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Abstract: Kernel learning based on structure risk minimum can be employed to
build a soft measuring model for analyzing small samples. However, it is difficult
to select learning parameters, such as kernel parameter (KP) and regularization
parameter (RP). In this paper, a soft measuring method is investigated to select
learning parameters, which is based on adaptive multi-layer selective ensemble
(AMLSEN) and least-square support vector machine (LSSVM). First, candidate
kernels and RPs with K and R numbers are preset based on prior knowledge,
and candidate sub-sub-models with K*R numbers are constructed through utiliz-
ing LSSVM. Second, the candidate sub-sub-models with same KPs and different
RPs are selectively fused by using the branch and bound SEN (BBSEN) to obtain
K SEN-sub-models. Third, these SEN-sub-models are selectively combined
through using BBSEN again to obtain SEN models with different ensemble sizes,
and then a new metric index is defined to determine the final AMLSEN-LSSVM-
based soft measuring model. Finally, the learning parameters and ensemble sizes
of different SEN layers are obtained adaptively. Simulation results based on the
UCI benchmark and practical DXN datasets are conducted to validate the effec-
tiveness of the proposed approach.

Keywords: Multi-layer selective ensemble learning; least square support vector
machine; soft measuringmodel; municipal solid waste incineration; dioxins emission

1 Introduction

Data-driven soft measuring techniques can be used for online estimation of offline assay process
parameters and experts’ estimation quantity variables [1,2]. Especially, soft measuring models are used in
many fields according to their inferential estimation capability [3], and the two most common ones
include artificial neural networks (ANN) and support vector machines (SVM). Although ANN is used to
model DXN emission concentration [4], it has several shortcomings, such as easily falling into local
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minimum, over fitting, and unstable generalization performance in terms of small samples. For SVM, it is
more suitable to build a prediction model for DXN emission, however, its prediction performance heavily
depends on kernel and RPs [5]. Furthermore, SVM has to suffer from the quadratic program (QP)
problem, which can be solved by least square-support vector machines (LSSVMs) including a set of
linear equations. Due to the data dependence of kernel learning methods [6], some optimization methods
are employed to address this problem through using single- or multi-objective optimization in terms of
learning parameters [7,8]. However, such methods are time-consumed and prone to obtain a sub-optimum
solution [9]. In addition, as the KP determines the geometry of the feature space, it can be optimally
selected through class reparability [10,11]. Thus, this parameter is also calculated by using Fisher
discrimination of classification problems [12]. For regression problems, a stable generalization
performance can only be found within a certain range. However, the evaluation process must be dynamic
and the searching results are unstable for small samples. Therefore, a fast and definitive method for KP
selection should be developed in future researches. The RP of kernel learning method has no intuitive
meaning in terms of geometry and is normally determined through cross-validation or optimization search
methods [13]. In Wang et al. [14], a KP selection approach is proposed for small high-dimensional
mechanical frequency spectral samples, which only selects a single kernel. Moreover, multiple kernel
learning algorithms exhibit high efficiency and effectiveness in both classification and regression tasks
[14]. And one of them named multiple kernel ensemble learning approach has been applied into hyper-
spectral remote sensing image classification [15,16]. However, the optimized selection of learning
parameters is not addressed jointly. Therefore, a new adaptive method for selecting learning parameters
should be developed to model small samples with complex characteristics.

