properties of the material. The results show that it develops proportionally with each of the
conductivities, diffusivities, and thicknesses, and inversely with Biot numbers. The study of three-layer
material gave us a natural confirmation of the first case in term of existing unsteady equilibrium.

Concerning the accuracy of the results, this is based on two points having almost significant equivalence:
The first is the exact analytical calculation by SVM and using the Maple Program, which brings us back to
the similar results detailed in the literature. The second point is the concordance with the experimental
prediction, which explains the existence of two kinds of equilibrium: Unsteady, and permanent similar to
the damped movement in the mechanical vibration of solids or fluids (Transitional and permanent diverge).
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