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Abstract: The rock-fall is a natural hazard that results in many economic damages
and human losses annually, and thus proactive policies to prevent rock-fall hazard
are needed. Such policies require predicting the rock-fall occurrence and deciding
to alert the road users at the appropriate time. Thus, this study develops a rock-fall
early warning system based on logistic regression model. In this system, the
logistic regression model is used to predict the rock-fall occurrence. The
decision-making algorithm is used to classify the hazard levels and delivers early
warning action. This study adopts two criteria to evaluate the system predictive
performance, including overall prediction accuracy measures based on a confu-
sion matrix and the area under a receiver operating characteristic curve (AUC).
The results show that the correct prediction accuracy was approximately
79.9%, and the area under the curve (AUC) was 0.85 during the model training.
During the validation process, the overall accuracy is 81.0%, and (AUC) is 0.90.
The result indicates that this system has high predictive power, strong robustness,
and stable performance. That confirms the usefulness of a logistic regression
model for predicting a rock-fall occurrence probability.
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1 Introduction

Rock-falls are among the most important natural hazards described as rocks detached from a steep slope
and fall because of many external stimuli triggers, such as intense rainfall and hydrological reasons [1]. This
phenomenon is a critical hazard in mountainous areas of the Kingdom of Saudi Arabia [2,3]. It occurs widely
in regions with steep terrain and threatens road safety by damage and disruption in transportation roads that
pass through such corridors. Several approaches have been made to reduce the rock-fall hazard through
detection or to monitor the rock-fall event. The seismic sensor was used to detect the rock-fall events by
monitoring the seismic signals caused by falling rocks [4,5]. However, these techniques unable to locate
the fall. Furthermore, (Terrestrial Laser Scanner) has been used to detect changes occurring on the surface
and detect individual rock events [6]. Besides [7], proposed a semiautomatic method, in which
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three-dimensional terrain was reconstructed to obtain the geometry of the unstable rocks and define the
location of rock-fall source areas. A few camera-based rock-fall monitoring techniques were found in the
literature. The camera has outperformed many technologies, even the (Terrestrial Laser Scanner),
regarding its ability to track multiple rocks in real-time. In Fantini et al. [8], an artificial Intelligence
Camera Prototype was used for monitoring and track the fallen rocks in real-time. Most of the above
methods cannot predict the rock-fall event before it occurred. Hence these methods respond after the
(rock-fall occurrence) caused harm on the roads. Additional factors increase the risk, such as the high
falling speed and slow response of the vehicle’s driver. The rock-falls may not be stopped or controlled;
however, its risk can be reduced by building a decision assistance system to predict possible rock-falls or
classifying rock-falls prone areas for planning and management. Therefore, the prediction of rock-fall is
required to put proactive policies to prevent or mitigate rock-fall. Recently, with the rapid development of
machine learning technology, the application of logistic regression in predicting the rock-fall hazard has
drawn much attention. Little studies were done on rock-fall susceptibility mapping based on logistic
regression technology [9,10]. Susceptibility maps are useful in assisting planners and engineers in
estimating and managing rock-falls later. The existing rock-fall susceptibility map methods are inefficient
in preventing or mitigating the rock-fall events in real-time because of the susceptibility map generated
from the historical data concerning a specific site. To our knowledge, no study has proposed an intelligent
safety system able to reduce the falling rock’s risk in real-time by informing road users.

Therefore, this study aims to develop an intelligent early warning system based logistic regression model
that guarantees to overcome the limitations of existing technologies and make the roads safer. The warning
system predicts rock-fall events and provides an early warning to prevent the rock-fall risk. This system
integrates prediction-model, sensors, and the decision-making algorithm. This study’s importance and
originality contribute to research on transportation safety by providing a scalable open system platform.

The paper’s remaining part is organized as follows: Section 2 presents the methodology strategy used to
develop and validate the (Intelligent Warning System). Section 3 illustrates the (logistic regression model)
development and validation. Section 4 discusses the results and concludes this paper.