Selective ensemble (SEN) modeling can selectively fuse multiple sub-models in a linear or nonlinear
method and achieve better prediction performances than single modeling. However, SEN modeling still
exerts several limitations. One of them is ensemble construction, which creates a set of candidate sub-
models for the same training dataset. The ensemble construction method based on the resample of
training samples validates the ensemble method, and many available sub-models can obtain better
performances than the ensemble of all the sub-models [17]. However, the selection problem of learning
parameters remains unsolved in this scenario. Consequently, based on the above ensemble construction
strategy, double-layer GA-based SEN latent structure modeling is proposed for collinear and nonlinear
data [18]. However, this method has disadvantages of long searching time and randomized prediction
results. Another ensemble construction method named manipulation of input features is used to model
multi-source multi-scale high-dimensional frequency spectral data [13,19,20], and it can construct a soft
measuring model by using the interesting mechanical sub-signals and their spectral feature subsets, which
focuses on the selective fusion of different multi-source feature sub-sets from the perspective of selective
information fusion. As a result, this method is thus suitable for modeling frequency spectral data with
multi-source and high dimension, especially for small samples.

In this paper, the SEN kernel leaning algorithm for small data-driven samples is adopted to softly
measure the DXN emission. Although several SEN-LSSVMs such as fuzzy C-means cluster-based SEN-
LSSVM [21] and evolutionary programming (EP)-based multi-level LSSVM [22] have been proposed,
they do not address the selection problem of learning parameters and are unsuitable for small samples. As
multiple KPs can clearly describe the complex characteristics of small sample data (e.g., DXN), a soft
measuring model for the SEN-LSSVM-based DXN emission concentration can be built through using
multiple candidate KPs and the ensemble construction strategy. Meanwhile, the RP of the kernel learning
algorithm is also data-dependent. Therefore, the algorithm can also be used and selected with the same
idea like KPs.

Motivated by the above problems, this paper proposes a new adaptive multi-layer SEN-LSSVM
(AMLSEN-LSSVM) method for modeling small samples with complex characteristics. Compared to the
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existing literatures, the distinctive contributions of this study are listed as follows. (1) A new SEN-LSSVM
modeling framework is proposed to model small samples according to the candidate learning parameters at
the first time; (2) The proposed method can adaptively select the kernel and RPs simultaneously. Moreover,
the ensemble sizes of different SEN layers are also adaptively determined in implicit pattern; (3) A new
metric index is defined for selecting the final AMLSEN-LSSVM soft measuring model to achieve
tradeoff between model complexity and prediction performance.

The remainder of this paper is organized as follows. Section 2 describes the proposed modeling strategy.
In Section 3, a detailed realization of the proposed approach is demonstrated. Section 4 presents the
experimental results on two UCI benchmarks and practical DXN datasets for references. Finally, Section
5 concludes this paper.

2 Modeling Strategy Description

Based on the above analysis, an adaptive multi-layer SEN-LSSVM (AMLSEN-LSSVM) soft measuring
strategy is proposed, which consists of candidate sub-sub-models, candidate SEN-sub-models, SEN-models,
and decision selection modules. The process is shown in Fig. 1.

In Fig. 1, X ¼ fxngNn¼1is the input of the modeling data with features from the different phases of the

MSWI process; y ¼ fyngNn¼1 denotes the predicted data of the offline assay process; fKk
ergKk¼1 and

fRr
eggRr¼1 are the Kcandidate kernels and the R RPs, respectively; ff jsubsubð�ÞgJ¼KR

j¼1 indicates the K × R

candidate sub-sub-models set; ŷjsubsub is the prediction output of the jth sub-sub-model f jsubsubð�Þ;
ff kSENsubð�ÞgKk¼1 is the K candidate SEN-sub-model sets; ŷkSENsub is the prediction output of the kth SEN-

sub-model f kSENsubð�Þ; ff
Ksel
k

SENð�ÞgK�1
Ksel
k ¼2is the set of candidate SEN models; ŷK

sel

SEN is the prediction output of

the SEN model with an ensemble sizeKsel; fselð�Þ and ŷ are the final SEN soft sensor model and its
prediction output, respectively.

The functions of the different modules are illustrated as follows:

(1) Candidate sub-sub-model module: Construct the K � R LSSVM sub-sub-models by using different
candidate learning parameters.

