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Abstract: The core part of any study of rolling stock behavior is the wheel-track
interaction patch because the forces produced at the wheel-track interface govern
the dynamic behavior of the whole railway vehicle. It is significant to know the
nature of the contact force to design more effective vehicle dynamics control sys-
tems and condition monitoring systems. However, it is hard to find the status of
this adhesion force due to its complexity, highly non-linear nature, and also
affected with an unpredictable operation environment. The purpose of this paper
is to develop a model-based estimation technique using the Extended Kalman Fil-
ter (EKF) with inertial sensors to estimate non-linear wheelset dynamics in vari-
able adhesion conditions. The proposed model results show the robust
performance of the EKF algorithm in dry, wet/rain, greasy, and fully contaminated
track conditions in traction and braking modes of a railway vehicle. The proposed
model is related to the other works in the area of wheel-rail systems and a tradeoff
exists in all conditions. This model is very useful in condition monitoring systems
for railway asset management to avoid accidents and derailment of a train.
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1 Introduction

The rapid development in railway traffic across the world demands better acceleration and braking
performance. The railway wheelset and wheel-rail contact patch play a vital role in the acceleration and
braking performance of railway operation [1]. In the railway operational terminology, the transmitted
tangential force between wheel and rail is called adhesion force [2]. At wheel-rail contact patch, a certain
level of adhesion force is necessary for the transfer of tractive force applied by traction and braking
network in locomotives. The exerted tractive force may exceed the highest adhesion level present at the
wheel-track contact, causing the occurrence of wheel slip in acceleration and skid in braking [3]. This
wheel slip and slide largely affects routine railway operations. Mainly, it increases maintenance cost,
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undesirable wear of both wheel and track surfaces, and increases safety risk. As adhesion force or creep force
changes non-linearly to slip ratio and is affected by the unpredictable variations in wheel-rail contact
conditions. The wheel-rail contact conditions are usually categorized into four types based on external
contaminantes: (i) Dry track or normal adhesion condition, (ii) Wet track or bad adhesion condition, (iii)
Oily/Greasy track or poor adhesion condition and (iv) Fully contaminated track or extremely slippery
adhesion condition. Some images of contaminated track and wheel-rail contact captured during field visit
are illustrated in Fig. 1.

The estimation of adhesion coefficient, slip ratio, and lateral dynamics of railway vehicle successively in
traction and braking modes is essential for both trip safety and passenger ease. But estimation of wheelset
dynamics is a complicated process because the wheel-rail interface is an open system with changing
external conditions. Many scholars have proposed some wheel-rail contact estimation techniques most of
which are model-based, which have been summarized in Refs. [2,4,5]. For example in Hussain et al. [6],
adhesion limit is identified by using a bank of Kalman filters and a Fuzzy logic system. However, the use
of multiple Kalman filters makes the computation complex and difficult to apply to a real system. A
model-based estimation technique using EKF is proposed in Zhao et al. [7] to detect slip-slide indirectly
by measuring parameters of the traction motor. Another work presented by Zhao et al. [8] is to use
Unscented Kalman filter for estimating creep, creep force, and friction coefficient from the behavior of
the traction motor. A two-dimensional inverse wagon model based on acceleration is developed in Sun
et al. [9] for assessment and monitoring of wheel-rail contact dynamics forces. The results at higher speed
are agreeable, however, improvement in the model is further needed to reduce the error at all expected
speeds. In Strano et al. [10], wheel-rail nonlinear contact forces and moments are estimated on model-
based using EKF. But the technique is not verified on all adhesion conditions. In Mal et al. [11] model-
based estimation technique using EKF is proposed for estimation of contact force and other lateral
wheelset dynamics but the proposed technique is not suitable for traction and braking modes of railway
vehicle operation. One data-driven method based on particle swarm optimization (PSO) and kernel
extreme learning machine (KELM) is proposed in Liu et al. [12] to identify wheel/rail adhesion of heavy-
haul locomotives. But the method is just verified in dry track conditions, so further work is needed to
estimate adhesion state in wet, greasy, and extremely slippery tracks. Another work related to the

Figure 1: Visited railway track and wheel-rail contact
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data-driven approach using Deep Neural Network is proposed in Ujjan et al. [13] to identify wheel-rail
contact conditions. In Zirek [14], a swarm intelligence-based adhesion estimation algorithm is proposed
for an effective anti-slip control system but for low adhesion conditions it cannot estimate correctly.
Track irregularities are also estimated in Munoz et al. [15] by a model-based technique using the Kalman
filtering algorithm. Traction force is estimated in Ishrat et al. [16] by using the Kalman filtering algorithm
for further designing slip controllers.

