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Abstract: Service Oriented Architecture (SOA) is a style of software design
where Web Services (WS) provide services to the other components through a
communication protocol over a network. WS components are managed, updated,
and rearranged at runtime to provide the business processes as SCs, which consist
of a set of WSs that can be invoked in a specific order to fulfill the clients’
requests. According to the Service Level Agreement (SLA) requirements, WS
selection and composition are significant perspectives of research to meet the cli-
ents’ expectations. This paper presents an effective technique using SMFS that
attempts to improve the WS selection as well as SC construction and ultimately
optimize the WS resource utilization. The results show that the proposed SMFS
technique enhances the WS resource utilization by 9.6% compared to the standard
Multistage Forward Search (MFS) technique. Similarly, the number of con-
structed SCs using the proposed SMFS technique are increased by 36.97% com-
pared to the number of constructed SCs with the standard MFS technique.

Keywords: Service oriented architecture; service composition; smart multistage
forward search; machine learning; optimization algorithms

1 Introduction

SOA is a style of software design to connect different applications and technologies using the WS
components. An automatic adaptation can be effectively implemented in the systems of SOA using
machine learning algorithms [1]. WSs are independent, distributed, loosely coupled, and reusable
software components that encapsulate a discrete functionality. WSs can be deployed and invoked by other
WSs or software to perform simple or complex tasks using standard internet and eXtensible Mark-up
Language (XML) based protocols [2–5].
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WS technology has been adopted by different enterprises to implement and provide business process
workflows, which is referred to as SC. Each SC consists of different WSs, which can be replaced,
managed, and updated at runtime without interrupting the ongoing business processes [6–8]. Due to the
highly dynamic nature of the Internet, many factors affect the WS Quality of Service (QoS). The internal
evolution as well as external modifications related to the hosted environment and network have a direct
impact on the WS QoS [8]. Some additional factors that might affect the QoS of WSs include the WS
poor performance, scalability, handling a massive number of synchronous requests to guarantee SLA
requirements, expected functionality, and behavior [3,9]. Dynamic as well as automatic WS selection and
composition with optimal QoS attributes are still complex processes that are considered challenging to
satisfy the customers’ SLA functional and non-functional requirements [10–12].

Issues related to WS QoS modifications, SC reconstruction, and WS resource utilization are discussed in
[3,13,14]. In this regard, Fan et al. [15] claimed that the composition approaches are not efficient enough
when applied in real-time and large-scale environments. The authors stated that finding the minimum
number of WSs with identical and similar functionality to create the SC on a large-scale is not an easy
process. Researchers argue that minimizing the number of WSs not only improves the maintenance and
management of SCs but also increases the success rate of responses, saves resources, and minimizes cost.
According to Al-Hadid and Abu-Taieh [3], each WS has limited capacity such as the number of
maximum requests that can be accepted each second. Many researchers argue that the acceptance of
maximum requests per second by SCs depends on the integrated WSs and the maximum capacity of each
WS. It should be noted that the maximum capacity of a WS may not be the same for all integrated WSs
in a SC because the maximum capacity of a SC depends on the minimum value of a WS capacity in a
composition [3]. This signifies that the WS with greater capacity value will acquire the available
resources not used by the SC. Al-Hadid and Abu-Taieh [3] further claimed that the available resources of
a WS are not utilized to their optimum capacity in the construction process of a SC. In this connection,
they suggested to select WSs with almost the same maximum capacity for optimum utilization of WS
resources. The literature review guided us towards sound analysis of four major research perspectives
as listed below.

� Adopting a dynamic approach to improve the Orchestrator processes of selecting and creating SCs.

� Upgrading the composite services according to the QoS attributes.

� Enhancing the SC scalability.

� Optimizing the utilization of WS resources in a SC process.

Consequently, we propose an efficient technique based on SMFS for the solution of SC problem. Our
key contributions include:

� Transforming the WS repository into a dependency service graph.

� Employing SMFS algorithm to find the path from source to destination, which represents the best SC
selection and construction with minimum cost.

� Optimizing the utilization of WS resources by acquiring the unused and available WS resources to
construct new SCs.