(2) Candidate SEN-sub-model module: Construct the K SEN-sub-models by using the prediction
outputs of R sub-sub-models based on the same KP and R different RPs.
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ŷ

2
SENŷ
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Figure 1: SEN-LSSVM-based soft measuring strategy
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(3) SEN-model module: Construct the SEN-models with an ensemble size from 2 to (K– 1) by using the
prediction outputs of K SEN-sub-models based on different KPs.

(4) Decision selection module: Select the final soft measuring model from SEN-models with the
different ensemble sizes by defining a new metric index and making a trade-off between prediction
accuracy and model complexity.

3 Modeling Realization

3.1 Candidate Sub-Sub-Model Module

As the candidate kernels and RPs of the LSSVM model are respectively denoted as fKk
ergKk¼1 and

fRr
eggRr¼1, the candidate learning parameters can be used to obtain the following matrix:

Mpara ¼

½K1
er;R

1
eg� � � � ½K1

er;R
r
eg� � � � ½K1

er;R
R
eg�

..

. ..
. ..

. ..
. ..

.

½Kk
er;R

1
eg� � � � ½Kk

er;R
r
eg� � � � ½Kk

er;R
R
eg�

..

. ..
. ..

. ..
. ..

.

½KK
er ;R

1
eg� � � � ½KK

er ;R
r
eg� � � � ½KK

er ;R
R
eg�

2
66666664

3
77777775
J

(1)

where ½Kk
er;R

r
eg� is the jth element of learning parameter matrix Mpara, in which Mj

para ¼ ½Kk
er;R

r
eg� with

j ¼ 1; � � � ; J . Especially, J ¼ K � R is the element number of matrix Mpara, that is, the number of
LSSVM sub-sub-models.

Taken the jth pair ½Kk
er;R

r
eg� of learning parameters for an example, the process of the sub-sub-model is

built as follows. First, nonlinear mapping function ’ðxnÞ is used to map fxngNn¼1 into a higher dimensional
feature space. Then, the optimization problem is solved by the LSSVM algorithm:

min
Wj;bj

Oj
LS�SVM ¼ 1

2
wjTwj þ 1

2
Reg

XN
n¼1

fjn
2

s:t : ŷjn ¼ wjT’ðxjnÞ þ bj þ fjn

8><
>: (2)

where wj is the weighted coefficient, bj indicates the bias, and fjn denotes the prediction error of the nth
sample. Thus, the Lagrange method can be employed to solve the optimization problem (2),

Ljðwj; bj; fj; bjÞ ¼ 1

2
wjTwj þ 1

2

XN
n¼1

ðfjnÞ2 �
XN
n¼1

bjn½wjT’ðxjnÞ þ bj þ fjn � ŷjn� (3)

where bj ¼ ½bj1; � � � ;bjn; � � � ;bjN � is the Lagrange operator vector, and fj ¼ ½fj1; � � � ; fjn; � � � ; fjN � is the
prediction error vector. Taken the derivation of the parameters in Eq. (3), the optimum solution can be
gotten by

@Lj

@wj
¼ 0;

@Lj

@bj
¼ 0;

@Lj

@nj
¼ 0;

@Lj

@bj
¼ 0; (4)

�j
kerðx; xnÞ ¼ ,’ðxÞ � ’ðxnÞ. ¼ f jkerðx; xn;KkerÞ; (5)

where �k
kerð�Þ is the kernel function with parameter Kk

er .
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Accordingly, the above problem becomes a linear equation system:

0 1 � � � 1

1 f jkerðx1; x1;KkerÞ;þ
1

Rr
eg

� � � f jkerðx1; xN 1;KkerÞ

..

. ..
. ..

. ..
.

