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Abstract: Due to the lack of security consideration in the original design of indus-
trial communication protocols, industrial fuzzing test which can successfully
exploit various potential security vulnerabilities has become one new research
hotspot. However, one critical issue is how to improve its testing efficiency. From
this point of view, this paper proposes a novel fuzzing test case optimization
approach based on improved genetic algorithm for industrial communication pro-
tocols. Moreover, a new individual selection strategy is designed as the selection
operator in this genetic algorithm, which can be actively engaged in the fuzzing
test case optimization process. In this individual selection strategy, the selection
operation based on high and low fitness populations is introduced to enhance
the individual selection diversity, which can increase the average fitness value
of individuals and further improve the efficiency of test cases. In practice, we con-
struct industrial communication data which conforms to Siemens S7 communica-
tion protocol to evaluate the proposed approach, and the experimental results
show that, the individual fitness value of output population in the improved genet-
ic algorithm is obviously higher than the one in traditional genetic algorithm
under the same iteration, and this approach can enhance the efficiency and accu-
racy of test cases in Siemens S7 fuzzing vulnerability exploiting.

Keywords: Industrial fuzzing test; improved genetic algorithm; test case
optimization; vulnerability

1 Introduction

With the gradual integration of OT (Operation Technology) and ICT (Information Communication
Technologies) [1], today’s industrial control systems are rapidly changing from the self-closed
information island to the wide-open interconnection architecture, and this situation can greatly increase
the risk of industrial cyber attacks [2]. As a result, various information security incidents have occurred in
recent years, and industrial cyber security has gradually become the focus of attention all over the world
[3–6]. As one significant component in industrial control systems, industrial communication protocols can
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be regarded as one critical communication medium which can realize the function of remote control and
automation [7]. However, the basic design and implementation of different industrial communication
protocols may not only have certain flaws, but also miss enough security considerations. In other words,
the vulnerabilities of industrial communication protocols have become one of the most attractive targets
for organized cyber attacks [4,8,9]. In order to successfully exploit various potential security
vulnerabilities in industrial communication protocols, both industry and academia have started to carry
out some related researches on industrial security testing technologies [10–13].

Different from traditional IT communication protocols, industrial communication protocols have their
specific characteristics [14,15]. Moreover, these specific characteristics not only reflect in the unique
design of protocol specifications, but also are embedded in different protocol developments and
implementations provided by various industrial device manufacturers. As a result, all of these may
present a challenge for the vulnerability exploiting of industrial communication protocols [16]. Although
many researchers have proposed some security scanning technologies for known vulnerabilities of
industrial control devices [17], the prerequisite for their successful execution needs to rely on the
comprehensiveness of disclosed vulnerability information, which has great restraints on their application.
As one frequently-used black-box testing technology in traditional IT systems, fuzzing test which is also
considered as a robustness testing approach can realize the automatic vulnerability mining by using
injection flaws [12,18–20]. Furthermore, this technology can not only remark the existing known flaws
with little or no trouble, but also have the potential to exploit some zero-day flaws. Due to the advantages
of simple execution and high automation, fuzzing test may be further developed into practical
applications in the vulnerability exploiting of industrial communication protocols [21–23]. More
specifically, by dynamically injecting the distorted data into one target object, this technology can detect
some possible attack entrances without considering the implementation details and complexity of target
object. Additionally, it can be smoothly integrated with random testing, fault injection and grammar
deviation, and focus on the deep data mining to explore the security defects of target object. In general,
the test case generation, which can generate all kinds of distorted data to construct test cases, is a critical
step in the whole fuzzing test framework [12,24]. However, for complex industrial control
communication protocols, it may produce too many redundant test cases under the exhaustive or blind
construction, and cause the unsatisfied execution efficiency of fuzzing test.