2 Methodology and Materials

This section describes the methodology strategy used to develop and validate the (A Rock-fall Early
Warning System). In addition to the hardware and software used in system implementation.

2.1 The Methodology Strategy

This section describes the methodology strategy used to develop and validate the (Early Warning
System). The approach applied was completed in four steps Fig. 1. First, rock-fall incident data were
collected and prepared for the analysis and variables selection phase. Then, the (logistic regression
process) was used to model the impact of independent variables (rock-fall influencing factors) on the
dependent variable (occurrence of rock-fall). Next, the model validated by the receiver operating
characteristic ROC curve and its overall performance evaluated. The model was developed and evaluated
using SPSS V.22 software. After, the decision-making algorithm was developed. Finally, the intelligent
warning system platform was assembled.

2.2 Data Collection and Preparation

The rock-fall historical data are a crucial factor in predict future incidents. Two of the most sites affected
by rock-fall accidents were detected and accepted as a study area in this study. Two methods were used to
define the rock-fall locations, such as inventory reports and field surveys. The historical data of landslides
and its associated weather information databases were obtained from three sources: (Geological Hazards
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Research Center), (KSA Civil Defense) and (General Authority of Meteorology and Environmental
Protection). A total of 75 rock-fall accidents were reported from January 2015 to December 2018, and for
each rock-fall accident, stored the date of occurrence, location, and weather data. In order to insert a non-
rock-fall case in the data set, the time duration was divided into 192 equal samples period. Then, the
value one assigned to the samples period in which rocks occurred; otherwise, assigned zero.

For analysis purposes, the rock-fall inventory data randomly split into two separate subsets: A training
data set 65% (134 samples with 54 rock-falls), and a testing data set 35% (58 samples with 21 rock-falls). The
training data set was used for generating rock-fall models, and the testing data set was used for the model

Figure 1: Methodological flowchart used in this study
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validation. Four variables were extracted during analyzing the inventory data, one dependent variable (event
of rock-fall), and three independent variables (Rainfall-rate, temperature-variation, and slope-angle). Three
influencing factors were considered in analyzing rock-fall occurrence based on the available data and
literature review [11,12]. These factors include weather factors (Rainfall-rate, Temperature-variations),
and spatial factor (slope-angle). The Rainfall-rate is a significant triggering factor of rock-fall [13]. Due to
the geological formation of mountains in the study area, which consists of debris layers, boulders, and
small rocks, the intense rainfalls moving debris layers, and leading to rock displacement and falling. The
temperature variations have a direct effect on the stability of the rocks. The cyclical changes in
temperature cause expansion and contract in rock surfaces, which leads to deformation or cracks of the
rocks [14]. The slope angle has a direct effect on rock-fall susceptibility. The larger the slope angle, the
less stable the rocks [15].

2.3 Rock-fall Prediction Model Development

2.3.1 Logistic Regression Model
In developing the prediction model, logistic regression was used. The logistic regression is a statistical

analysis method useful for predicting the presence or absence of outcome based on predictor variables’
values. The advantage of logistic regression is that the variables can be continuous or discrete, or any
combination of both types, and the data does not demand a normal distribution [16]. In this study, a rock-
fall event was used as a dependent variable (binary) representing the event occurring or not occurring of
rock-fall by values of 0 and 1. The logistic regression technique yields coefficients for each independent
variable based on data derived from samples taken from the training dataset of 134 samples (65% of rock-
fall inventory). These coefficients serve as weights in a mathematical function, which can be used in the
decision-making algorithm to generate a probability of rock-fall occurrence and its risk level. The logistic
regression function that defines the probability of rock-fall occurrence expressed as follows in Eq. (1).

p xð Þ ¼ e b0 þ b1x1 þb2x2 þ ...þbnxnð Þ

1þ e b0 þ b1x1 þ b2x2 þ ...þ bnxnð Þ (1)

where p(x) is the probability of rock-fall occurrence, β0 is a constant representing the intercept of model, βi
(i = 1, 2,…., n) represents the coefficients of the model, and xi (i = 1, 2,…, n) are the independent variables.
The constant β0 and the coefficients βi computed using maximum likelihood estimation [17]. The
computation was performed based on the values of the independent variables and the condition of the
dependent variable.