The experimental results of the proposed SMFS technique demonstrated superior performance
compared to other techniques and mechanisms in terms of efficiency and quality in optimizing the
utilization of WS resources. However, it needs additional time for calculation, reuse, and utilization of
WS available resources while constructing new SCs after the first composition phase.

This research is organized as follows. Section 2 presents an overview of the related literature about WS
selection and composition. Section 3, describes the proposed technique, which covers modification to the
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execution engine architecture and SMFS technique. Section 4 discusses the dataset, results and analysis.
Section 5 gives the research conclusions and the future directions.

2 Related Work

WS selection and composition has been addressed as one of the active research areas to improve its
performance and reliability using different heuristic and non-heuristic approaches [7,16]. In order to
achieve the SLA requirements, some researchers suggest to ignore the clients’ requests once the SLA
maximum capacity is exceeded in order to avoid any Denial of Service (DoS) and the Distributed Denial
of Service (DDoS) attacks [17,18] whereas some others recommend to prioritize the clients’ requests
according to the clients’ class [3]. In this connection, Al Hadid and Abu-Taieh [3] proposed a Simulated
Annealing (SA) based dynamic mechanism to enhance the WS selection and SC process to achieve the
SLA requirements as well as improve the SC availability and response time. Gao et al. [19] adopted a
dynamic programming based approach in order to generate a weighted multistage graph where the
longest path in the generated graph represents the solution to the WS selection and composition problem.
In the context of SC problem, metaheuristic optimization algorithms have also been utilized [20]. In this
regard, Shree et al. [21] proposed a method using integrated Ant Colony Optimization Algorithm coupled
with Artificial Bee Colony Optimization Algorithm (IACO-ABCOA) to find the optimal WS
configuration solution for solving stagnation and convergence problems. Moreover, researchers argue that
IACO-ABCOA method can be used in the directed workflow model as a directed acyclic graph to
determine the optimal feasible path that represents the best SC. Jung et al. [22] proposed cosine similarity
based method for business process clustering by identifying similar processes to support new business
process designs. Gao et al. [23] developed SA and Genetic Algorithm based technique to optimize the
WS selection process. Elmaghraoui et al. [24] modeled semantic relationships of all WSs as a directed
graph to find all shortest paths to optimize the computational efforts associated with WS composition.
Fan et al. [15] proposed a new technique to calculate minimum composition that satisfies the clients’
SLA requirements. Using the relevant WS, the proposed mechanism generates a service dependency
graph and then transforms each search step into dynamic knapsack problem. These relevant WSs are then
mapped to items with changeable volume and cost.

The cost structure of using WSs have been discussed by many researchers. In this connection, Lin et al.
[25] stated that WSs cost is not universally structured however, there exist two pricing models for pricing the
WSs namely profit maximization and welfare maximization. Profit maximization structure is adopted by WS
providers to achieve maximum benefits without considering the volume of WSs used by clients whereas
welfare maximization structure is used to set prices of WSs by managing the best trade-off between own
profit and clients’ utilization. Another pricing framework is developed by Mathew et al. [26] on the basis
of different factors such as QoS, cost of service, and the volume of clients’ transactions. The framework
suggests three pricing models, which are:

1. Subscription-Based Pricing for Commoditized WSs where customers are charged for unlimited use
over a specific period.

2. Transaction-Based Pricing for Channelized WSs where customers are charged on the basis of
transactions count over a specified period.

3. Risk-Based Model Pricing for Customized WSs where customers are charged on the basis of on-off
payment methods for using the service over a specified period.

Tian et al. [27] categorized the provided services into three categories according to the WS QoS, namely
Platinum, Gold, and Bronze. The price of 200 WS requests per second using the Platinum class is 0.05V.
Similarly, the price of 150 requests per second using the Gold class is 0.03V. Likewise, the price of
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100 requests per second using the Bronze class is 0.01V. Hence it is concluded that there is no clear pricing
structure for using the WSs [25–28].