Several methods have been proposed in the literature to accurately estimate the adhesion condition in
railway transport. Most of these techniques are designed to work during the normal operation (steady-
state) of a railway vehicle. Accurate adhesion information is not only important during the normal
running conditions, it is also important during the traction and braking modes to avoid wheel-slip during
traction and wheel-slide during braking. But due to the highly nonlinear behavior of the wheelset
dynamics during the traction and braking modes, it is very difficult to accurately estimate the adhesion
condition. In addition to the presence of nonlinearities during the traction and braking modes, the
unpredictable environmental conditions present a serious challenge for researchers to accurately estimate
adhesion at the wheel-rail interface. In this paper, we extend the works reported in Refs. [6,11], by design
and development of the extended Kalman filter model for estimation of adhesion coefficient, slip ratio,
and wheelset lateral dynamics in both traction and braking modes of vehicle operation by taking all track
conditions. The rest of the paper proceeds as follows. Section 2 presents the modeling of the wheelset
and in Section 3 design of the estimator is described. In Section 4 simulation results are discussed and
lastly, Section 5 is about the conclusion and future work.

2 Modeling of Railway Wheelset

This research work focuses on the extension of the railway wheelset dynamics as reported in Refs.
[6,11]. In this section, a comprehensive model of the wheelset, motion equations of the wheelset, and
creep curves for all adhesion conditions are presented. A complete and accurate wheelset model is
required to validate the proposed estimation technique. Hence, a conventional solid axle wheelset shown
in Fig. 2 is taken to demonstrate the potential of the proposed idea.

In the above figure torque (Tm) of traction motor attached on one side of the wheelset, traction force (Ft),
the normal force (FN), and linear velocity (Vx) are labeled being important parameters involved in modeling.

Figure 2: Railway wheelset model
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The Adhesion coefficient is one of the most important parameters of wheelset because the dynamic
response of the wheelset depends on it. The adhesion coefficient ua is the ratio of tangential force Fa that
is generated between the wheel-rail contact area to normal force N.

ua ¼ Fa

N
(1)

In normal condition with small slip ratio, the adhesion force is linear with slip ratio but for the large slip
ratio the adhesion force becomes nonlinear and can be expressed as:

Faj ¼
Facj
c

(2)

where j = longitudinal and lateral directions.

The total tangential force Fa of longitudinal and lateral directions can be calculated using the Polach
formula [17] as:

Fa ¼ 2Nl
p

½ kAE

1þ ðkAEÞ2
þ arctanðkSEÞ� (3)

where kA is the reduction factor around adhesion, KS is the reduction factor in a slip, l is friction coefficient,
and E is the gradient of the tangential stress in the area of adhesion. Both l and E are further explained in Eqs.
(4) and (5).

l ¼ u0½ð1� AÞeð�BcvÞ þ A� (4)

E¼ 2

3

pa2bc
Nl

c (5)

where u0 is maximum friction coefficient at zero creep velocity, A is the ratio of friction coefficient at infinity
creep velocity to u0 and B is a coefficient of exponential friction decrease. While a and b are half-axes of
contact ellipse and c is the coefficient of contact shear stiffness. The nonlinear change in the adhesion
coefficient with respect to slip ratio for all track conditions is shown in Fig. 3. These creep curves
represent normal adhesion condition to extremely low adhesion condition. These conditions are chosen to
demonstrate the efficacy of the designed algorithm on every possible adhesion condition.

Each curve can be divided into three parts to describe the stable and unstable behavior of the wheelset.
The initial portion is almost linear, the middle portion is nonlinear and is called the high slip ratio region and
the last portion having a negative slope is the unstable region of the curve [3].

The values of Polach parameters used for tuning of the creep curves given in Tab. 1 are standard values
for a railway vehicle.