2.3.2 Logistic Regression Model Validation Technique
The model efficiency upon predicting rock-fall events was verified using 35% of the rock-fall inventory

data. In this study, two validation methods were used, the area under a receiver operating characteristic
(ROC) curve (AUC), and overall prediction performance measures based on a confusion matrix. The area
under the ROC curve (AUC) was used to determine the models’ ability to correctly predict the rock-fall
occurrence. The resulting ROC analysis is a graphical curve represents the relationship between
sensitivity and specificity [18]. The area under the ROC curve (AUC) summarized the curve’s
information, it used to identify the model performance, and its value is between 0 and 1.0 [19].

2.4 Decision Make Algorithm

The decision-making algorithm was developed to compute the occurrence probability of rock-fall,
classifying the hazard level, and generating a warning action. The following steps show how the
presented algorithm determines a rock-fall hazard level and to takes the appropriate decision.
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2.5 Early Warning System Implementation

2.5.1 Hardware
Fig. 2 shows a block diagram of the proposed system. It describes the hardware elements relations and

their functionality. The center part of this graph shows a minicomputer (Raspberry Pi v3) used for performs

An algorithm to compute a rock-fall occurrence probability, classifying the hazard level, and generating
a warning action.

Step 1: Inputs:

Set (Slope angle for given site =(x1))

Set (Rainfall for a single tip =(0.1mm))

Read (the times of two subsequent tips pulse (t1,t2))

Read (Temperature (temp)) every 10 seconds

Step 2: Determine the lowest and highest temperature:

Update lowest temperature = (temp1)

Update highest temperature =(temp2)

Step 3: Compute:

The time between two subsequent tips pulse δ(t) = t1–t2
Temperature variation (x3) = temp1–temp2

Step 4: Compute: Rain-fall rate

Rainfall rate(x2) = Rainfall for a single tip/δ(t)

Step 5: Compute: p xð Þ according to Eq. (1)

Step 6 : Classifying the hazard level:

Classifying the hazard level in to three levels

if (p(x) >=0.75) then high level

if (0.35 < p(x) <0.75) then medium level

if (p(x) <=0.35) then low level

Step 7 : Generate a warning action

Generate light and sound alarms

in case of high level (Red light + sound)

in case of medium level (Yellow light)

in case of low level (Green light)

Save(x1, x2, x3, p(x)) every 30 minutes

Step 8: Return to step 1
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system computations. This single-board computer equipped with USB ports, digital ports, and analog ports
allows sensors and other devices to be connected.

This diagram’s left part shows a temperature sensor and rain gage. The temperature sensor is used to
collect the surrounding air temperature every two seconds (0.5 Hz sampling rate) and spits out a digital
signal. The rain gage is tipping-bucket rain gauges used to measure the instantaneous rainfall with a
resolution of 0.1 mm per tip, and one bucket tips generate one electronic signal (pulse).

Its right part consists of four devices: light alarm panel, relay module, electric horn, and WIFI module.
The (light alarm panel) is a 24 × 24 cm frame contains a high light intensity RGB LED matrix. This panel
displays the hazard light alarm in three different colors (green, yellow, and red) when each color depends on
the specific hazard level. The relay module consists of an on-board photoelectric coupler with photoelectric
isolating anti-interference ability. It assists the (Raspberry Pi) to drive the electric horn and optical panel
through general-purpose input/output (GPIO) pins.