It is revealed from the previous discussion that there exists a room for applying the optimization
techniques to the selection and construction procedures to minimize the number of integrated WSs for
effective and efficient utilization of WS resources. In this research, we introduce an efficient technique to
find the minimum number of services needed for selection and construction of services compositions in
real large-scale WS repository. We also optimize the reusability and utilization of WS available resources.

3 The Proposed Work

In this study, we propose a technique that uses the SMFS to improve the WS selection and composition
processes and optimize the utilization of the WS available resources. In this section, we discuss the
Orchestrator modifications required to implement the proposed SMFS technique where the modifications
are applied to the Business Process Execution Engine (BPEE) Orchestrator.

3.1 Modified BPEE Architecture

In this study, we have modified the architecture of BPEE to achieve enhancement in the execution
process of the Orchestrator. Fig. 1 shows the modifications applied to the execution engine.

Figure 1: Modified BPEE architecture
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Following is the list of modifications applied to the BPEE architecture.

1. Added a modified version of the WSs pool as suggested by Al-Hadid and Abu-Taieh [3] to classify
the WSs as Excellent, Good or Poor according to the QoS attributes.

2. Added a novel WSs Multi-Class pool to handle the unused WSs as well as WSs with available
resources that can be shared with different SCs.

3. Added the SMFS technique to enhance the WS selection as well as SC processes and deal with the
unused WSs. SMFS filters and sends WSs having available resources to the Multi-Class pool of WSs
after participating in SCs. The Multi-Class pool is used as a WS dataset repository pool to repeat the
WS selection and SC processes.

4. Modified the WS pool architecture by adding the Temp. Max. Capacity (TempMaxCap) and the WS
cost where TempMaxCap is the value of available WS resources that can be used after integrating the
WSs in SC. The modified WS pool architecture is given in Tab. 1.

Detailed description of different fields of the architecture is given below.

(1) WS ID is a unique identification number used as a reference to the WS in the execution engine.

(2) Response Time is the time needed to receive a response (ms) after sending a request. Response time
is one of the important QoS attributes used to classify WSs. Tab. 2 shows the classification of WSs and SCs
according to the response time suggested by [11,23,29].

(3) Availability refers to the number of successful invocations/total invocations (percentage). The WS
availability is one of the most important QoS attributes that is used to decide which class the WS or the SC
belongs to. Following the idea of [11] and [29], Tab. 3 shows theWS and SC classifications according to their
availability value.

Table 1: WS repository structure

WS ID Response Time Availability Weight Action WS Cost Max. Capacity TempMaxCap

Table 2: Classifications of WSs and SCs response time [23,29]

Class WS SC (five WSs)

Excellent response time ≥0.1–0.5 Sec ≤2.5 Sec

Good response time >0.5–1.0 Sec >2.5–5.0Sec

Poor response time >1.0–3 Sec >5.0–15 Sec

Table 3: Classifications of the WS and SC availability [29]

Value Class

[98–100%] Excellent Availability

[96%–98%] Good Availability

[90%–96%] Poor Availability
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(4)WS cost, mentioned in section 2, is not universally structured and there is no clear pricing method for
the WSs [25–28]. Therefore, we use the QoS attributes in pricing theWS cost. Tab. 4 shows the cost for using
the WSs according to the number of requests per second.

(5) Weight represents the classification of WSs on the basis of WS response time and availability. The
weight of the WS can be calculated using Eq. 1 where the WS response time and availability will be mapped
to represent 50% of weight each

Weight (%) = Response Time % + Availability (%) (1)

Using Eq. 1, WSs are classified into three classes as shown in Tab. 5. Note that, the classes are divided
into intervals that cover all the ranges from 90% to 100% of the WS QoS and the SLA attributes.

(6) Action represents the effect of a WS process. The Action value is used as a stage of service in the
dependency graph G.

(7) Max. Capacity shows the maximum number of requests that can be accepted and processed by the
WS per second. The Max. Capacity value ranges from (600–1800) requests per second.

(8) TempMaxCap is the value of available number of requests that can be accepted after the WS is
engaged with SC(s).

Tab. 6 shows comparison of MFS and SMFS where MFS is used to enhance theWS composition and the
SMFS is used to improve the WS selection and SC to optimize the WS resources utilization.

