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Abstract: In 2020, the world faced an unprecedented pandemic outbreak of cor-
onavirus disease (COVID-19), which causes severe threats to patients suffering
from diabetes, kidney problems, and heart problems. A rapid testing mechanism
is a primary obstacle to controlling the spread of COVID-19. Current tests focus
on the reverse transcription-polymerase chain reaction (RT-PCR). The PCR test
takes around 4–6 h to identify COVID-19 patients. Various research has recom-
mended AI-based models leveraging machine learning, deep learning, and neural
networks to classify COVID-19 and non-COVID patients from chest X-ray and
computerized tomography (CT) scan images. However, no model can be claimed
as a standard since models use different datasets. Convolutional neural network
(CNN)-based deep learning models are widely used for image analysis to diag-
nose and classify various diseases. In this research, we develop a CNN-based
diagnostic model to detect COVID-19 patients by analyzing the features in CT
scan images. This research considered a publicly available CT scan dataset and
fed it into the proposed CNN model to classify COVID-19 infected patients.
The model achieved 99.76%, 96.10%, and 96% accuracy in training, validation,
and test phases, respectively. It achieved scores of 0.986 in area under curve
(AUC) and 0.99 in the precision-recall curve (PRC). We compared the model’s
performance to that of three state-of-the-art pretrained models (MobileNetV2,
InceptionV3, and Xception). The results show that the model can be used as a
diagnostic tool for digital healthcare, particularly in COVID-19 chest CT image
classification.
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1 Introduction

COVID-19 is a coronavirus disease that infects humans very quickly. COVID-19 is more infectious and
deadly than common coronaviruses. It transmits primarily by human-to-human contact. Humans have not
experienced this virus before, and are panicking and acting unpredictably. The main signs of COVID-
19 infection are a mild fever, dry cough, and breathing problems [1]. A patient may have other problems
such as tiredness, muscle pain, and anosmia. COVID-19 symptoms are mild in most cases, but some
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patients have higher risk, such as older people, pregnant women, and those with chronic diseases such as
diabetes, heart disease, and lung disease.

Suspected COVID-19 patients require quick testing to enable proper treatment, guidance for self-
isolation, and tracing of close contacts. Traditional COVID-19 diagnosis involves an RT-PCR test from
nose and throat samples. This requires a dedicated kit and a minimum of 24 h to yield an outcome. The
test is not entirely reliable, and another RT-PCR test or another kind of test is sometimes required to
ensure diagnosis [2]. For an X-ray, a radiographer employs a dedicated machine and applies radiation to
generate a 2-D image of the chest. A CT scan uses a computer to merge 2-D X-ray images into a 3-D
image. It requires a specialized machine and a specialist radiographer. The CT scan is a common
technique to diagnose pneumonia. It is a rapid test that is comparatively easy to accomplish.

Much published research has proposed AI-based models that employ machine learning, deep learning
(DL), and neural network techniques to classify COVID-19 and non-COVID patients from chest X-ray
and CT scan images, often with promising outcomes. However, these approaches require rigorous testing,
and no model can be claimed as a standard, as models use various datasets. Among these, deep learning-
based models show promising results. Deep learning models are instrumental in complex tasks, such as
extracting hidden key features and identifying areas of interest in images, which facilitates medical image
analysis for disease diagnosis. They require no handcrafted feature-extraction.

Deep learning models have been used for chest X-ray image analysis for various disease identification
and classification tasks. The ChestNet [3] model is used to detect pneumonia from chest X-ray images. The
model shows better performances compared to radiologist in detecting pneumonia from chest X-ray images.
Another ChestNet model was proposed to identify thorax diseases from chest radiography images, and a
simple convolutional neural network (CNN) model was proposed to diagnose tuberculosis (TB) from X-
ray images. The authors evaluated the model on two datasets, achieving 86.2% accuracy. A deep neural
network model was proposed to classify normal and abnormal chest X-rays [4]. A CNN model was used
to classify tuberculosis disease from chest X-rays [5].

Another deep learning technique was used to identify CT image features to detect pulmonary nodules
[6]. Different pretrained CNN models were used to diagnose thorax diseases [7]. A deep neural network
model was proposed to classify brain CT images [8]. A combination of multilayer and generalized
regression neural networks was used for chest disease diagnosis [9].

