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Abstract: This paper presents a co-operative, self-organisation method for Multi-
ple Autonomous Vehicles aiming to share surveillance responsibilities. Spatial
organization or formation configuration of multiple vehicles/agents’ systems is
crucial for a team of agents to achieve their mission objectives. In this paper
we present simple yet efficient thermodynamic inspired formation control frame-
work. The proposed method autonomously allocates region of surveillance to
each vehicle and also re-adjusts the area of their responsibilities during the mis-
sion. It provides framework for heterogeneous UAVs to scatter themselves opti-
mally in order to provide maximum coverage of a given area. The method is
inspired from a natural phenomenon of thermodynamics and presents a flexible
and efficient mechanism for co-operative team formation. The idea here is to
model the system as a collection of heat generating bodies and to maintain the con-
stant system temperature across the system by introducing appropriate separation
among vehicles. We also present the behavour of the algorithm with the communica-
tion constraint. The proposed method achieves special allocation objectives, even
with constraint communication. It is further shown that the method can easily be
adopted to arbitrary configurations according to mission requirements and team
configuration. This co-operative decision making of allocating mission responsibil-
ities by self-organising a team of vehicles adds to the overall autonomy of the
Multi-vehicular system.

Keywords: Autonomous vehicles; area coverage; nature-inspired algorithms;
cooperative agents; self-organization; formation control

1 Introduction

Cooperation among Autonomous vehicles is fundamental for Multiple Autonomous Vehicles (MAV)
mission. Cooperation often involves the definition of a specific formation, configuration or spatial
distribution of the agents. The co-operative decision making of allocating mission responsibilities by self-
organising a team of MAVs adds to the autonomy of the system. This study presents a novel system
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configuration for a team of co-operating agents to attain the maximum surveillance of a given region of
interest autonomously. The dynamic requirement of surveillance requires regular scanning of the area for
threats and other activity. It sometimes also involves perusal of threat without compromising the overall
surveillance quality of region. Vehicles need to work together, maintaining a team formation in optimum
manner to keep the area of interest under constant surveillance. In simple words, from any given initial
position and formation an agent must be able to negotiate the surveillance responsibilities of a certain
region of any given orientation with minimal human intervention. The co-operative method is presented
hers in order to achieve this objective. The proposed method is inspired from phenomenon of heat
transfer by moving heat sources. The idea here is to model the system as a collection of heat generating
bodies and to maintain the constant system temperature across the system by introducing appropriate
separation among them.

The paper is organised into three sections. The Section 1 is dedicated to the review of existing methods
and systems. The new self-allocation method along with its design details is presented in the Section 2.
Finally Section 3 provides an overview of simulated results and performance analysis of proposed method.

Existing solutions for automated organization follows two trends: 1. Distributed planning for resource
allocation; and 2. Linearized trajectories. Distributed task allocation is the most recurring theme for the
allocation of surveillance responsibilities to heterogeneous agents. One approach is to model the task
allocation as an objective function to be optimized under certain constraints using Linear Programming
(LP). Such objective function defines the mission goals to be met with an associated cost. Second
approach of using optimization techniques over cost functions of agents/ vehicles connected in form
Voronoi graphs [1–5]. As these approaches require optimization of complete system. In this propose
model the individual co-operative agents collaborate in simple yet efficient manner to achieve area coverage.