3.2 The Proposed SMFS Technique

The proposed SMFS technique has several phases. In the first phase, multistage dependency graph is
constructed from appropriate WSs, which represent the graph nodes. The WSs are then divided into a set
of stages according to the WS actions that represent the functionality and the output of the WSs. In the
second phase, SMFS technique is applied to find the best SCs by optimizing the WS resource utilization.
A formal description of the proposed SMFS technique is given below.

(1) Construct a multistage service dependency graph with all relevant WSs selected from an external
repository according to each WS class pool.

Table 4: WSs costs

Price per service usage Throughput (Req. /Sec.) Class

0.1$ 600 Req/Sec Excellent

0.05$ 600 Req/Sec Good

0.001$ 600 Req/Sec Poor

Table 5: WSs classifications based on weight

Weight Value Class

[98%–100%] Excellent Class

[96% –98%] Good Class

[90% –96%] Poor Class
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Graph: Given a set of WSs named as WS, SC is defined as a tuple SC = {Inws, Outws} where
Inws = {Inws

1, Inws
2…, Inws

n} is a set of inputs and Outws = {Outws
1, Outws

2…, Outws
n} is a set of

outputs. Here, Inws is required to invoke the WS and generate the set of WSs output Outws. Both the Inws
and Outws are used to combine the matched inputs and outputs of the WS to construct the SC.

(2) Divide the WS into sub-sets that represent the stages based on the roles described in the WSDL and
the output of each WS.

S = {w1, w2, w3,…..,wn}

S = { { w1, {w2, w3 }, w4}, {{w5, w6}, w7, w8}, {w9, w10, w11}… {wn-2, wn-1, wn }}

where {w2, w3} and {w5, w6} are parallel WSs, which achieve the task together just like a single WS such as
w7 and w9. Fig. 2 illustrates the WS Graph G.

Table 6: Comparison between MFS and SMFS

MFS SMFS

All WSs are classified into pools based on the WS
class (Excellent, Good, Poor) with all the WSDL
Data.

In addition to the WS classification into pools
(Excellent, Good, Poor), SMFS added new WS pool
called Multi-Class to store all the unused WSs and
the WSs having available resources after the
composition process.
Also, the TempMaxCap QoS attribute of the WS is
added to all the pools where the TempMaxCap
attribute is used to store the WS available resources
after the SCs are constructed.

Each SC is created using WSs from the same pool;
if the SC provides an Excellent Service this means
that all the integrated WSs in the SC are selected
from the Excellent pool.

In addition to the creation of SCs usingWSs from the
same pool, there are SCs that are constructed from
different WS classes located in the Multi-Class pool.
According to the availability of the WS resources,
the WS can be used to construct new SCs.

The number of SCs depends on the available
number of WSs in the pool related to the same
class.

Besides, the SCs are constructed using WSs located
in the same pool, an additional number of SCs can be
constructed using the WSs located in the Multi-Class
pool, which satisfy the minimum SLA requirements
to construct the SC.

The SC maximum capacity is the maximum
number of requests that can be accepted by the SC
and it depends on the WS maximum capacity
integrated in the SC. Here, the SC maximum
capacity relies on the minimum value of the WS
maximum capacity in the SC.

Even though, the SC maximum capacity depends on
the minimum value of the WS maximum capacity in
the SC, the proposed algorithm uses the WS
remaining resources and the unused WSs to create
new SCs and increase the system’s capacity to
handle more requests. The process is applied after
the construction of SCs where the unused WSs and
the WSs having available resources are utilized to
create new SCs from different WS classes located in
the Multi-Class pool, which are used to satisfy the
clients’ demands and the SLA requirements.
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Tuple: Graph elements are grouped according to the WSs’ actions where similar WSs are clustered in
the same stage of the WS graph, which is represented as a matrix. Each tuple in the matrix represents the
edges to the next WS based on the tuple order in the matrix. The values in the tuple are the costs to
invoke the WS. The position of the WS in the tuple corresponds to the WS order in the graph. If there is
an infinity value (INF) in the tuple, this means that there is no edge to the corresponding WS, which can
be derived from WS order in the tuple.