Aiming at optimizing the way to generate multiple and serviceable distorted data, this paper proposes a
novel fuzzing test case optimization approach based on improved genetic algorithm for industrial
communication protocols. Moreover, this approach designs a new individual selection strategy for the
traditional genetic algorithm to carry out the selection operation. In this individual selection strategy, the
selection operation based on high and low fitness populations is introduced to enhance the individual
selection diversity, which can increase the average fitness value of individuals and further improve the
efficiency of test cases. Additionally, by using the initial data which conforms to Siemens
S7 communication protocol, this approach can generate more effective test cases through the
corresponding mutation strategy. The experimental results and compared analysis show that, the
individual fitness value of output population in the improved genetic algorithm is obviously higher than
the one in traditional genetic algorithm under the same iteration, and this approach can enhance the
efficiency and accuracy of test cases in Siemens S7 fuzzing vulnerability exploiting.

The main contributions of this paper are summed up as follows: firstly, we analyze the basic fuzzing test
framework for industrial communication protocols, and state the need and purpose of test case optimization;
Secondly, we propose a novel genetic algorithm to effectively optimize fuzzing test cases, and cover the
detailed descriptions on the design and assumption of this algorithm; thirdly, based on Siemens
S7 communication protocol, we not only give a compared evaluation on the optimization performance of
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this approach, but also discuss different influences of critical parameters to further meet different industrial
communication protocols and optimization requirements.

2 Basic Fuzzing Test Framework for Industrial Communication Protocols

In various industrial control activities, industrial communication protocols can be regarded as one
important medium to realize real-time control and remote management between different industrial
control devices, but they still retain some substantial security flaws. Differently, fuzzing test has an
amazing ability to discover these flaws for industrial communication protocols, which can make the target
object crash by constructing all kinds of irregular protocol data. To be precise, fuzzing test has become
one of the most practical vulnerability exploiting approaches for industrial communication protocols in
the field of industrial cyber security.

As shown in Fig. 1, the basic fuzzing test steps for industrial communication protocols are summarized
as follows:

(1) Select one industrial communication protocol as the test target.

(2) Build the appropriate communication environment according to the requirements of selected
protocol.

(3) Understand the data format and protocol specification of the selected industrial communication
protocol, and parse the initial communication data.

(4) Based on the model-based or mutation-based generation approach, generate and optimize the
practicable fuzzing test cases.

(5) Send the optimized test cases to the targeted object according to the transmission specification and
working mode of the selected industrial communication protocol.

(6) Monitor the feedback results which can reflect the running status of target object. If no anomaly is
found, a new test case will be sent; otherwise, the test case and the corresponding feedback results will be
further analyzed to identify the potential vulnerabilities.

(7) Analyze the main cause according to the abnormal results, and record the potential vulnerabilities.

In the fuzzing test framework, the test case generation is one critical step which can determine the quality
of vulnerability exploiting, because one fine test case generation approach can explore more security defects
when the number of test cases is limited. In the process of test case generation, a large number of unexpected
semi-structured industrial communication data are generated according to the specified data format and
protocol specification. In general, the fuzzing case generation approaches can be divided into two
categories: the model-based generation approach [25] and the mutation-based generation approach [26].
Furthermore, the model-based generation approach can build one rule model which conforms to the
selected industrial communication protocol to generate original test cases. However, this test case
generation approach requires a deep understanding of the selected industrial communication protocol.
Differently, the mutation-based generation approach can construct new test cases by inserting diversified
distortion bytes into normal data, which is generally realized by the mutation algorithm. However, this
test case generation approach also has some shortcomings: the test efficiency of test cases generated by
the mutation algorithm is relatively low, and the fuzzing test has to end up with unexpected results.
Additionally, it seems difficult to guarantee the test coverage. In order to exploit more vulnerabilities as
effectively as possible, a necessary and feasible way is to optimize the generated test cases by using some
AI (Artificial Intelligence) algorithms.
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3 Fuzzing Test Case Optimization Approach Based on Improved Genetic Algorithm

Due to its fine global search capability, genetic algorithm can be used to implement the data optimization
in the test case generation process [27–29]. Although the test efficiency can be improved to some extent by
the data optimization of traditional genetic algorithm, the optimization performance is still less than ideal. In
order to further raise the test efficiency, it is necessary to strengthen the optimization performance by
improving the traditional genetic algorithm, and the ultimate goal is to exploit more vulnerabilities
without changing the number of teat cases.