1 f jkerðxN ; x1;KkerÞ � � � f jkerðxN ; xN ;KkerÞ þ
1

Rr
eg

2
6666664

3
7777775
�

bj

bj1
..
.

bjN

2
6664

3
7775 ¼

1
y1
..
.

yN

2
6664

3
7775 (6)

By solving the above system, bj and bj are obtained. Then, the LSSVM sub-sub-model can be denoted as

ŷjsubsub ¼
XN
n¼1

bjn � �j
kerðx; xnÞ þ bj (7)

For a concise expression, (7) can also be expressed as

ŷjsubsub ¼ f jsubsubðx;Mj
paraÞ ¼ f jsubsubðxj;Kk

er;R
r
egÞ ¼ f k;rsubsubð�Þ (8)

Therefore, all these candidate sub-sub-models are denoted as ff jsubsubð�ÞgJj¼1, and the prediction outputs
are fŷjsubsubgJj¼1.

3.2 Candidate SEN-Sub-Model Module

The prediction outputs of these candidate sub-sub-models can be rewritten as

fŷjsubsubgJj¼1 ¼

y1;1subsub; � � � ; y1;rsubsub; � � � ; y1;Rsubsub;

..

.

yk;1subsub; � � � ; yk;rsubsub; � � � ; yk;Rsubsub;

..

.

yK;1subsub; � � � ; yK;rsubsub; � � � ; yK;Rsubsub

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(9)

where ŷ1subsub ¼ f 1;1subsubð�Þ, ŷjsubsub ¼ f k;rsubsubð�Þ, ŷJsubsub ¼ f K;Rsubsubð�Þ.
In (9), the kthrow contains all the sub-sub-models with the same Kk

er and different fRr
eggRr¼1. Thus,

fŷjsubsubgJj¼1 can be rewritten as

fŷjsubsubgJj¼1 ¼

ff 1;rsubsubð�ÞgRr¼1;

..

.

ff k;rsubsubð�ÞgRr¼1;

..

.

ff K;rsubsubð�ÞgRr¼1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(10)

The candidate SEN-sub-models are built for each row of (10) by selecting and combining the candidate
sub-sub-models based on different fRr

eggRr¼1. For example, the kth row ff k;rsubsubð�ÞgRr¼1 can construct the kth
SEN-sub-model f kSENsubð�Þ through the same Kk

er and fRr
eggRr¼1. So the prediction output ðŷkSENsubÞn of the nth

modeling sample can be calculated by
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ðŷkSENsubÞn ¼ f kSENsubð�Þ ¼
XRsel

k

rselk ¼1

wsel
rselk

� ðŷnrselk
Þsel ¼

XRsel
k

rselk ¼1

wsel
rselk

� f k;rselk
subsubðxn;Kk

er;R
rselk
eg Þ (11)

where f
k;rselk
subsubð�Þ, R

rselk
eg , and ðŷlrselk

Þsel are the selected rselk th sub-sub-model, its RP, and the prediction output of the
nth modeling sample, respectively; Rsel

k indicates the ensemble size, and wsel
rselk

is the weighted coefficient of the
selected sub-sub-models, which is calculated by

wsel
rselk

¼ 1

r2
rselk

PRsel
k

rselk ¼1

1

r2
rselk

(12)

where rrselk
is the standard variance of the prediction outputs fðŷn

rselk
ÞselgNn¼1 form the selected rselk th sub-sub-

model. As the ensemble size Rsel
k and the weighted algorithm are pre-set and determined, the ensemble sub-

sub-models for constructing the kth SEN-sub-model f kSENsubð�Þ can be obtained by solving the following
optimization problem:

ðŷkSENsubÞn ¼
XRsel

k

rselk ¼1

wsel
rselk

� ðŷnrselk
Þsel ¼

XRsel
k

rselk ¼1

wsel
rselk

� f k;rselk
subsubðzn;Kk

er;R
rselk
eg Þ

s:t:

min RMSE ðŷk;SENsubÞRsel
k

� �n oR

Rsel
k ¼2

� �

RMSE ðŷk;SENsubÞRsel
k

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

yn �
XRsel

k

rselk ¼1

wsel
rselk

� f k;rselk
subsubðzn;Kk

er;R
rselk
eg Þ

0
@

1
A

2
vuuut

2 � Rsel
k � R;