The slip ratio γ is the relative speed of the wheel to rail, the slip ratios of both wheels of wheelset in the
longitudinal and lateral direction, and total slip ratio are presented in Eqs. (6)–(9) [18].

cxR¼
ðr0ɷR�vÞ

v
� Lg _�

v
�ɷR�wðy�ytÞ

v
(6)

cxL¼
ðr0ɷL�vÞ

v
þ Lg _�

v
þɷL�wðy�ytÞ

v
(7)

cyR¼cyL¼cy¼
y
:

v
�� (8)
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The total slip ratio will be:

ci¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cix2þciy2

q
; i ¼ Right or left wheel (9)

A complete wheelset model includes all relevant motions related to wheel-rail contact forces that help to
study the wheelset dynamics. The equations of motion of the railway wheelset for longitudinal, lateral,
rotational, torsional, and yaw dynamics are given below [19]:

Mv€x ¼ FxR þ FxL (10)

mw€y ¼ �FyR � FyL þ FC (11)

Iw €� ¼ FxRLg � FxLLg � Kw� (12)

Ts ¼ KshsþCs ɷR�ɷLð Þ (13)

IL _ɷL ¼ Ts � TL (14)

Figure 3: Creep curves for all adhesion conditions

Table 1: Polach parameters [11]

Parameter Dry condition Wet condition Greasy condition Extremely slippery condition

kA 1 1 1 1

kS 1 1 1 1

u0 0.46 0.3 0.2 0.1

A 0.4 0.4 0.1 0.1

B 0.6 0.2 0.2 0.2

IASC, 2021, vol.28, no.3 827



IR ɷR
: ¼ Tm � Ts � TR (15)

where hs ¼
R
ɷR � ɷLð Þdt

The centripetal force component FC and material damping of shaft Cs are not considered in this study,
being negligible parameters.

The description of the model parameters of the railway wheelset is given in Tab. 2.

In the study of wheelset dynamics, it is important to develop and use a complete model that comprises all
related motions associated with the contact forces because of powerful interactions among various motions of
the wheelset play in both the longitudinal and lateral directions. Wheelsets are the element of railway vehicles

Table 2: Parameters used in modeling of nonlinear wheelset dynamics

No. Symbol Parameter Value and/or Unit

1 γxR, γxL Right and left wheel slip ratios in longitudinal direction

2 γyR, γyL Right and left wheel slip ratios in lateral direction

3 γR, γL Total slip ratios of right and left wheel

4 r0 Wheel radius 0.5 meter

5 Lg Half gauge of track 0.75 meter

6 λw Wheel conicity 0.15 rad

7 ɷR, ɷL Angular velocities of right and left wheel

8 V Vehicle’s forward velocity

9 Y Lateral displacement Output in meter

10 yt Track disturbance in lateral direction Track disturbance in meter

11 Ψ Yaw angle Radians

12 FxR, FxL Right and left wheel creep forces in longitudinal direction

13 FyR, FyL Right and left wheel creep forces in lateral direction

14 FR, FL Total creep forces of right and left wheel

15 Mv Vehicle mass 15000 Kg

16 Iw Yaw moment of inertia of wheelset 700 Kgm2

17 Kw Yaw stiffness 5x106 N//rad

18 mw Wheel weight with induction motor 1250 Kg

19 Tm Torque of traction motor Input in Nm

20 Ts Torsional torque

21 TR, TL Tractive torques on right and left wheel

22 IR Right wheel inertia 134 Kgm2

23 IL Left wheel inertia 64 Kgm2

24 Ks Torsional stiffness 6063260 N/m

25 θs Twist angle
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that interact directly with the rail path and subsequently, the wheelset dynamics are directly affected by
changing contact conditions.

A Simulink model of complete and non-linear railway wheelset, based on Eqs. (10)–(15) is developed
for analyzing wheelset response. A track input yt of 5 mm step is generated to simulate wheelset dynamics to
show the existence of track disturbances. The dry and wet condition creep curves of Fig. 3 are used during
this simulation. The wheel slip (unwanted phenomenon) in wheelset dynamics is a consequence of the
existence of low adhesion during traction and braking modes. Fig. 4 shows the tractive torque gradually
increased for acceleration. Because of the slip, the equivalent linear velocity of the wheels rises
surprisingly as shown in Fig. 5, affecting the mechanical parts of the rolling stock to wear down rapidly
and waste of power, while the rise in vehicle velocity is much slower due to the wheel slip.