The histogram equalization technique for image segmentation and a feedforward neural network were
used to classify TB, pneumonia, and lung cancer [10]. However, the performance was not as good as that of
deep learning-based models. DL models show better accuracy in classification processes, motivating
researchers to consider applying these models to medical images for disease classification. Moreover, DL
models have successfully extracted valuable features that discriminate various classes of images [11–13].
CNN models are the most used techniques in several types of medical image classification for their
superior extraction of various level features from images [14,15].

The remainder of this paper is structured as follows. Section 2 discusses related work. Section
3 discusses the materials, method, and data preprocessing used in the proposed model. Section 4 presents
the model and provides performance results, analysis, and comparisons. Section 5 provides conclusions
and suggestions for future work.

2 Related Work

Alom et al. [16] presented a deep learning model to detect and segment COVID-19 from X-ray images.
A transfer learning-based model and the inception recurrent residual neural network (IRRCNN) were used to
detect COVID-19, and the NABLA-N model was used for segmentation. The model achieved 98.78%
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accuracy in COVID-19 detection. Runwen et al. [17] used the ShuffleNet transfer learning model to classify
COVID and non-COVID cases using CT scans. The model achieved scores of 90.52%, 91.58%, and
0.9689% in sensitivity, specificity, and area under the curve (AUC). The dataset contained 521 COVID-
19 cases, 397 healthy people, 76 bacterial pneumonia patients, and 48 SARS images.

Gozes et al. [18] proposed a system including segmentation of the lung, detection of COVID-19 in CT
slices, and identification of COVID-19 cases by applying a predefined threshold value built on the number of
COVID-19 positive slices. The model used the ResNet50 network for COVID-19 detection and obtained
scores of 94%, 98%, and 0.9940 in sensitivity, specificity, and AUC, respectively.

Jaiswal et al. [19] used a DenseNet201 pretrained model to classify COVID-19 patients using 2,492 CT
scans. The model was compared to other pretrained models, such as VGG16, ResNet152V2, and
InceptionResNetV2. The DenseNet201 model achieved the best accuracy, 96.25%.

Jin et al. [20] proposed a 2D CNN model to detect COVID-19 using a segmentation technique on CT
slices. The authors used 496 COVID-19 positive and 260 negative images. The model achieved 0.9791,
94.06%, and 95.47% scores in AUC, sensitivity, and specificity, respectively. Since the onset of the
COVID-19 pandemic, researchers have proposed deep learning-based methods for automatic screening of
positive COVID-19 cases using different radiology images, such as CXR and CT scans.

Ahuja et al. [21] applied data augmentation and pretrained models to classify COVID-19 from CT
images. Stationary wavelets, random rotation, translation, and shear tasks were used in data
augmentation. ResNet50, ResNet18, and SqueezeNet were used for classification. The ResNet18 model
performed better and achieved a 0.9965 AUC value. Liu et al. [22] developed a model using the weights
of different networks such as VGG16, ResNet18, and ResNet50. The model performed prediction on five
lesions. The model with VGG16 achieved the highest AUC score of 0.94.

3 Materials and Methods

This research used a publicly available dataset consisting of CT scan images [23] and X-ray images.
Some images were produced from augmentation techniques. The CT scan dataset had 5493 non-COVID
images and 3914 COVID images. After manual observation of the images, we observed that the quality
of some images was poor, and those images were not considered in model training. After manual
preprocessing, the total number of images was 7557. Some sample images of COVID and non-COVID
cases are shown in Fig. 1. The dataset had a different ratio of COVID and non-COVID cases, as shown
in Fig. 2. Images were of different sizes, with high variation. Fig. 3 presents the five most frequent sizes
of the images. Fig. 3 shows that images of 1024 � 1024 � 3 were most common. The dataset was
unbalanced, and the images had various noises. Therefore, appropriate preprocessing was necessary
before training a model on this dataset.

After exploratory data analysis of the CT scans, we noticed that images had different contrasts, noises,
focus, and sizes. To improve their quality, we considered three preprocessing steps.

i. Histogram equalization [24]: The image histogram technique graphically interprets the pixel intensity
values of an image, showing the frequencies of all values. Fig. 4 shows an image histogram of an image in the
dataset. We observe that the image has high contrast in pixel intensity. Histogram equalization (HE) balances
the image contrast by considering its histogram. It spreads the values of high pixel intensity or extends the
intensity range of the image. It adjusts image intensities to enhance contrast. Consider the imageG as an (mr x
mc) matrix of pixel intensity values ranging from 0 to I–1. I is the number of probable values of intensity, and
it is often 256. Let R represent the normalized histogram of G with a bin of each probable intensity.
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Then