Distorted data assumption: since the protocol data essentially consist of a series of data fields which are
arranged in a certain order. As a result, the protocol data can be expressed as a one-dimensional vector
case ¼ ½c1c2c3 � � � cr�, here cr is the corresponding field value in the protocol data. Furthermore, we
suppose that the distorted data can be used to exploit certain vulnerability, and conform to the following
principle: we can select m (m � r) fixed fields in the protocol data, and define the corresponding data
range in each field. When m field values in one test case fall into the selected range, the protocol data in
this test case can be considered as the distorted data.

Fig. 2 shows the main execution process of improved selection genetic algorithm (IS-GA), and the
detailed steps are sketched as follows:

Step 1: get 2n original packets of one industrial communication protocol as the initial population;

Step 2: according to the fitness function, calculate each fitness value of 2n individuals in the initial
population. The basic calculation process is described below:

1) The objective function of similarity Fi
sim: calculate each intermediate value of data range for all

selected m fields respectively, and obtain the central use case cu, which can be used to calculate Fi
sim of
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Figure 1: Basic fuzzing test framework for industrial communication protocols
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individual i. More specifically, the similarity Si between individual i and the central use case cu can be further
obtained by using Euclidean distance:

Fi
sim ¼ 1� Si

Si ¼
Pm
k¼1

ððcikÞ2 � ðccuk Þ2Þ
� �1=2

8<
: (1)

Here, cik represents the k-th field value of individual i, and c
cu
k represents the k-th field value of the central

use case cu.

2) The objective function of coverage Fi
cov: comparem field values of individual i with the data ranges of

m fields in the distorted data respectively, and calculate the corresponding coverage value. Actually, the
larger the number of fields whose values belong to the data ranges is, the bigger the coverage value is. In
other words, the more likely it is that one vulnerability can be successfully exploited. The objective
function of coverage Fi

cov can be obtained by:

Fi
cov ¼ f inum=m (2)

Here, f inum represents the number of fields whose values in individual i are within the corresponding data
range in the distorted data.

3) The fitness function Fi
fit: when evaluating the individual fitness value, we first analyze whether this

individual can successfully exploit some vulnerability, and the basic judgement criterion can be briefly
summed up as follows: we compare all m field values of individual i with the data ranges of m fields in
the distorted data respectively, and if all field values of individual i remain within the corresponding data
range in the distorted data, this individual can be considered to identify one potential vulnerability. So,
the fitness value of individual i can be set to 1; otherwise, it is considered that this individual cannot
identify any vulnerability. The fitness function Fi

fit can be obtained by:
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Fi
fit ¼ aFi

sim þ bFi
cov (3)

Here, we define a and b as the weight coefficients, and aþ b ¼ 1 (a 2 ½0; 1�, b 2 ½0; 1�).
Step 3: according to the fitness value of each individual, rearrange 2n test cases from largest to smallest.

After that, the first n individuals are assigned to the high-fitness population, and the remaining n individuals
are naturally divided into the low-fitness population. In the first generation, because there is no individual in
the output population, all 2n individuals in the high-fitness and low-fitness populations are automatically
copied into the output population. Differently, from the second generation, the fitness values of all
individuals in the high-fitness and low-fitness populations are compared with the ones in the output
population, and the first 2n individuals are copied into the output population, while the individuals in the
high-fitness and low-fitness populations remain unchanged.

Step 4: judge whether the iteration process of genetic algorithm is completed: if the stop condition is
satisfied, the algorithm is stopped; otherwise, go to Step 5

The stop condition is defined as follows:

Tcur > Itermax (4)

Here, Tcur is the current iteration time, and Itermax is the largest number of iterations which is a pre-
determined constant before the algorithm runs.