The bottom part of this graph shows the power system used to ensure electrical power delivery
throughout the day; it consists of three parts, a photovoltaic panel, a battery pack, and an intelligent solar
charge controller. The photovoltaic panel converts photo power into electrical energy. The battery pack is
a back-up power supply for the system during hours of darkness. The intelligent solar charge controller
used to supply the system and recharge the battery.

2.5.2 Software
Raspbian Stretch (GNU/Linux 9.1) was used as the operating system. The main program consisted of

Python (version3.5) scripts it compiled on-board with dedicated compilers (Python Multiprocessing
Module) was used to improving system response and computation performance. This module utilizes the
four cores of the (ARM Processor) to work in parallel. The statistical analysis was performed using SPSS
software (version 22).

Figure 2: Proposed system block diagram
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2.6 Early Warning System Platform Installation

The warning system platform is (stand-alone solar-powered) installed in a vertical metal-stand with a
height of 240 cm carries the main system case, light alarm panel, photovoltaic panel, and rain gage (Fig. 3).

2.7 Overall System Performance Evaluation

In this study, the system capability in distinguishes between falling occurrence and nun occurrence was
evaluated by overall system performance (sensitivity, specificity, and accuracy). The confusion matrix was
used to calculate overall system performance [20]. The first measure is Sensitivity. It reflects the model’s
ability to predict the rock-fall event correctly, which calculated as:

Figure 3: Early warning system platform
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Sensitivity ¼ TP

TP þ FN
� 100% (2)

The second measure is Specificity, was used to calculate the system’s ability to confirm the absence of a
rock-fall event, which defined as

Specificity ¼ TN

TN þ FP
� 100% (3)

The third measure is accuracy, which reflects the accuracy of the system in detecting the rock-fall event,
and defined as:

Accuracy ¼ TPþ TNð Þ
TPþ FNþ TNþ FPð Þ � 100% (4)

Where true positive (TP) (means all events were truly detected), false negative (FN) ( means some events
were occur , but not detected), true negative (TN) ( means events were absent, and the system reports absent
event), and false positive (FP) (event absent, system reports as present).

3 Result and Validations

3.1 Logistic Regression Model Development

During the development of a logistic regression model, SPSS V.22 software was used to establish the
rock-fall occurrence to rock-fall influencing factors relationships. The result is the model parameters and
their significant probability (Tab. 1).

From the data in Tab. 1, it is apparent that the standard error (Std-Error) values were less than 0.5, which
were considered low, and therefore show how close the predictions are to the eventual outcomes. Another
parameter that appeared in Tab. 1 is the significance probability. This parameter confirms the independent
variables that have a significant influence on a rock-fall. If the significant probability is less than 0.05,
that means the independent variable is statistically significant in rock-fall [21]. Results indicated that
slope-angle, rainfall-rate, and temperature-variation with the significant probability values in a range of
(0.010 to 0.030), were statistically influence on rock-fall occurrence. Thus, the three independent
variables (slope-angle, rainfall-rate, and temperature-variation) were included in the model. The logistic
regression model was constructed based on the three useful independent variables and their parameters.
After adding variables to the model, the result is present as follows:

Table 1: Parameters of the logistic regression model

Independent Variable Logistic Regression
Coefficient (β)

Std. Error Wald Significant Probability

Slope-angle 0.306 0.132 5.419 0.020

Rainfall-rate 0.425 0.165 6.669 0.010

Temperature variation 0.915 0.421 4.712 0.030

Std. Error = Standard Error of the Coefficient, Wald = Wald Statistics.
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p xð Þ ¼ e0:306x1þ0:425x2þ0:915x3�37:859

1þ e0:306x1þ0:425x2þ0:915x3�37:859
(5)

where p(x) = probability of rock-fall occurrence

x1 = slope- angle (degree) (range 20–60)

x2 = rainfall rate (mmh-1) (range 0–46)

x3 = temperature-variation (°C) (range 0–21)

The probability of rock-fall occurrence was calculated using the above logistic regression coefficients,
its value ranges from (0.014) to (0.951).