Rn ¼ number of pixels with intensity n

total number of pixels
n ¼ 0; 1; …; I � 1: (1)

Figure 1: Sample of X-ray images (COVID and Non-COVID cases)

Figure 2: Dataset of COVID and Non-COVID cases distributions
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The image g with histogram equalization is represented by

gi;j ¼ floor I� 1ð Þ
XGi;j

n¼0
Rn

� �
; (2)

where the floor() function rounds the value to the closet integer. It is equivalent to transforming the pixel
intensities, k, of f by the function

T kð Þ ¼ floor I� 1ð Þ
Xk

n¼0
Rn

� �
: (3)

ii. Median filtering [25]: We applied median filtering, a nonlinear method, to filter the noisy areas in
images. Here, the central value of an image is changed by the median of all the pixels in the kernel area.

Figure 3: Image size distribution

Figure 4: Image histogram of an image
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This removes noise while processing the edges of an image. The median filter replaces a pixel by the median
of all pixels in a neighborhood w,

y m; n½ � ¼ median x i; j½ �; i; jð Þ 2 wf g,
where w denotes a neighborhood specified by the user, centered around location [m, n] in the image.

iii. Rectangle cropping: Besides noises, images have uncommunicative dark regions. It is vital to
eliminate these dark regions for a model to train. If these regions are not removed, then images provide
fewer informative features to the model. We used cropping for this purpose. Furthermore, some images
are dark and hard to visualize. We transformed these to grayscale for effective visualization. Fig. 5 shows
a COVID image and the outcome after applying HE, median filtering, and rectangle cropping.

We performed exploratory data analysis to observe the distribution and clustering nature of the COVID
and non-COVID classes from the image features. We used t-distributed stochastic neighbor embedding (t-
SNE) to visualize the clustering nature, as shown in Fig. 6, and this demonstrates the difficulty of
classification based on features. Because of the high dimensionality of images, we used principal
component analysis (PCA) to minimize the dimension to two PCA components. PCA also increases
interpretability and reduces information loss.

4 Proposed CNN Model and Performance Analysis

The proposed model is depicted in Fig. 7. There are six 2D convolutional layers. The first two CNN
layers have 32 filters with a kernel size of 3 � 3. A MaxPooling2D layer is added after each CNN layer.
After the second CNN layer output, dropout regularization (0.2) is applied. The next two CNN layers
each have 64 filters and a kernel size of 3 � 3. A MaxPooling2D layer and dropout regularization (0.2)
are added. The final two CNN layers consist of 128 filters with a kernel size of 3 � 3. A dropout
regularization layer is applied before the fully-connected layer. The model applies a ReLU activation
function in each CNN layer. The model has two fully-connected layers. The first has 128 neurons, and
the second has 64 neurons. Dropout regularization is applied after each fully-connected layer. The model
applies the sigmoid activation function at the classification layer due to binary classification. The root
mean square propagation (RMSprop) [26] optimizer is used in the model; this minimizes oscillations and
dynamically updates the learning rate. The optimizer selects a proper learning rate for each parameter.
The equations below formulate the update.

vt ¼ rvt�1þ 1� rð Þ�g2t (4)

Figure 5: A case of image preprocessing
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Dwt ¼ � mffiffiffiffiffiffiffiffi
vtþE

p �gt (5)

wtþ1 ¼ wt þ Dwt; (6)

where m is initial learning, vt is the gradients’ exponential average of squares, wt is the weight, Dwt is the
weight change, and gt is the gradient at time t of wj. The Adam optimizer links RMSprop and momentum
heuristics. The following equations show the calculation.

Figure 6: t-SNE visualization of the COVID and Non-COVID classes clustering using PCA

Figure 7: Proposed CNN model
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vt ¼ b1�vt�1� 1� bð Þ�gt (7)

st ¼ b2�st�1� 1�b2ð Þ�g2t (8)

Dwt ¼ �t
vtffiffiffiffiffiffiffiffi
stþ2

p �gt (9)

wtþ1 ¼ wtþDwt; (10)

where gt is the gradient at time t along wj, st is an exponential average of squares of gradients along wj, and
b1;b2 are hyperparameters. In the classifier layer of the model, sigmoid activation is used. In general, a CNN
model considers the sigmoid function for binary classification. The sigmoid function generates values
between 0 and 1 from a real value, and is defined as

hu xð Þ ¼ 1

1þ e�uTx
: (11)

Tab. 1 shows the parameters during model training.