Tuple = {WS1Cost, WS2Cost, WS3Cost, WS4Cost… WSNCost}

Fig. 2 shows the WSs Dependency Graph’s Construction Algorithm (DGCA), which generates the WSs
Graph (G) as shown in Fig. 3.

Sk-1(L)

SR)

SR

SAction = k & Sk      Sk-1(L) & STempMaxCap > 0 then

SR

Sk

Figure 2: WSs DGCA

Figure 3: Constructed WSs graph (G)
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(3) For each WS in the constructed graph G, set the TempMaxCap = MaxCap.

(4) Minimize the SC using MFS based on cost of each WS and then find the minimum cost of the
composite WS that forms the SC.

Tuple = {WSACost, WSBCost, WSCCost, WSDCost, WSECost, WSFCost, WSGCost, WSHCost, WSICost,
WSJCost, WSKCost, WSLCost, WSMCost, WSNCost}

Fig. 4 illustrates the repository matrix that represents the available WSs and the corresponding cost
of each WS.

The WSs from Fig. 3 are represented as a set G matrix that contains all the WSs in the repository.
Each tuple in the G matrix is composed of a source WS and a set of WSs that are reachable from that
source. For example, the first tuple shows that WSB, WSC and WSD are reachable from WSA on the
corresponding cost of each invocation. Meanwhile, the other WSs with INF costs are not reachable and
cannot be invoked by WSA.

G = { WSA: {INF, WSBCost, WSCCost, WSDCost, INF, INF, INF, INF, INF, INF, INF, INF, INF, INF},
WSB: {INF, INF, INF, INF, WSECost, WSFCost, WSGCost, WSHCost, INF, INF, INF, INF, INF, INF}, WSC:
{ INF, INF, INF, INF, WSECost, WSFCost, WSGCost, WSHCost, INF, INF, INF, INF, INF, INF}, WSD: { INF,
INF, INF, INF, WSECost, WSFCost, WSGCost, WSHCost, INF, INF, INF, INF, INF, INF}, WSE: { INF, INF,
INF, INF, INF, INF, INF, INF, WSICost, WSjCost, WSkCost, INF, INF, INF}, WSF: { INF, INF, INF, INF,
INF, INF, INF, INF, WSICost, WSjCost, WSkCost, INF, INF, INF}, WSG: { INF, INF, INF, INF, INF, INF,
INF, INF, WSICost, WSjCost, WSkCost, INF, INF, INF}, WSH: { INF, INF, INF, INF, INF, INF, INF, INF,
WSICost, WSjCost, WSkCost, INF, INF, INF}, WSI: { INF, INF, INF, INF, INF, INF, INF, INF, INF, INF,
INF, WSLCost, WSMCost, INF}, WSJ: { INF, INF, INF, INF, INF, INF, INF, INF, INF, INF, INF, WSLCost,
WSMCost, INF}, WSK: { INF, INF, INF, INF, INF, INF, INF, INF, INF, INF, INF, WSLCost, WSMCost,
INF}, WSL: { INF, INF, INF, INF, INF, INF, INF, INF, INF, INF, INF, INF, INF, WSNCost}, WSM:
{ INF, INF, INF, INF, INF, INF, INF, INF, INF, INF, INF, INF, INF, WSNCost}}

(5) Enhance the service selection and composition using the proposed SMFS technique and optimize the
utilization of the WSs available resources. Fig. 5 shows the proposed SMFS technique.

(6) Reconstruct the multistage service dependency graph with all relevant WSs elected from an external
repository (Excellent, Good, and Poor WSs pools) after the composition process and update the WS
TempMaxCap using Eq. 3, then go back to step (3).

Figure 4: WSs repository matrix
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In SMFS Algorithm, Eq. 2 is used to find the WS minimum cost that meets the SLA requirements for
each stage starting from Cost (k-2, j) for all j in Vk-2 until we reach the Cost (1, S), for all j in V1 which is the
WS execution engine considered as the source of the invocations. Eq. 3 is used to update TempMaxCap for
all WSs by subtracting the minimum value of the maximum capacity. This is related to the WSs, which are
used in the construction of SC. Involving the maximum capacity of each WS in the calculations makes sure
that we are utilizing the available resources optimally.