The design of the objective function also depends upon the degree of impact of one agent’s actions on
the decision of the others. Other factors influencing the task allocation e.g. communication, performance,
system dynamics, are modelled as constraint equations. Kraus, Rizk and Plotkin presented a detailed
theoretical framework for distributed task allocation for co-operative agents aiming to improve overall
performance with dynamic task arrival [6–8]. It was further investigated for more flexible environments,
in particular for consensus building among multiple vehicles systems by Cheng [9] and Liu [10].
Consensus building by observing mission states with poor communication is presented by Alotaibi [11].
More detailed and application orientated studies were performed in devising distributed task allocation to
the rendezvouses problem for agents in the model presented by McLain [12–13]. McLain’s model
generated the time critical trajectories for the team of agents enabling the entire team to arrive at a given
point simultaneously. Furthermore, the constraints of safe and secure path generation through hostile
region were also taken into account. Bellingham, Alighanbari, Kim and Gil’s [14–18] work emphasizes
the minimum completion time in a search and destroy mission with agent/weapon to target allocation as
the main objective. A more detailed model for similar Suppression of Enemy Air Defenses (SEAD)
mission scenario is presented by Darrah [19]. The model for aerial surveillance using fixed wing
miniature agents is developed by Beard [20]. Beard’s model optimises the co-ordination variable for
mission scenarios like co-operative timing, search, fire surveillance and threat surveillance. Due to the
inherent complexity of the distributed models and large state spaces LP is computationally expensive and
its convergence depends on how the problem is modelled in terms of objective and constraint equations.
Also factors like dual constraints and non-continuous variables make the models infeasible to solve.

Most of the work that addresses automated surveillance considers the region of allocation as a narrow
linear path. Girard [21] presents a hierarchical control architecture for the border patrol by a team of agents.
Here, the surveillance region is considered as a long thin border. The border is then split into sub-regions of
the same size and shape by ground control. El- maliach [22] presented a detailed analysis of the frequency
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with which the surveillance area is visited by the team of the agents and how this is affected by adopting
different strategies of overlapping and non-overlapping trajectories. The Elmaliach work on multi-robot
fence patrolling mapped an open ended polygonal work area. Here the allocation of region to patrol is
achieved by the spatio-temporal division of an open polygon into n subregions for n agents and assigning
arbitrary subsection to each agent. A comprehensive model for surveillance using a team of small agents
is presented by Kingston [23]. Because of small on-board processing power the surveillance region is
converted into connected linear path at the ground control. The agents are launched into trajectories with
significant time delay to maintain the trajectory separation. The agent with uniform velocity similar to the
rest of the team then co-operatively finds the equal allocation by meeting its neigh- bouring agents at the
end of its respective trajectory and sharing trajectory information. The application of the linearised based
allocation to a circular region is presented by Casbeer [24]. Casbeer’s work addresses the surveillance of
a polygonal region of forest fire. However the trajectories of the agents are still considered as linear.
Similarly Sousa [25] presented the circular surveillance by agents with flight dynamics in equally spaced
linear formation. In all the above mentioned methods the workspace is considered as a linear trajectory
and the agents then take the task of surveillance by simply dividing the length of the entire linear
workspace by the number of agents in the team.

Even though the optimization-based planning is a sophisticated and well established method for task
allocation, however in the case of multiple agents and distributed objective it is computationally
expensive. Even with linearized trajectories the additional requirement for converting the area of
surveillance as linearized connected trajectories makes such allocation in- flexible and less adaptive for
the challenges of real-time missions.

The main contribution of our proposed methods are :

1. Simple and reliable self-allocation behavior for area coverage model that can be adopted to any situation.

2. Theoretical background and proof of convergence of proposed system.

3. Simulation results along with sufficient low level constraints.

In the rest of the paper, section 2 presents the theoretical background and details of self allocation method.
Section 3 simulation results of three distinct formation are presented. We conclude this paper in section 4.

2 Self-Allocation Method

The presented solution suitable for the real-time environment, is based on the idea of the distribution of
vehicles (here termed as agents) at certain given length of separation between themselves. The agents
maintain equidistant separation by estimating the mean reference point and surveillance radius of
neighboring agent. The dynamic, flexible allocation can be achieved by modelling the system as a simple
thermodynamic system. Here agents are mapped as heat sources and the mission area as a heat sink, with
hotter boundaries and absolute zero at the global reference point. The formation of agents is maintained
by balancing the pull towards the global reference point and the repulsion from the heat generated by the
neighboring agents.