3.2 Rock-fall Hazard Levels

The rock-fall hazard Levels were obtained by quantifying the (rock-fall occurrence probabilities) into
three individual hazard Levels. These Levels were derived based on probabilities of rock-fall occurrence
histogram (as shown in Fig. 4). The histogram’s left side, which is specified by the range from 0.0 to 0.4,
contains only 12.9% of rock-fall cases, is classified as (low hazard level). The histogram medium,
specified by the range from 0.4 to 0.7, contains 26% of rock-fall cases, classified as (medium hazard
level). The histogram’s right side, specified by the range from 0.7 to 1.0, contains 61% of rock-fall cases
and is classified as (high hazard level). The results were listed in Tab. 2.

Figure 4: Histogram of the rock-fall occurrence probability

Table 2: The three Hazard (level) of the rock-fall

Probability of rock-fall occurrence range Hazard (level) Rockfall cases %

0.0–0.4 Low level 12.9%

0.4–0.7 Medium level 26%

0.7–1.0 High level 61%

3.3 Logistic Regression Model Validation

Validation of the (logistic regression model) has considered the most crucial task in determining the
model efficiency upon predicting rock-fall events. There are many possibilities to validate this model. In

IASC, 2021, vol.28, no.3 851



this research, we used two validation methods, the area under a receiver operating characteristic (ROC) curve
(AUC) and overall prediction performance measures based on a confusion matrix.

3.3.1 Receiver Operating Characteristic (ROC) Curve
The area under the ROC curve (AUC) was used to assess the model’s ability to predict the rock-fall

occurrence correctly. Two data sets (training and validation data set) were separately analyzed to confirm the
model’s validity toward all available data. The results were plotted in two ROC curves (see Figs. 5 and 6).

Figure 5: The ROC curve (for training data set)

Figure 6: The ROC curve (for validation data set)
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For the training and validation data set, their AUC values are 0.853 and 0.903, respectively (Tab. 3). It
indicates that the model under both data sets has high prediction capabilities. Therefore, the computed
logistic regression model is representative of rock-fall activity with high certainty. The statistical
significance value (0.000) means no significant difference between the predicted and observed value.

For more model validation, the areas under the ROC curves (AUC) individually recalculated for the
three variables (slope-angle, rainfall-rate, and temperature-variation) see Fig. 7. The obtained values were
(0.802), (0.815), and (0.635) respectively (Tab. 3). Accordingly, all variables were effective.

3.3.2 Overall System Performance Evaluation
Tab. 4 shows the resulting confusion matrix created for both the training and testing. The confusion

matrix was used to calculate sensitivity, specificity, and accuracy.

Tab. 4 shows that the proposed method’s average sensitivity when using training and validation data is
70.4% and 71.4%, respectively. That means, even for the lowest levels of sensitivity, only 29.6% of the

Table 3: All cases of the (AUC)

Case AUC Std. Error Statistical Significance

Used Training data 0.853 0.042 0.000

Used Validation data 0.903 0.045 0.000

Slope-Angle 0.802 0.038 0.000

Rainfall-rate 0.815 0.039 0.000

Temperature-Variation 0.635 0.050 0.008

Std. Error = Standard error of coefficient, Case = Independent variables

Figure 7: The ROC curve (for the three variables)
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rock-fall events were not detected correctly. The proposed method’s average specificity is about 86.3% and
86.5%, respectively, which means the system has a high ability to disregard fake events. The accuracy of
79.9% and 81.0% for the training and validation data indicates the goodness and stability of the logistic
regression model.