Figure 4: Applied tractive effort for acceleration

Figure 5: Vehicle velocity and equivalent linear velocity of wheel during drop of adhesion coefficient
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3 Estimator Design

The main objective of this study is to develop a novel model-based technique to estimate the wheelset
dynamics in different contact conditions. The model-based estimation schemes using discrete Kalman filter
and Bucy Kalman filter have been successfully used by many researchers for estimation of wheelset
parameters [6,15,16,20,21]. However, a simple Kalman filter is not suitable for a nonlinear wheel-rail
contact system. A model-based technique using EKF is therefore developed for the estimation of
adhesion coefficient, slip ratio, and wheelset lateral dynamics. Because for nonlinear systems like railway
wheelset, EKF is a more suitable approach. The proposed method based on the EKF algorithm is
presented by using the measurements of inertial sensors mounted on the axle box of the wheelset. Fig. 6
illustrates the block diagram of EKF with the railway wheelset model. The EKF linearizes the current
mean and covariance by assessing Jacobian matrices and their partial derivatives [22].

The nonlinear wheelset model discussed in Section 2 is used to develop the EKF algorithm. Eq. (16) is
written in matrix form for designing EKF after rearranging Eqs. (11) and (12) and equating slip ratios and
adhesion forces of right and left wheels.

_y
_�
€y
€�

2
664

3
775 ¼

0 0 1 0
0 0 0 1
0 2

mw

Fa
c � 2

mwv
Fa
c 0

� 2Lg�w
Iwr0

Fa
c � kw

Iw
0 � 2Lg

2

Iwv
Fa
c

2
6664

3
7775

y
�
_y
_�

2
664

3
775þ

0
0
0

2Lg

Iwr0
Fa
c

2
664

3
775yt (16)

The main objective of this study is to develop a state-of-the-art technique to detect the changes in wheel-
rail contact conditions and only yaw and lateral dynamics are sufficient for detecting these changes.
Therefore, longitudinal dynamics are not taken in Eq. (16).

As the Extended Kalman filter like simple KF is a 2 step predictor-corrector algorithm [23]. The
equations of predictor and corrector steps are reproduced in Eqs. (17)–(21).

Figure 6: Block diagram of extended Kalman filter with wheelset
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Equations of predictor step:

x̂�k ¼ f x̂k�1; uk ; kð Þ (17)

P�
k ¼ Fk�1Pk�1F

T
k�1 þ Qk (18)

Equations of corrector step:

Kk ¼ P�
k H

T
k HkP

�
k H

T
k þ Rk

� ��1
(19)

x̂k ¼ x̂�k þ Kk ~mk � h x̂�k ; uk ; kð Þð Þ (20)

Pk ¼ I � KkHkð ÞP�
k (21)

where f and h are non-linear functions relating to process and measurement states, while Fk ¼ @f
@x x̂k ; uk ; kj

and Hk ¼ @h
@x x̂k ; uk ; kj . The terminology used in the EKF algorithm is described in Tab. 3.

The five variables given in Eq. (22) i.e., lateral velocity ( _y), yaw rate ( _�), slip ratio (c), friction
coefficient (l), and adhesion force (Fa) are used for forming process matrix x of EKF algorithm and two
variables i.e., lateral acceleration and yaw rate are taken to make measurement matrix m.

x ¼ _y _� c l Fa

� �
T; m ¼ €y _�

� �
(22)

The process variables are reproduced from Eqs. (3), (4), (9), and (16) as:

€y ¼ y
:ð Þ
:

¼ 2

mw
�
Fa

c
� y

:

v

Fa

c

� �
(23)

€� ¼ _�
� �: ¼ 1

Iw

2ytLg

r0

Fa

c
� 2yLg�w

r0

Fa

c
� 2 _�Lg

2

v

Fa

c
� Kw�

� �
(24)

Table 3: Terminology of the EKF algorithm [11]

Symbol Description

x̂�k discretized a-priori estimated process

x̂k discretized a-postriori estimated process

Pk
- a-priori estimate of the covariance of process error

Pk an estimate of the covariance of measurement error

Fk Jacobian matrix of process

Hk Jacobian matrix of measurement

Qk process noise covariance

Rk measurement noise covariance

Kk Kalman gain

m ̃ k measured output
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c¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLg

_�

v
þ�wðy�ytÞ

r0
Þ
2

þðy
:

v
��Þ

2
s

(25)

l ¼ u0½ð1� AÞeð�BcvÞ þ A� (26)

Fa ¼ 2Nl
p

½ kAE

1þ ðkAEÞ2
þ arctanðkSEÞ� (27)

As the chosen process variables are extracted from the wheelset model and are continuous but the EKF
algorithm is a discrete one, therefore equations from Eq. (23) to (27) are discretized by using the Forward
Euler method [24] as:

_yk ¼ _yk�1 þ
2s
mw

�
Fak�1

ck�1
� y

:

k�1

v

Fak�1

ck�1

� �
(28)

_�k ¼ _�k�1 þ s
Iw

2ytLg

r0

Fak�1

ck�1
� 2yLg�w

r0

Fak�1

ck�1
� 2 _�k�1Lg

2

v

Fak�1

ck�1
� Kw�

� �
(29)

ck¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLg

_�k�1

v
þ�wðy�ytÞ

r0
Þ
2

þðy
:

k�1

v
��Þ

2
s

(30)

lk ¼ u0½ð1� AÞeð�Bck�1vÞ þ A� (31)

Fak ¼ 2Nlk�1

p
½

kA 2
3
pa2bc
Nlk�1

ck�1

1þ ðkA 2
3
pa2bc
Nlk�1

ck�1Þ2
þ arctanðkS 23

pa2bc
Nlk�1

ck�1Þ� (32)

Now the Jacobean matrix of process matrix xk ¼

y
:

k
_�k

ck
lk
Fak

2
6664

3
7775 is

Fk ¼

1� 2sFak�1
vmwck�1

0 2sFak�1
mwc2k�1

	 

y
:
k�1
v �� 0 � 2s

mwck�1

	 

y
:
k�1
v ��

0 1� 2sLg
2Fak�1

vIwck�1
� Fak�1

ck�1
W 0 W

y
:
k�1
v ��

vck�1
� Lgðr0ɷR�v

v �Lg _�k�1
v ��wðy�ytÞ

r0
Þ

vck�1
0 0 0

0 0 �Bvu0ð1� AÞeð�Bck�1vÞ 0 0
0 0 Z X 0

2
66666664

3
77777775

(33)

And the Jacobian of the measurement matrix mk=
€yk
_�k

� �
is

Hk ¼
� 2Fak�1

vmwck�1
0 2Fak�1

mwc2k�1

	 

y
:
k�1
v �� 0 � 2

mwck�1

	 

y
:
k�1
v ��

0 1� 2sLg
2Fak�1

vIwck�1
� Fak�1

ck�1
W 0 W

2
4

3
5 (34)
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where:

X ¼ kA
2

3

a2bc

lk�1
ck�1

� �3
2p

N 1þ kA 2
3
pa2bc
Nlk�1

ck�1

	 
2
� �

0
BB@

1
CCA

2

þ 2N

p
arctan kS

2

3

pa2bc
Nlk�1

ck�1

� �

� 4kSa2bcck�1

3lk�1 1þ kS 2
3
pa2bc
Nlk�1

ck�1

	 
2
� �

Z ¼ 4a2bc

3
kA

ð1� kA 2
3
pa2bc
Nlk�1

ck�1

	 
2

1þ kA 2
3
pa2bc
Nlk�1

ck�1

	 
2
� �2

8>>><
>>>:

9>>>=
>>>;

þ kS

1þ kS 2
3
pa2bc
Nlk�1

ck�1

	 
2

2
6664

3
7775

W ¼ sLg

Iwck�1

r0ɷR � r0ɷL

v
� 2

Lg
_�k�1

v
� 2

�w y�ytð Þ
r0

� �

The performance of EKF not only depends on Jacobian matrices but also the selection of Kalman gain
and noise covariance contribute significantly. Kalman gain is calculated by using Eq. (19) and noise
covariance Qk and Rk are presented in the next section.

4 Simulation Results

A simulation model of the proposed estimation technique shown in Fig. 6 is developed in Simulink [24].
The geometric and mechanical parameters of the wheelset given in Tab. 2 are used in the simulation. The
vehicle with an initial linear velocity of 5 m/sec is operated in traction and braking modes and input of
random track irregularities of ±8 mm magnitude in lateral direction shown in Fig. 7 is applied to the
model for exciting lateral dynamics.

Figure 7: Track irregularities in the lateral direction
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The measurement noise covariance matrix Rk is calculated by using data-sheets for typical accelerometer
and gyro-sensor, while the process noise matrix Qk is fined tuned during the simulation to obtain accurate
estimation results.

Rk ¼ ½1� 10�71 1� 10�13� (35)

Qk ¼ ½5� 10�14 1� 10�14 1� 10�14 1� 10�14 1� 10�14� (36)

Simulations are carried out in traction and braking modes of vehicle in five different conditions i.e., (i)
Dry condition, (ii) Wet condition, (iii) Greasy condition, (iv) Extremely slippery condition, and (v) Transition
from dry condition to extremely slippery condition.