Step 5: perform the selection operation, the crossover operation and the mutation operation on all
individuals in the high-fitness and low-fitness populations in order, and then obtain one new initial
population. Then go to Step 2.

1) Selection operation:

A. Selection operation on the high-fitness population:

The individual selection process on the high-fitness population is described as follows: in the first
generation, the individual selection criteria Selhð1Þ is set to 0, that is, all individuals of the high-fitness
population in the first generation can meet the selection requirements. From the second generation, the
individual selection criteria SelhðTcurÞ can be calculated by Eq. (5), and the individuals who achieve this
criteria can be selected. After that, the high-fitness population can be supplemented by the individuals in
the output population according to the fitness value of each individual, so that the number of individuals
in the high-fitness population remains the same number n.

SelhðTcurÞ ¼ SelhðTcur � 1Þ þ l 1þ NumhðTcur � 1Þ � NPh

NPh

� �

NPh ¼ n=2

8<
: (5)

Here, l is a pre-determined constant which meets 0 � 2l � Itermax < 1. NumhðTcur � 1Þ is the number of
selected individuals in the high-fitness population when the current iteration time is Tcur � 1.

B. Selection operation on the low-fitness population:

The individual selection process on the low-fitness population is described as follows: in the first
generation, the individual selection criteria Sellð1Þ is set to 0, that is, all individuals of the low-fitness
population in the first generation can meet the selection requirements. From the second generation, the
individual selection criteria SellðTcurÞ can be calculated by Eq. (6), and if SellðTcurÞ > SelhðTcurÞ, then
SellðTcurÞ is reset to SelhðTcurÞ, because the individual selection criteria on the high-fitness population
must be larger than the one on the low-fitness population. After that, the individuals who achieve this
criteria can be selected, and the rest of individuals are discarded. Finally, apart from these individuals in
the output population who have supplemented the high-fitness population, the low-fitness population can
be supplemented by other individuals in the output population according to the fitness value of each
individual, so that the number of individuals in the low-fitness population remains the same number n.
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SellðTcurÞ ¼ SellðTcur � 1Þ þ m 1þ NumlðTcur � 1Þ � NPl

NPl

� �

NPl ¼ n=2

8<
: (6)

Here, m is a pre-determined constant which meets 0 � 2m � Itermax < 1. NumlðTcur � 1Þ is the number of
selected individuals in the low-fitness population when the current iteration time is Tcur � 1.

The average value SelðTcurÞ of individual selection criteria is calculated by

SelðTcurÞ ¼ ðSelhðTcurÞ þ SellðTcurÞÞ=2 (7)

2) Crossover operation:

If one individual cannot satisfy the average value SelðTcurÞ of individual selection criteria,
the corresponding crossover probability of this individual should be set to the constant x, otherwise
the crossover probability Pci can be calculated by Eq. (8). After that, the crossover operation can be
further performed.

Pci ¼ n � Fmax
fit � Fi

fit

Fmax
fit � SelðTcurÞ

(8)

Here, n is a pre-determined parameter, which can adjust the crossover probability Pci and avoid the
occurrence of premature convergence. Fmax

fit is the maximum fitness value in the population before the
crossover operation, and Fi

fit is the fitness value of individual i.

3) Mutation operation:

Similarly, if one individual cannot satisfy the average value SelðTcurÞ of individual selection criteria, the
corresponding mutation probability of this individual should be set to the constant r, otherwise the mutation
probability Pmi can be calculated by Eq. (9). After that, the mutation operation can be further performed.

Pmi ¼ w � Fmax
fit � Fi

fit

Fmax
fit � SelðTcurÞ

(9)

Here, w is a pre-determined parameter, which can adjust the mutation probability Pmi and improve the
algorithm stability by avoiding the inappropriate random searching. Fmax

fit is the maximum fitness value in the
population before the mutation operation, and Fi

fit is the fitness value of individual i.