PRsel
k

rselk ¼1

wsel
rselk

¼ 1; 0 < wsel
rselk

< 1

ff k;rselk
subsubg

Rsel
k

rselk ¼1
2 ff k;rsubsubð�ÞgRr¼1

fRrselk
eg gR

sel
k

rselk ¼1
2 fRr

eggRr¼1

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

(13)

where the root mean square error (RMSE) is used to evaluate the generalization performance of the SEN-sub-
model with ensemble size Rsel

k .

In order to solve the above problem, the optimized ensemble sub-sub-models and their weighted
coefficients are obtained through repeating the BBSEN optimization algorithm R� 2 times [11], and this
process is expressed by

ff k;rsubsubðx;Kk
er;R

r
egÞgRr¼1; fyngNn¼1

n o
¼ fBBSEN ff k;rselk

subsubðx;Kk
er;R

rselk
eg ÞgR

sel
k

rselk ¼1
; fwsel

rselk
gRsel

k
r¼1

� �
(14)

where ff k;rsubsubð�Þg
Ksel
k

k¼1 and fwk;r
subsubg

Ksel
k

k¼1 are the selected ensemble sub-sub-models and their weighted
coefficients, respectively; and Rsel

k is the number of the selected sub-sub-models.

For simplification, all the RPs of the kth SEN-sub-model are denoted as ðRk
egÞSENsub ¼ fRrselk

eg gR
sel
k

rselk ¼1
. After

repeating the above modeling procedure K times, all the SEN-sub-models with KPs fKk
ergKk¼1 are obtained.
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And then these candidate SEN-sub-models and their prediction outputs can be denoted as ff kSENsubð�ÞgKk¼1 and

fŷkSENsubgKk¼1, respectively. Therefore, different RPs are adaptively selected in the construction process of
these SEN-sub-models.

3.3 SEN-Model Module

Based on the above sub-sections, the SEN-sub-models with the same KPs and different RPs are
obtained. Then, Equation (10) can be transformed into the following form.

fŷjsubsubgJj¼1 ¼

ff 1;rsubsubð�ÞgRr¼1;

..

.

ff k;rsubsubð�ÞgRr¼1;

..

.

ff K;rsubsubð�ÞgRr¼1

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

))

ff 1;rsel1
subsubð�Þg

Rsel
1

rsel1 ¼1
;

..

.

ff k;rselk
subsubð�Þg

Rsel
k

rselk ¼1
;

..

.

ff K;rselK
subsubð�Þg

Rsel
K

rselK ¼1
;

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

f 1SENsubð�Þ;
..
.

f kSENsubð�Þ;
..
.

f KSENsubð�Þ;

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼ff kSENsubð�ÞgKk¼1 ¼ fŷkSENsubgKk¼1

(15)

In this context, BBSEN is further employed to obtain the prediction output ŷk
sel

SENof SEN-model f k
sel

SENsubð�Þ
by optimally selecting and combining SEN-sub-models based on KPsfKk

ergKk¼1. Hence, the optimization
description is presented as

ŷnSEN ¼
XKsel

ksel¼1

wSENsel
ksel � ðŷkselSENÞ

n ¼ wSENsel
ksel � f kselSENsubð�Þ

:t:

RMSE ŷK
sel

SEN

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

yn �
XKsel

ksel¼1

wSENsel
ksel � ðŷkselSENÞ

n

0
@

1
A

2
vuuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

yn �
XKsel

ksel¼1

wSENsel
ksel � f kselSENsub zn;Kksel

er ; ðRksel
eg ÞSENsub

� �0
@

1
A

2
vuuut

2 � Ksel � K;