2.1 Virtual Thermodynamic Model

Consider a team of n agents where n ≥ 2 in certain region of interest for surveillance. The area dref for
surveillance spans 0 to Xmax in latitude and 0 to Ymax in longitude with ðXmax; YmaxÞ≥ðnþ 2Þ. The location of
an agent Ai in the region is denoted by (xi, yi), i = 1 . . . n and the selected reference point is denoted by Xref ,
Yref . Even though the above-mentioned idea seems straightforward, in the case of real-time distributed
decision making the establishment of correct allocation with respect to the rest of the agent is not trivial.
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There are a number of considerations and conditions that must be kept in mind for designing a co-operative
method that converges to an optimum formation of the agents from any initial take-off location.

2.1.1 Reference Field
First is the reference field, if the force of repulsion between the agents is weaker than that of the reference

field, this might cause the overlapping of the individual agents surveillance areas. Conversely, if the reference
field force is weaker, the agents will move away from one another due to stronger repulsive forces towards
the boundaries of the region. This might also cause the agents to constantly move in circular trajectories like
planetary motion and thus never settling for co-operative subregion allocation. The reference field can be
seen as a force of resistance that stops the agents from getting infinitely apart under the influence of inter-
agent’s repulsion. Referring back to basic Newtonian physics the resistive force is the force that an agent
has to overcome before it can perform any work, i.e. displacement. An ideal frictionless system, in
balance with the resistive forces is defined as :

Fresdres � Fede ¼ 0
Fres:dres ¼ Fede

(1)

where Fres is the resistive force, dres is the resistive distance, Fe is the effort force balancing the resistance,
applied over the distance de. For a system with n agents forcing their way out of the reference field the Eq. 1
becomes:

Fresdres ¼
Xn
i¼1

Fe ið Þde ið Þ (2)

Thus a fair design incentive for the reference force for a team of agents with individual force field feðiÞ
over dref

Fref ¼
Pn

i¼1 Fe ið Þde ið Þ
dref

(3)

However, each agent balances itself against the opposing flux of the rest of the team and the reference
field without considering its own flux, so a better choice for reference field is

Fref ¼
Xn�1

i¼1

Fe ið Þ (4)

2.1.2 Vehicle’s Field
In the proposed virtual setup the flux experienced by a vehicle from other vehicle can act in either

direction, i.e., push it towards or away from the reference point. Thus, from the vehicle point of view
there is no constant direction of net flux. At any instance the vehicle experiences thermal energy/force Ei

which is the sum of the attractive and repulsive forces from the thermal sinks with lower temperatures
Ei−att and thermal sources with higher temperature Ei−rep

Ei ¼
X

Ei � att �
X

Ei � rep (5)

Now, if agent follows the Fourier law of heat transfer and moves towards the negative gradient of the
temperature

_xi; _yið Þ ¼ �kDEi (6)
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xi t þ 1ð Þ; yi t þ 1ð Þð Þ ¼ xi tð Þ; yi tð Þð Þ þ _xi tð Þ; _yi tð Þð Þ (7)

where k is an appropriate constant depending upon the dynamics of agents. _xi tð Þ; _yi tð Þð Þ, _xi; _yið Þ are the
position and velocity vectors, and t is time. The change in position of the agent will result in a certain
decrease ΔEi in the force it is experiencing, depending upon the difference between attractive and
repulsive forces, thus

DEi ¼ a Ei att � Ei�rep

� �
(8)

where α > 0 is an appropriate positive tuning constant. Thus the new net energy can be expressed as

Êi ¼ ðEi � EiÞ (9)

The system will attain steady state when there is no change in energy in any agent, i.e., 4Ei ¼ 0 and
Êi ¼ Ei for all agents. The stability of a single agent is extended to the entire system, by making the
stable agent a stable source of flux for the rest of the system which in turn reduces the heat fluctuations
for receiving agents so and so forth.

2.1.3 Mapping Function
In the proposed model the forces are mapped as modified heat sources with the monotonically

decreasing function with respect to the distance,

Fi ¼ �i e
� xi�xjj jj jð Þ

ri

2pri
(10)

where �i is the magnitude, σi is the distribution for the energy source Fi at xi; jjxi � xjjj is the Euclidean
distance from the source xi to the location xj . This choice of Gaussian function guarantees the stability of
the system.