4 Experimental Results and Compared Analysis

In order to verify the superiority of the proposed approach which can further improve the efficiency of
fuzzing test, we select Siemens S7 communication protocol as a target object to perform some compared
experiments and analysis. In practice, Siemens S7 communication protocol belongs to a kind of special-
purpose industrial control protocol, which is based on the typical TCP/IP protocol to perform the real-
time control operation and data acquisition between upper computers and Siemens PLCs (Programmable
Logic Controllers) [30]. Moreover, Siemens S7 communication protocol is a function/command-oriented
industrial Ethernet protocol, whose main communication way is to establish the request/reply connection.
That is, if one adversary sends one request packet which not only conforms to the basic protocol
specification but also is interspersed with some distorted data, the corresponding PLC may potentially
result in a crash because it cannot handle or ignore this exception. The basic message structure of
Siemens S7 communication protocol includes the following parts: Header is the S7 application protocol
header, which can identify the Siemens S7 application data unit, mainly including the Protocol ID, PDU
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Type, Reserved, PUD Reference, Parameter Length, Data Length, Error Class and Error Code; Parameter
achieves the setting of read/write function; Data is the specific data during the execution of read/write
function. In particular, we select 6 different fields in the basic S7 message structure as the actual testing
vectors in the distorted data assumption, and these 6 fields include Reserved, PUD Reference, Parameter
Length, Item Count, Variable Specification and Length (the last three fields come from Field Parameter).

In these experiments, we build an industrial communication environment which uses Siemens
S7 communication protocol as the basic transmission medium of control operation and data acquisition.
Furthermore, we capture lots of S7 communication packets, which are used as the initial data for the test
case generation in fuzzing test. Additionally, the initial data are optimized by the proposed approach and
traditional genetic algorithm respectively, and our ultimate purpose is to discuss the proposed approach
has a better optimization effect for industrial communication data. In other words, when we perform the
fuzzing test, the proposed approach can contribute to identifying more potential vulnerabilities under the
same number of test cases.

4.1 Optimization Performance Comparison

Firstly, we use a group of S7 communication packets to compare the average and best individual fitness
values in each generation between the proposed approach (IS-GA), single selection genetic algorithm (SS-
GA) and traditional genetic algorithm (GA). Different from IS-GA, SS-GA only uses the single selection
operation on the high-fitness population as the final selection operator to optimize test cases. Tab. 1 gives
the basic parameter setting in our experiments, and Fig. 4 depicts the average and best individual fitness
curves of three different algorithms.

As shown in Fig. 3, when the number of iterations is set to 100, the average values of GA, SS-GA and
IS-GA calculated by the average individual fitness curves are 0.5227, 0.6629 and 0.6781, respectively.
Similarly, the average values of GA, SS-GA and IS-GA calculated by the best individual fitness curves
are 0.6810, 0.7291 and 0.7647, respectively. From the compared results we can conclude that, the
average and maximum individual fitness values of IS-GA are generally larger than the ones of SS-GA
and GA. Moreover, these results indirectly indicate that the proposed approach not only has a preferable
effect on global optimization, but also enhances the search capability of each individual. As a result, the
probability of each test case to successfully identify one potential vulnerability is raised with the
enhancing of the optimization capability.

Additionally, in order to explain the universality and stability of optimization performance, we choose
10 groups of different S7 communication packets to perform the data optimization of test cases, and compare
the average fitness values of different test cases, including the test cases optimized by GA, the test cases
optimized by SS-GA and the test cases optimized by IS-GA. Tab. 2 shows the compared experimental
results, and we can see that either average fitness value of test cases optimized by SS-GA or IS-GA is
larger than the one of test cases optimized by GA under the same iteration number. That is, both SS-GA
and IS-GA have played a positive role in promoting the quality of test cases. Furthermore, compared with
the average fitness values of test cases optimized by GA and SS-GA, the one of test cases optimized by
IS-GA can be raised by 45.60% and 14.50%. In terms of average experimental results, the proposed
approach has a stable and excellent optimization performance, and can further optimize the initial data

Table 1: Experimental parameter setting

Parameter n m a b l m n w

Value 10 6 0.4 0.6 0.005 0.004 0.6 0.5
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under the same iteration number to generate more effective and practicable test cases, which can be used to
discover more flaws for industrial communication protocols.