After finding the minimum cost of the composition service and updating the WS TempMaxCap, all WSs
with available resources (TempMaxCap > 0) are located in the Multi-Class pool. The WSs in the Multi-Class
pool are used to create new web compositions and provide services to clients that might be related to same or
different classes. Newly created SCs are classified using Eq. 1 to decide which SC class it belongs to.

4 Experimental Results and Discussion

4.1 Simulation Setup

The proposed algorithm is implemented using the Hybrid Service Oriented Architecture Simulator
(HSOAS) [30] for WS selection and composition. The simulator supports the service classification and
composition in addition to the SLA Gap, which is used to demonstrate the behavior of WSs and QoS
fluctuations.

All simulation experiments were performed on i7-3632QMmachine equipped with 2.20 GHz processor
and 8 GB DDR3 RAM. Tab. 7 shows the initial values of the simulator parameters.

4.2 Datasets

In order to evaluate the proposed service selection and composition, the simulator is used to build the
WSs repository using the QWS dataset proposed by Al-Masri and Mahmoud [31]. This dataset is a labeled
dataset describing real-world QoS evaluations with response time and availability as parameters that are
compiled from the results of 2509 WSs.

In addition to the available ranked WSs according to the QoS attributes in QWS dataset, HSOAS added
new attributes to WS repository needed by classification and composition processes for the implementation
of proposed technique. The attributes are Action, Max. Capacity and TempMaxCap as discussed in
section 3.1 (Tab. 1).

Vi+1

Figure 5: The proposed SMFS technique
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4.3 Experimental Results and Discussion

In this section, we assess the performance of our proposed SMFS technique using the QWS dataset.
SMFS technique is designed to optimize the WS selection and construction processes. The performance
of SMFS and MFS techniques are compared for in depth analysis. The performance of SMFS technique
is also evaluated for resourceful utilization of WS remaining resources and the unused WSs after the SC
process is completed in the first round.

Fig. 6 depicts the average number of WSs categorized in each class pool where the total number of WSs
in the QWS dataset is 2508. The WSs in Excellent, Good, and Poor classes are 830, 831, and 847,
respectively.

Fig. 7 shows the comparative performance of MFS and SMFS techniques in terms of WS resources
utilization. The proposed SMFS technique demonstrated higher performance compared to the MFS
technique as evident from the obtained results. The enhanced performance of SMFS technique is due to
its capability of using the remaining WS resources in the construction of new SCs after the first round of
SC process is over. The WS resources are not utilized completely with MFS technique due to the

Table 7: HSOAS initialization values of the parameters

Parameter Value

Number of runs 20

Number of clients/run 1000

Min. Number of requests/Client 50

Max. Number of requests/Client 5000

Number of WSs 2509

Number of Clients 200

Min Value of WSs maximum capacity level 600

Max Value of WSs maximum capacity level 1800

Figure 6: Average number of WSs in each WS pool class: Excellent, Good, and Poor
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maximum capacity of integrated WSs that exceed the maximum capacity of SC. The performance of SMFS
technique in terms of WS resource utilization is enhanced by 9.6% compared to the standard MFS.

Fig. 8 illustrates the left-over WSs of SMFS and MFS techniques. In case of SMFS technique, the
number of unused WSs are decreased, which shows that the proposed SMFS technique achieved
maximum utilization of WSs. This indicates that the number of constructed SCs with SMFS technique is
increased by entertaining more number of requests.

The average number of constructed SCs and the WS consumed resources using MFS and SMFS
techniques is shown in Figs. 9 and 10.

As evident from Fig. 9, the average number of constructed SCs using SMFS technique exceeds the
average number of constructed SCs using MFS technique. The SMFS technique constructed 36.97%
more SCs compared to MFS technique. The SMFS technique constructed additional SCs from the WSs

Figure 7: The number of WSs constructed by MFS and SMFS techniques as Excellent, Good, and Poor

Figure 8: The number of left-over WSs in the SCs for the Excellent, Good, and Poor classes using MFS and
SMFS techniques

332 IASC, 2021, vol.28, no.2



stored in the Multi-Class pool after the first round of composition process is over. This shows the
effectiveness of Multi-Class pool in constructing additional SCs.