Proof: Consider the agents guidance function be Êi in Eq. 9. Let V= Êi
2.
2 be a Lyapunov function over

the bounded virtual field. It is evident that V (0) = 0 and is positive for the rest of the state space. Now by
chain the rule:

_V ¼ Êi Êi (11)

From Eqs. 8 and 9

_V ¼ Ei _Ei 1þ að Þ (12)

As α is positive the stability of the solution depends upon the choice of functions defining the energy
function. Now, in the proposed model the attractive and repulsive forces are mapped as Eq.10 with
distribution σi as radius of the individual agent Ai’s surveillance region. The surveillance region with the
minimum overlap is selected with respect to the location xj of the neighboring agents Aj

ri ¼ min xi � xj
�� ���� ��
2

; i 6¼ j (13)

This makes the norm of its derivative greater than the function itself jjFijj < _Fi

�� ���� ��. Also as the function
is monotonically decreasing its derivative is of opposite sign. The Ei is the sum of the n number of Fi
functions, its derivative is also the sum of their respective derivatives. Hence, if Ei is positive its
derivative is negative and visa verse. Thus, the application of above mentioned functions as an energy
map will make the system stable as _V , 0 Eq.12.0, s
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2.2 Algorithm

The self-allocation method is simple in design, however, to achieve maximum coverage, the algorithmic
details of the process influence the final configuration significantly. Broadly, the self-allocation method
estimates two fundamental measures:

Procedure 1: Radius Tuning

For all observable agents in range

1. Share/estimate the other agent’s mean position and the radius of surveillance
2. Compute the distance of separation among region of surveillance of current agent from the rest of

the agents in rangeend
3. If region of surveillance is overlapping with any other agent

� reduce the radius to just less than minimum radius of the agent in range.
end

4. If agents have considerable separation from the rest of team
� Adjust the radius to slightly larger than the maximum radius of the agent in range.

End

1. The mean position of the agent: The mean or the point of reference of the vehicle in the area of
interest with respect to the rest of the team; and

2. The radius of surveillance: The region for repeated trajectories for the constant update of ever-
changing environment.

The individual position of the agents is adjusted by moving in the appropriate direction under the
influence of the different forces, and the radius of surveillance is selected depending upon the individual
scanning strength and the distance between its neighboring agents. As mentioned in the section 3 the
choice of mapping functions and associated factors influences the distribution and configuration of the
agent’s surveillance area. The negative exponential function, Eq. 10, is selected as the navigational
function for the team organization. The sink function or the workspace map is different from the
individual force function with the following specifications:

� �i ¼ n� 1ð Þ Xmax þ Ymaxð Þ=2ð Þ Here the first term (n - 1) is in relevance to a team of n agents is
selected in accordance with the discussion in Section 1 as each agents balances the force of the
sink and the rest of the team excluding its own force field. The second term scales the exponential
function to the workspace size.

� jjxi � xjjjfrom Eq. 10, here it is selected as jjxref � xjjjthe distance from the selected reference point
depending upon the required arrangement.

ri ¼ f Xmax þ Ymax

� �
=2Þg= n� 1ð Þ is the approximate radius of mean area covered by the single agent

in final arrangement The procedure 2: self-allocation follows a simple sequential approach of first adjusting
the radius of surveillance and then positioning the agent in optimum location. The positioning is performed
considering the dynamics of the agent’s motion and constraints of bounded region. The radius of agent
depends upon the separation amongst the agents and the maximum radius of other observable co-
operating agents. This bounds the agent to search for equal allocation as mentioned in procedure 1:
radius-tuning. The positioning is performed by evaluating the influence of the rest of the team and the
reference field on agent and then moving it in the direction of maximum flux.
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Procedure 2: Self-Allocation