4.2 Similarity Analysis

The similarity can reflect the deviation degree between each individual and the central use case, and the
corresponding similarity value can be calculated by Eq. (1) to evaluate the level of similarity. Actually,
the closer each individual is to the distorted data, the larger the similarity value seems. In other words, if
one individual which represents one test case has a larger similarity value, the possibility to successfully
identify one potential vulnerability will become higher. Fig. 4 compares different similarity values of GA,
SS-GA and IS-GA under 100 successive iterations. From this figure we can see that the average
similarity values of GA, SS-GA and IS-GA are 0.6285, 0.8778 and 0.9305 respectively, and the average
similarity value of IS-GA is superior to the ones of GA and SS-GA. Additionally, the maximum

Figure 3: Average and best individual fitness curves of three different algorithms under 100 iterations

Figure 4: Similarity curves of three different algorithms under 100 iterations

IASC, 2021, vol.28, no.3 865



similarity values of GA, SS-GA and IS-GA are 0.8583, 0.9481 and 0.9902 when the iteration number are 71,
100 and 22, respectively. According to the above compared results, it can be concluded that IS-GA can
present the fine characteristics of global searching and fast convergence, and the individuals in IS-GA are
closer to the distorted data. That is, the test cases optimized by IS-GA hold more sufficient ability in the
vulnerability exploiting for industrial communication protocols.

4.3 Coverage Analysis

The coverage can reflect the usability scale of all test cases in each iteration, and it indirectly indicates
that whether one individual can successfully cover the distorted data. As described in the execution process
of our approach, the coverage degree can be calculated by Eq. (2) to evaluate the extent of coverage.
Similarly, the greater all individuals cover the distorted data, the larger the coverage value seems. That is
to say, if one individual which represents one test case has a larger coverage value, the possibility to
successfully identify one potential vulnerability will become higher. Fig. 5 shows different coverage value
changes of GA, SS-GA and IS-GA under 100 successive iterations. More precisely, the average coverage
values of GA, SS-GA and IS-GA are 0.4522, 0.5196 and 0.6033, respectively. Additionally, the
maximum coverage values of GA, SS-GA and IS-GA are 0.5000, 0.6667 and 0.7583 when the iteration
number are 28, 53 and 88, respectively. From the compared results we can conclude that, the individuals
in IS-GA can achieve the higher coverage value, and IS-GA has a fine power to increase the coverage
value by enlarging the usability scale of test cases. In brief, IS-GA can indirectly improve the successful
chances to exploit one potential vulnerability due to its high coverage extent.

4.4 Influence of n and w

In effect, the crossover and mutation operations are two significant links in the design of genetic
algorithm, which may have a powerful influence on the algorithm performance. In the proposed
approach, we introduce two pre-determined parameters n and w to skillfully adjust the crossover
probability and the mutation probability respectively, and our ultimate goal is to effectively improve
the optimization performance. Furthermore, the parameter n can help to overcome the shortcoming
of premature convergence and stagnation, and the parameter w can reduce the possibility of inappropriate

Table 2: Average fitness value comparison of different test cases

Test cases optimized
by GA

Test cases optimized
by SS-GA

Test cases optimized
by IS-GA

1 0.5581 0.7000 0.8863

2 0.4534 0.6826 0.8256

3 0.5303 0.7000 0.8000

4 0.5621 0.6802 0.8000

5 0.5417 0.7000 0.8000

6 0.5726 0.7000 0.8150

7 0.5826 0.7343 0.8000

8 0.6031 0.7595 0.7813

9 0.5378 0.7213 0.7940

10 0.6214 0.7000 0.8000

average 0.5563 0.7078 0.8102
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random searching to enhance the stability. In order to explain the influence caused by the parameters n and w,
we compare the average and best individual fitness values of IS-GA under different parameters n and w. To
be specific, Fig. 6 depicts the average and best individual fitness curves when the parameter n changes, and
Fig. 7 depicts the average and best individual fitness curves when the parameter w changes. Additionally,
Tab. 3 shows all average values calculated by the average individual fitness curves under different n
when w is set to 0.5, and Tab. 4 shows all average values calculated by the best individual fitness curves
under different w when n is set to 0.6.