The model is evaluated in three stages: (i) training, (ii) validation, and (iii) testing. The original dataset is
split into two subsets, 70% for training, and 30% for testing, and the training set is split into 80% for training
and 20% for validation. The number of images in the dataset after the split is shown in Tab. 2. We conducted
various performance analyses of the proposed model, including accuracy (training, validation, and testing),
precision, recall, F1-score, and ROC-AUC. We generated a confusion matrix to observe the model’s true

Table 1: Model training and validation parameters

Parameters Value

Learn Rate(Initial) 0.0001

Learning rate decay 0.000001

Batch size 32

Shuffling Each epoch

Optimizer RMSprop

Max epochs 25

Execution Environment gpu

Table 2: Dataset split for the model’s training and testing

Dataset Number of images

Training 4232

Validation 1057

Testing 2268
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positive (TP), false positive (FP), true negative (TN), and false negative (FN) scores for classifying COVID
and non-COVID cases.

Fig. 8 shows accuracy and loss while training the model. The model was run for 50 epochs. We used two
callback APIs: Early Stopping (EarlyStopping) and Reduce on Loss Plateau Decay (ReduceLROnPlateau)
[27]. The parameters and their values used are patience = 3, factor = 0.5, and learning rate (lr) = 0.00001.
The factor parameter decreases the learning rate according to lr ¼ lr � factor ¼ k. The patience
parameter denotes the number of epochs after which the learning rate is reduced if there is no
improvement. The EarlyStopping callback stops the model if there is no improvement in accuracy for a
certain number of epochs. The ReduceLROnPlateau callback decreases the learning rate if a metric does
not improve during training.

Tab. 3 shows the accuracy of the model during the training, validation, and testing phases, which were
99.76%, 96.10%, and 96%, respectively. The results show that the model was not overfitting or underfitting.
The model achieved 0.97 precision, 0.96 recall, and a 0.97 F1-score. Fig. 9 shows these scores. The model
achieved good scores in the AUC and PRC metrics, at 0.985 and 0.99, respectively. Fig. 10 shows these
results. A precision-recall curve (PRC) plots precision (y-axis) and recall (x-axis) for different probability
thresholds. All the results are summarized in Tab. 4.

Fig. 11 demonstrates the confusion matrix values generated by the model on the testdata set, which
contained 723 non-COVID images and 1536 COVID images. The proposed CNN model correctly classified
628 non-COVID images, and 50 images were misclassified as COVID. The model correctly classified
1496 COVID cases, and 40 images were misclassified as non-COVID. The results showed that the model
performed fairly well at classification.

Figure 8: Training and validation accuracy and loss

Table 3: Accuracy of the model

Phases Accuracy %

Training 99.76

Validation 96.10

Testing 96.0
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The model’s performance was compared to that of three state-of-the-art pretrained models
(MobileNetV2, InceptionV3, and Xception). With an inverted residual structure, MobileNetV2 shows
better performance on mobile devices. Between the bottleneck layers, residual connections exist.
MobileNetV2 has an initial convolution layer with 32 filters, followed by 19 residual bottleneck layers.
The InceptionV3 model has better efficiency in computation. It achieved better performance, employing
label smoothing, factorized 7 � 7 convolutions and an auxiliary classifier that broadcasts label features to

Figure 9: Precision, recall, and F1 scores of the proposed model

Figure 10: AUC and PRC scores

Table 4: Performance score on testdata of the model

Metrics Score

Accuracy 96.0%

Precision 0.96

Recall 0.96

F1-score 0.96

PRC 0.99

AUC 0.99
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lower-level layers of the network. Xception has outperformed VGG-16 and ResNet in various classification
challenges. The comparative results are shown in Tab. 5.

5 Conclusions and Future Work

We presented a custom CNN model to classify COVID and non-COVID patients using CT scan images.
The model only consists of three 2D convolutional layers and two fully-connected layers. The model
achieved excellent results on different standard metrics and obtained 96% accuracy on a test dataset
consisting of 2268 COVID and non-COVID CT images. The model achieved a 0.97 precision score, a
0.96 score on the recall metric, and 0399 on the AUC metric. We compared the proposed model to some
pretrained models, and it outperformed them. The future plan is to consider more classification models
and engineer important features from more histopathological images to increase the model’s accuracy. We
will also employ the model on other publicly available datasets and look for further improvement.

Funding Statement: This research was funded by the Deanship of Scientific Research, Taif University,
Ministry of Education, Saudi Arabia, under Grant 1-441-56.
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