For each agent
Until the mean location of agent stabilises

1. Adjust the radius of agent using procedure 1: radius tuning.
2. Map flux of observable agent in the team

a. item Estimate the resultant flux by adding component of flux, Eq. (15)

i. Fxi =
Fxi
Fxij jj j, Fyi =

Fyi
Fyij jj j, {Fxi; Fyi 6¼ 0}

3. Calculate way-point by adding the flux of other agents and main reference field
i. Wxi = xi + Fxi
ii. Wyi = yi + Fyi

4. Generate the feasible path to the waypoint Wxi,Wyi
5. Update the current position of the agent Eq.14
End.

2.3 System Stability and Zeroth Law of Thermodynamics

A major factor for consideration in any co-operative control is the degree of awareness an agent
possesses regarding the rest of the system. In real-time mission environment sharing the complete
information with

each and every agent might not be possible. of location and the radius of other agents the heat map
cannot be produced. However, the proposed scheme works well even in case of incomplete information.
Another advantage of using the virtual thermodynamical system is the fact that even in case of local
information sharing the system still achieves the global stability by following the zeroth law of
thermodynamics this aids in achieving the equilibrium in the absence of global information sharing.

Definition: The zeroth law states that if two systems are in thermal equilibrium with a third system, they
are also in thermal equilibrium with each other.

By limiting the radius of each agent to just slightly larger than the observable team members, Procedure
1 step 3 maintains an even allocation of the surveillance area and observing one agent in the team helps in
estimating the radius of rest.

3 Simulations

The self-allocation method presented here addresses co-operative behavior for trajectory selection. The
inputs and outputs of applied method lack low level details such as actuator controls. The output of the self-
allocation method at each iteration is an immediate waypoint, pointing agent towards the appropriate
direction. These waypoints may not comply with the agents motion constraints. The waypoint following
is then achieved by generating feasible smooth trajectories. Trajectory smoother is employed here to
generate the feasible paths by considering the time and distance constraints, e.g., heading, steering,
translation velocities and acceleration constraints. The position of moving object at time t from location
xðt0Þ, yðt0Þ with linear ve- locities VxðtÞ, VyðtÞ and heading θ is computed by solving following integrals
using MacLaurin series:

x tð Þ ¼ x t0ð Þ þ
Z t

t0

Vx tð Þ cosu tð Þ
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y tð Þ ¼ y t0ð Þ þ
Z t

t0

Vy tð Þ sinu tð Þ (14)

In the current study, the trajectories generated in Eq.14 are continuous in terms of heading angle, angular
and linear velocity limits, the angular and linear acceleration are also continuous. The difference of location
on a trajectory and the discrete waypoint on the grid can be seen as the tracking error. Constraints resulting in
smaller error results in lesser time delay in reaching the waypoint and larger error takes longer. Since the
force maps depend upon the agent’s position, larger errors result in deflection from the desired behaviour
of self-allocation scheme and results in unstable system. Care has to be taken while generating the grid of
workspace such that constraints of team do not suffer from undesirable errors. For instance, a grid cell
map of 10 × 10 meters area is small for an agent with velocity ranging from 0 to 100 meter/sec.
Similarly, an angle steering constraint of �π=100rads to π=100rads is infeasible to map the movement of
at least ±π =4rads angle (i.e., one of neighbouring cells in the grid) in terms of time delay and tracking
error. In following the simulations the constraints are selected to generate tracking error within ±3 cells of
the grid along each dimension. Fig. 1 shows the trajectories to track diagonally placed waypoints by an
agent with starting heading of -π/4. In order for agents heading angle to align with the waypoints it has to
steer at an angle of ±π and linear velocity’s range are to be kept at 0–1.5 cells/time and maximum linear
acceleration is kept as 0:01cells=time2. The trajectories are generated for the angle steering range of ± π/
100rads to ±π rads. Also the angular velocity and acceleration constraint are kept below steering angle
constraint. It can be seen that not all trajectories are convergent to the path marked by the waypoint. Only
a small range of constraints lie within the admissible range for the constraints. This however is not a
shortcoming of the self-allocation scheme and with careful grid mapping of workspace by considering the
teams motion dynamics, all surveillance formations are achievable by the proposed method.