4 Discussion and Conclusion

This study aimed to develop an intelligent warning system for reducing rock-fall hazard along a
mountainous road in the Kingdom of Saudi Arabia. This system was created to replace conventional
inefficient warning signs with a new one more dynamic in providing Light and sound alert about the
upcoming rock-fall hazard before occurrence. The proposed system fuses various sensors with
the (logistic regression model) in a warning system. This system is capable of predicting the rock-fall in
the study area, in addition to performing a decision-making algorithm for classifying the hazard into three
levels (low, medium, and high) and delivers warning action.

The database used to construct this system has been mentioned in Section 2.2, and it contains four
variables, one dependent variable (event of rock-fall) and three independent variables (Rainfall rate,
temperature variation, and slope angle). The data samples were divided into two independent data sets
65% as a training data set, whose purpose is to train the prediction model, and 35% as testing data set to
validate it. The logistic regression model was applied to link the impact of independent variables (rock-
fall trigger factors) on the dependent variable (occurrence of rock-fall).

The logistic regression process results were the model coefficients and extra statistics parameters, as
shown in Tab. 1. The standard error of model coefficients was between 0.132 and 0.421; these low
standard error values explain how close predictions to the eventual outcomes. The (Wald statistics)
parameter assesses the significance probability for all independent variables’ coefficient (β). The obtained
significant probability values in a range of (0.010 to 0.030) since all significant probability values were
less than 0.050; it indicates the independent variables have statistically significant effects on rock-fall
occurrence. Regarding the obtained statistical results its indicate good model fitting. Thus, the three
independent variables (slope angle, rainfall rate, and temperature variation) had included in the model.
The model’s predictive abilities had evaluated by some performance metrics such as the area under the
ROC curve (AUC), sensitivity, specificity, and accuracy. During the model training and validation, the
area under the curve (AUC) in ROC values Figs. 5 and 6 was approximately 0.853 and 0.903,
respectively. Toward more investigation, the areas under the curves (AUC) were recalculated individually
for all independent variables. The obtained results were slope angle (0.802), rainfall rate (0.815), and

Table 4: Confusion matrix

Data Type Observed
Rock-fall Even

Predicted
Rock-fall Even

Percentage correct

Not occur 0 Occurs 1

Training data Not occur 0 TN = 69 FP = 11 86.3%

Occurs 1 FN = 16 TP = 38 70.4%

Overall Percentage 79.9%

Validation data Not occur 0 TN = 32 FP = 5 86.5%

Occurs 1 FN = 6 TP = 15 71.4%

Overall Percentage 81.0%
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temperature variation (0.635). So, all variables in the rock-fall prediction model effective. The average
sensitivity during the model training and validation is 70.4% and 71.4%, respectively, means that even
for the lowest levels of sensitivity, only 29.6% of the rock-fall events not detected correctly. It indicates
that the system has slightly good sensitivity in the prediction of the rock-fall. The average specificity
during the model training and validation is 86.3% and 86.5%, respectively, which means the system has a
high ability to recognize fake events. The logistic regression model’s overall prediction accuracy is 79.9%
and 81.0%, respectively, during the model training and validation. It indicates the goodness and stability
of the logistic regression model.

To this end, the values of (AUC), sensitivity, precision, and accuracy confirms that the logistic regression
model is accurate for both the training and validation data sets. Therefore, the computed logistic regression
model accurately represents the relationships between the selected parameters and potential (rock-fall)
occurrence. It ensures that the final model can predict (occurrence of rock-fall) in the study area correctly;
this qualifies it as an essential part of the warning system. When installing this warning system on the
roadside, it will help the driver become notably more hassle-free; thus, enhancing traffic safety.

Some limitations still exist in this study. One limitation is the proposed method not perfect in
determining the exact moment of the rocks falls, so future effort to consider the short-term prediction of
rocks fall event. Further work is required to enhance the predictive model by using additional variables
(rocks-vibration) and (debris-movement). The additional variables can be extracted from (a phenomenon
before the occurrence of rock-fall) using (computer vision algorithms).
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