Fig. 10 highlights the average number of used and unused WS resources using the MFS and SMFS
techniques after the SC process is over. The proposed SMFS technique maximized the utilization of WS
resources and hence the left-over WS resources are minimized. The demonstrated performance of SMFS
technique is better than that of MFS technique. The outstanding performance of SMFS technique is due
to its capability of utilizing the WSs located in the Multi-Class pool containing integrated and
unintegrated WSs. The SMFS employs those WSs from the Multi-Class pool to construct new SCs and
the hence optimizes the WS resource utilization.

The previous discussion confirms that SMFS technique for WS selection and SC improves the WS
resource utilization and increases the number of constructed SCs. As a result, it delivers enhanced
services to the clients and guarantees the fulfillment of SLA requirements.

The optimal utilization of WS resources is due to the fact that SMFS technique constructs additional SCs
using the unused WSs from the Multi-Class pool after the first round of SC process. Additionally, it uses the

Figure 9: The average number of SCs using MFS and SMFS techniques for all WS classes (Excellent,
Good, and Poor)

0
50000

100000
150000
200000
250000
300000
Req/Sec.

Web Services
Used
Resources

Web Services
Unused
Resources

Figure 10: Average number of used/unused resource after the SC process using MFS and SMFS for all WS
classes (Excellent, Good, and Poor)
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WSs that are already integrated in SCs but still have available resources according to the value of the
maximum capacity as discussed in section 3.2.

Though the performance of our proposed SMFS technique is outstanding, it comes at the cost of
additional computational time. The time needed by the SMFS process to collect and construct new SCs is
more than the time required by the MFS technique. The following equations are used to find the time
complexity of the algorithms where Eq. 4 is used to calculate the time complexity of the MFS algorithm
and Eq. 5 is used to determine the time complexity of SMFS technique.

TðnÞ ¼ Oðα2Þ þ Oðβ2Þ þ Oðγ2Þ (4)

TðnÞ ¼ Oðα2Þ þ Oðβ2Þ þ Oðγ2Þ þ Oðx2Þ (5)

where n is the number of WSs in the graph G, α is the total number of WSs in the “Excellent pool,” β is the
WSs in the “Good pool,” γ is the WSs in the “Poor pool,” x is the number of WSs that are located in the
Multi-Class pool.

Fig. 11 shows that the time needed to construct the SCs using SMFS technique is more than the time
required to construct the SCs using MFS technique where the extra time O(x2) is needed by SMFS to
search in the Multi-Class pool and construct new SCs.

5 Conclusion

SOA is used to connect different applications and technologies using the WS components where the WS
offers simple or complex tasks by SCs. One of the main challenges of the SCs construction process is
selecting the right WS to provide the expected QoS to the clients according to the SLA requirements.

This research presents SMFS based effective technique to optimize the WS resource utilization and
improves the WS selection and SC by improving the Orchestrator processes. The proposed technique can
also create new SCs using the unused and integrated WSs located in the Multi-Class pool. The proposed
SMFS technique improved the WS resource utilization by 9.6% and increased the number of constructed
SCs by 36.97% in comparison with the MFS technique. It can be noted that the enhanced performance of
SMFS technique is on the cost of additional computational time that is required to collect, select, and
construct new SCs. The additional tasks associated with SMFS technique include updating the value of

Figure 11: Time required to construct SCs using MFS and SMFS techniques
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available resources for each WS, creating the new graph using the WS having available resources collected
from different pools in Multi-Class pool, and creating new SCs.

As a future endeavor, it would be valuable to enhance the proposed SMFS technique by minimizing the
computational time. Moreover, in some cases a specific resource may not be available or missing due to
different reasons for example, network failure, server maintenance, buffer size, etc. Therefore, adding a
process that allows the SMFS technique to discover and integrate new WSs to compensate the
unreachable or unavailable WSs and satisfy the SCs QoS requirements.
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