The following simulations present three different arrangements of team depending upon the reference
point on a two dimensional workspace. The system is initialized by each agent adjusting its current radius
of surveillance using algorithm radius-tuning. Then all forces are mapped by using Eq. 10. The direction
of motion along each axis is calculated by adding the components of the force from the rest of the team
and the reference point.

-3 -2 -1 0 1 2 3 4 5

x(t)

-3

-2

-1

0

1

2

3

4

5

y(
t)

non-admissible
 Constraints

way points

admissible
constraints

Figure 1: Range of admissible constraints for waypoint following
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Here θ is the angle between the current agent and respective source of heat, i.e., other agent’s location or
point of reference. The exponential mapping makes the magnitude of forces significantly smaller than one.
The net force is then amplified to unit magnitude which translates into generating next waypoint into one of
eight neighbouring cells in the grid. However, as mentioned above this waypoint may or may not be
achievable due to motion constraints. A feasible trajectory is then generated towards the waypoint
generated in previous step. Due to the motion constraints it may not be possible for the agent to move to
the waypoint in a unit time, thus the current location of the agent is selected as its real position. It may
seem that this may result in agent not following the direction of force. But the simulation results show
the delay in achieving the waypoint does not affect the system reaching a stable state.

The negative exponential mapping, Eq.10, of forces becomes considerably small but not always zero.
Amplification of the forces in procedure 2: Self-Allocation, step (d), may cause the stable mean position
of surveillance to switch back and forth between two consecutive locations. A simple estimate of
standard deviation on waypoint generated in recent iterations ensures the termination of the Self-
Allocation procedure. This is however not done in the following simulations to illustrate the behaviour of
the system even after the stable state is achieved. The following results show the flexibility of the
proposed scheme to achieve three different team formations: 1. radial; 2. linear; and 3. with different
constraint on maximum radii.

3.1 Formation A: Radial

The first simulation, Fig. 2a, shows 15 agents surrounding a reference point in the centre of workspace of
500 × 500 cells. The surveillance formation can be used to guard or siege a place of interest in all directions.
The gray gradient background shows the heat map of the reference field. Apart from the reference field and
mutual knowledge of the fellow agents location and radius of surveillance the agents are not provided with
any additional information. The constraints on motion dynamics for each agent are kept under the admissible
range, i.e., steering angle is kept within ±π/4rads, maximum radial velocity ±π/4rads=ðiterationÞ maximum
radial acceleration is ±π/4rad=ðiterationÞ2, maximum linear velocity is 1 cell/(iteration) and maximum
acceleration is 0:001cell=ðiterationÞ2. Fig. 2b shows the individual tracks of each agent taken to achieve
the formation in Fig. 2a. The agents set off from the same base location (45, 45) on the grid. It can be
seen that from the very beginning each agent takes the path that leads it to a certain location in final
stable formation. The self-allocation method is flexible in assigning agents to surveillance tasks as long as
the objective of maximum coverage is achieved. It is adaptable to conditions and constraints of the
mission environment. The bottleneck of any co-operative method is the lack of global information by an
individual agent. In case of complete awareness, each agent is aware of every other agent in the team. In
current setup full awareness means that all agents share their mean location and the radius of surveillance
with every other agent in the team regularly. However this might not be possible in a real time scenario,
where communication constraints make it difficult to share information. The information exchange can
take place with agents in the vicinity. Thus making each agent locally aware of its neighbouring agents.