As shown in these figures and tables, with the augment of the parameters n and w, both of the average
values calculated by the average and best individual fitness curves increase first and then decrease. That is
to say, by selecting the appropriate parameters n and w, the fitness value can reach a peak, and IS-GA can
achieve the optimal optimization effect. Exactly, the main reasons for this trend can be summarized as
follows: on the one hand, when the parameters n and w gradually increase with certain realms, the
crossover and mutation probabilities get larger as well, and the optimization effect of IS-GA can be further
enhanced; on the other hand, when the parameters n and w exceed a certain value respectively, IS-GA can
be approximated as one inappropriate random algorithm due to the excessive crossover and mutation
probabilities, and the corresponding optimization effect starts to run out. Therefore, we select n ¼ 0:6 and
w ¼ 0:5 as the relatively desirable parameters in our experiments, which can improve the developmental
capability to optimize test cases. In practice, according to different industrial communication protocols and
optimization requirements, we can design the most suitable parameters n and w by performing lots of actual
experiments under comprehensive considerations of optimization performance.

To sum up, the main reasons for the superiority of the proposed approach can be analyzed as follows: the
proposed approach introduces a novel individual selection strategy, which implements the individual
selection process according to the customized individual selection criteria. In the early stage of iteration,
due to the large number of qualified individuals, the individual selection criteria grows rapidly, and this
growth can effectively accelerate the data optimization process. In the later stage of iteration, the number
of individuals who can achieve the selection criteria gradually decreases, and the individual selection
criteria grows slowly. Differently, through the supplement of individuals in the output population, the

Figure 5: Coverage curves of three different algorithms under 100 iterations
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individual diversity can be effectively enriched, and each individual fitness can continue to increase.
Therefore, the test cases optimized by the proposed approach can have a greater chance of identifying
more potential vulnerabilities in fuzzing test.

Figure 6: Average and best individual fitness curves under different n

Table 3: Average fitness values in average and best individual fitness curves under different n

Average valuein average
individual fitness curve

Average valuein best
individual fitness curve

n ¼ 0:2 0.6002 0.6487

n ¼ 0:3 0.6021 0.6521

n ¼ 0:4 0.6577 0.6933

n ¼ 0:5 0.7125 0.7560

n ¼ 0:6 0.7439 0.8062

n ¼ 0:7 0.7252 0.7688
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5 Conclusion

In order to improve the efficiency of fuzzing test for industrial communication protocols, this paper
focuses on the optimization problem of test cases, and proposes a novel fuzzing test case optimization
approach based on improved genetic algorithm. Furthermore, this approach designs a new individual
selection strategy for the traditional genetic algorithm to carry out the selection operation, and this
strategy can be successfully applied to generate multiple distorted data for different test cases.

Figure 7: Average and best individual fitness curves under different w

Table 4: Average fitness values in average and best individual fitness curves under different w

Average value in average
individual fitness curve

Average value in best
individual fitness curve

w ¼ 0:2 0.6451 0.7151

w ¼ 0:3 0.6603 0.7060

w ¼ 0:4 0.6931 0.7496

w ¼ 0:5 0.7439 0.8062

w ¼ 0:6 0.6967 0.7366

w ¼ 0:7 0.6565 0.6884
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In particular, the selection operation based on high and low fitness populations is introduced to enhance the
individual selection diversity, which can increase the average fitness value of individuals and further improve
the efficiency of test cases. Additionally, we only discuss the optimization effect by theoretic analysis and
experimental assumption, and all experimental results demonstrate that this approach can enhance the
efficiency and accuracy of test cases in Siemens S7 fuzzing vulnerability exploiting. In the future
research, we can further evaluate the proposed approach in real-world applications of fuzzing test.
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