4.1 Dry Condition

The simulation in dry track conditions is carried out for 50 seconds in both accelerating and decelerating
modes of a vehicle to calculate adhesion coefficient, slip ratio, and yaw rate.

In traction mode of a vehicle for 25 seconds of simulation time, tractive torque is applied to increase the
linear velocity up to 30 m/sec (108 km/h), and then in braking mode of vehicle tractive torque applied in the
reverse direction to reduce the velocity up to initial velocity i.e., 5 m/sec (18 km/h). In only 25 seconds, linear
velocity increased from 18 km/h up to 108 km/h and in 25 seconds linear velocity decreased from 108 km/h
back to the initial velocity. Both wheelset and estimator remain stable during the whole simulation time.

Applied torque and varying linear velocity are shown in Fig. 8. Adhesion coefficient, slip ratio, and yaw
rate on the dry condition are shown in Fig. 9. In Fig. 9 adhesion coefficient, slip ratio, and yaw rate are
perfectly estimated by EKF based estimator, however, fluctuations are developed due to change in applied
torque and random track irregularities in the lateral direction. Fluctuations are also developed in linear
velocity due to track irregularities but having very small magnitude, hence not visible in the graph of Fig. 8.

Figure 8: Applied torque (top) and varying forward velocity (bottom) in dry condition of wheel-rail
interface
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4.2 Wet Condition

The simulation in wet track conditions is carried out for 50 seconds in both traction and braking modes
of the vehicle to calculate the adhesion coefficient, slip ratio, and yaw rate.

In traction mode of the vehicle for 25 seconds of simulation time, tractive torque is applied to
increase the linear velocity up to 90 km/h, and then in braking mode of vehicle tractive torque applied in
the reverse direction to reduce the velocity up to the initial velocity i.e., 18 km/h. Applied torque and
varying forward velocity are shown in Fig. 10. Adhesion coefficient, slip ratio, and yaw rate on the wet
condition are shown in Fig. 11.

Figure 9: Adhesion coefficient (top), slip ratio (middle), and yaw rate (bottom) for the dry condition of the
wheel-rail interface

Figure 10: Applied torque (top) and varying forward velocity (bottom) in wet condition of wheel-rail
interface
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4.3 Greasy Condition

The simulation in greasy track condition is carried out for 50 seconds in both traction and braking modes
of the vehicle to calculate adhesion coefficient, slip ratio, and yaw rate.

In the traction mode of the vehicle for 25 seconds of simulation time, tractive torque is applied to
increase the linear velocity up to 63 km/h and then in the braking mode of the vehicle tractive torque is
applied in the reverse direction to reduce the velocity up to initial velocity. Fig. 12 shows the applied
torque and varying forward velocity. Adhesion coefficient, slip ratio, and yaw rate on the wet condition
are shown in Fig. 13.

Figure 11: Adhesion coefficient (top), slip ratio (middle), and yaw rate (bottom) for the wet condition of the
wheel-rail interface

Figure 12: Applied torque (top) and varying forward velocity (bottom) in greasy condition of wheel-rail
interface
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4.4 Extremely Slippery Condition

The simulation in extremely slippery track conditions is carried out for 50 seconds in both traction and
braking modes of the vehicle to calculate adhesion coefficient, slip ratio, and yaw rate.

In the traction mode of the vehicle for 25 seconds of simulation time, tractive torque is applied to
increase the linear velocity up to about 40 km/h, and then in braking mode of the vehicle tractive torque
is applied in the reverse direction to reduce the velocity back up to 18 km/h. Applied torque and varying
forward velocity are shown in Fig. 14. Adhesion coefficient, slip ratio, and yaw rate on wet conditions
are shown in Fig. 15.

Figure 13: Adhesion coefficient (top), slip ratio (middle), and yaw rate (bottom) for the greasy condition of
the wheel-rail interface

Figure 14: Applied torque (top) and varying forward velocity (bottom) in extremely slippery condition of
wheel-rail interface
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4.5 Adhesion Condition is Switched from Dry to Slippery During Simulation

In this sub-section, the wheel-rail interface condition is changed during simulation from normal to
extremely slippery adhesion condition in 25 seconds of simulation time and reversely adhesion condition
changed from extremely slippery to dry track condition in the remaining time of the simulation. In the
traction mode of the vehicle for 25 seconds of simulation time, tractive torque is applied to increase the
linear velocity maximally 63 km/h, and then in the braking mode of the vehicle tractive torque is applied
in the reverse direction to reduce the velocity up to initial velocity.