The effect of local information sharing on self-allocation method are studied by simulating the
communication only among the agents whose radius of surveillance collides or overlaps. The agents will
exchange only their own information and do not share the details of the neighbouring agents which are
within the communication range of one but not the other agent. Fig. 2c shows the final formation of the
team with local awareness only. The overall final formation is same as with the full information sharing
case shown in Fig. 2a. However, the positions of the agents in the formation are different. This is because
the location in the final formation of individual agent is comparatively less relevant than the formation of
team and objective of maximum coverage. Fig. 3a, 3b show the distance covered by individual agents in
the case of global awareness and local awareness. The system is simulated for 1000 iteration in order to
test the stability of the final arrangement. In both scenarios once the team achieves the stable formation it
maintains that formation. Whilst, the lack of global information may cause a delay in stabilising the
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system the objective of maximum coverage is not compromised. The Fig. 3b shows similar behaviour to that
of Fig. 3a. After 200 in Fig. 3b iteration the system starts to divert from Fig. 3a. This divergence becomes
more prominent as the agents grow apart and the local information becomes limited to few neighbouring
team members. However, system achieves the stable state eventually even when in final state not a single
agent possesses the global information of state of the rest of team. Thus the system follows second law of
thermodynamics. Even from a comparatively erratic behaviour due to lack of global awareness the system
stabilises as each agent reaches to stable state in comparison to its neighbours and achieves global
stability by being in equilibrium with the neighbouring agents of the neighbouring agents. The radius of
area of surveillance is also affected by the communication constraints. In Fig. 2a agents the inner circle
agents 3,4,9 have lesser overlapsping boundaries as compared to agent 5,9,7 in Fig. 2c. The reason for
this slight difference is the condition of selecting the radius of surveillance with respect to the neighbours
in radius tuning algorithm. Therefore in case of complete awareness entire team have same radii, on the
other hand due to lack of communication between the agents agents 5,9,7 have slightly bigger radii.
Fig. 4a and 4b show the change in radii of team in full awareness in comparison to the local awareness
only. The inner agents 5,9,6 end with slightly bigger stable radii, which in turn results in better coverage
of the surveillance space. But it can be seen in the final formation in both cases that difference of radii
allocation does not effect the coverage of surveillance formation.
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Figure 2: Radial formation trajectory and final surveillance allocation. (a) Final formation with Global
awareness, (b) Final formation with Local awareness (c) Trajectories. The agents originating from a
common initial location scatter themselves evenly to provide the maximum coverage of the area
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3.2 Formation B: Linear

The simulation shows (Fig. 5a) six agents in linear formation in the workspace of 200 × 40 dimension.
Here the reference field originates from the centre, i.e., from (100,20). The dynamics of agents are kept the
same as in the previous example. In order to achieve the linear formation parallel to x-axis the agents only
need to tune their location along x-axis. As all agents have to align themselves in the same position along y-
axis, the inter agent location of the team along y axis is considered irrelevant. Here the force along y-axis is
mapped only using the force of reference field and force of rest of the agents are ignored.
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Figure 3: Formation A: Effect of communication on runtime and individual distance. (a) Global Awareness
(b) Local Awareness
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Figure 4: Formation A: Effect of communication on radii of surveillance. (a) Global Awareness (b) Local
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Fyi ¼ Fref sinθ (16)

Fig. 5b shows the individual tracks of the agent. In this case the agents do not start from the same
location but still similar final formation is achieved with full awareness of the system as well as with the
lack of global awareness. Fig. 6a, 6b show 1000 iterations the distance covered by each agent simulated
with both

full information sharing and with agent being aware of only at most two other agents. It can be seen that
in both cases the system stabilises fairly early and the effect of lack of global information is minimal.
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3.3 Formation C: Varying Radii

The proposed method can also be employed for team of agents with varying capabilities. Fig. 7 shows
the final formation of the three pairs of agents with constraints on maximum radius of 20, 30, 40 respectively.
Fig. 7 also shows the constant roaming of agents in repetitive surveillance trajectories once the agent
achieves a stable mean position. The waypoints of roaming trajectories are generated when the standard
deviation of mean position reduces to zero. The different radii do not affect the performance of the
proposed method and maximum surveillance of the given region is achieved without any additional changes.

4 Conclusion

The proposed system presents a new method of self-allocation, self-formation for a team of agents. The
proposed method is more autonomous than the linearised approach and more flexible than the task allocation
method. It does not rely on preprocessed trajectories and does not suffer from poten- tial conflicting
constraints. It requires lesser data to be exchanged in order to achieve its objectives and produces similar
results even when lacking the information. It not only optimally achieves the objectives of even
allocation but also performs well under communication constraints.
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