Further applied torque and varying linear velocity are shown in Fig. 16. Adhesion coefficient, slip ratio,
and yaw rate on all conditions are illustrated in Fig. 17. In Fig. 17, the results are not linear or inconstant
because of the transition of track conditions, varying linear velocity, and track disturbances in the lateral
direction. Despite that, the EKF based estimator follows perfectly the results of the nonlinear wheelset.

Figure 15: Adhesion coefficient (top), slip ratio (middle), and yaw rate (bottom) for the extremely slippery
condition of the wheel-rail interface

Figure 16: Applied torque (top) and varying vehicle linear velocity (bottom) in all track conditions of the
wheel-rail interface
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4.6 Result Discussion

As shown in Figs. 9–17 that the EKF is a valid estimation technique to estimate wheelset dynamics in
both traction and braking modes. To statistically evaluate the obtained results with the proposed EKF
algorithm, the absolute accuracy index (Aa) given in Eq. (37) is used [15]. The absolute accuracy index is
mainly useful for measuring the disagreement of the estimation with the real signal.

Aa ¼ rms Signalest � Signalrealð Þ (37)

The absolute accuracy indices for the estimation for all adhesion conditions are shown in Tab. 4.

It can be seen that the values of absolute accuracy indices confirm the effectiveness of the estimator. To
test the performance of the proposed estimation setup, some related and recent works are chosen as the
comparison techniques with equivalent system and setup. The work reported in Refs. [10,11] is only
performed in normal operation mode of a railway vehicle, while the proposed technique is equally
suitable in both traction and braking modes of vehicle. The work reported earlier in Refs. [10,15] shows
one or two adhesion conditions but the proposed work is verified with all four adhesion conditions (dry,

Figure 17: Adhesion coefficient (top), slip ratio (middle), and yaw rate (bottom) for all track conditions of
the wheel-rail interface

Table 4: Absolute accuracy indices

Track condition Adhesion coefficient Slip ratio Yaw rate

MV AAI MV AAI MV rad/sec AAI rad/sec

Dry 0.42 0.00102 0.011 0.000006 0.083 0.00004

Wet 0.27 0.00006 0.032 0.000002 0.013 0.00001

Greasy 0.177 0.00003 0.033 0.000002 0.0071 0.00001

Extremely Slippery 0.088 0.000008 0.042 0.000001 0.0032 0.000009

Transition 0.42 0.00098 0.185 0.000006 0.035 0.00004

MV: Maximum Value; AAI: Absolute Accuracy Index.
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wet, greasy, and extremely slippery). Along with the adhesion coefficient in the proposed scheme slip ratio
and yaw rate are estimated successfully, while in most of earlier work only adhesion coefficient is estimated.

The proposed EKF-based estimator shows outperformance in wheelset dynamics for dry, wet, greasy,
and extremely slippery track conditions in both traction and braking modes of railway vehicles.
Therefore, the proposed model can very well suit for condition monitoring of rolling stock.

5 Conclusion and Future Work

The performance of railway operation mainly is affected by wheel-rail contact forces but it is not
possible to measure these contact forces and interrelated dynamics directly, therefore it is necessary to
estimate these wheelset dynamics through state of art technique. In this research paper, a railway wheelset
model and a novel observer-based estimator are developed in Simulink/MATLAB to calculate and
estimate nonlinear wheelset dynamics. The estimator based on the extended Kalman filter is used to
estimate adhesion coefficient, slip ratio, and yaw rate effectively in dry, wet, greasy and extremely
slippery track conditions. The functioning of the EKF algorithm is assessed by using absolute accuracy
indices and compared with other relevant and recent research work. The estimator not only verified
excellent performance in the normal operation of a railway vehicle on a normal track but equally depicted
robustness in traction and braking modes of the vehicle in wet, oily, and extremely slippery track
conditions. The validity of the estimator is also checked in the transition of adhesion conditions from dry
to extremely slippery and vice-versa during the simulation. In the future, this approach will be
implemented on Field Programmable Gate Arrays (FPGA) platform for real-time condition monitoring of
wheelset dynamics to avoid the accidents and derailment of railway vehicle.
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