PKsel

ksel¼1

wSENsel
ksel ¼ 1; 0 < wSENsel

ksel < 1

ff kselSENsubgK
sel

ksel¼1 2 ff kSENsubð�ÞgKk¼1

fKksel
eg gKsel

ksel¼1 2 fKr
eggKr¼1

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

(16)

where ðRksel
eg ÞSENsubis the RP set for constructing the kselth SEN-sub model with size Rksel

SENsub; K
selindicates the

number of selected ensemble SEN-sub-models (ensemble size) for building the SEN-model; f k
sel

SENsubð�Þ and
Kksel
eg represent the kselthensemble SEN-sub-model and its KP, respectively; ŷK

sel

SEN denotes the prediction
outputs of the nth samples of the SEN-model with ensemble size Ksel; and wSENsel

ksel is the weighted

coefficient of the kselth ensemble SEN-sub-model, which is calculated by
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wSENsel
ksel ¼ 1

r2ksel
PKsel

ksel¼1

1

r2ksel

(17)

where r
kselk

is the standard variance of the prediction outputs fðŷkselSENÞngNn¼1 based on the selected kselth
ensemble SEN-sub model. Consequentially, the above modeling process can be represented by

ff kSENsubðx;Kk
er; ðRk

egÞSENsubÞg
K
k¼1

fyngNn¼1

)
�!BBSEN ff kselSENsubðx;Kksel

er ; ðRksel
eg ÞSENsubÞgK

sel

ksel¼1

fwSENsel
ksel gKsel

ksel¼1

8<
: (18)

where ff kselSENsubð�ÞgK
sel

ksel¼1 and fwksel

SENsubg
Ksel
k

ksel¼1 are the selected ensemble SEN-sub-models and their weighted
coefficients, respectively; and Ksel

k is the number of selected SEN-sub-models.

Accordingly, the SEN model f
Ksel
k

SENð�Þ with ensemble size Ksel
k can be denoted as

ŷK
sel

SEN ¼
XKsel

ksel¼1

wSENsel
ksel � f kselSENsubð�Þ ¼

XKsel

ksel¼1

wSENsel
ksel �

XRsel
k

rselk ¼1

wsel
rselk

� f k;rselk
subsubðz;Kksel

er ;R
rselk
eg Þ

0
@

1
A

ksel

(19)

In Eq. (19), the SEN-model f K
sel

SENð�Þ selects both the kernel and RPs adaptively from the candidates.
Moreover, the ensemble size of SEN-sub-model is also decided adaptively in the SEN modeling process.

3.4 Decision Selection Module

Supposed that Ksel
k 2 ½2;KÞ is hold, and then ðK � 2Þ SEN models can be constructed. However, the

complexity of the SEN model significantly increases with the ensemble size. In order to solve this
problem, the model complexity in this paper is measured by the number of single LSSVM models. Thus,

the complexity of the best sub-sub-model, the kth SEN-sub-model f kSENsubð�Þ, and the SEN model f K
sel

SENð�Þ
are 1, Rsel

k , and
PKsel

ksel¼1 R
ksel

SENsub, respectively. To make a tradeoff between prediction accuracy and model
complexity, the metric index for selecting the suitable soft sensor model is defined by

nK
sel

SEN ¼ k
RMSEðf Ksel

SENð�ÞÞPK�1

Ksel¼2

RMSEðf Ksel

SENð�ÞÞ
þ ð1� kÞ

PKsel

ksel¼1

Rksel

SENsub

PK�1

Ksel¼2

PKsel

ksel¼1

Rksel

SENsub

(20)

where k is the coefficient between 0 and 1.

According to the above metric index, the SEN-model with the lowest RMSE is selected as the final DXN
soft measuring model. Thus, the final prediction output is obtained by

ŷ ¼ fselðŷ2SEN; � � � ; ŷK
sel

SEN; � � � ; ŷK�1
SEN Þ

s:t: minfn2SEN; � � � ; nK
sel

SEN; � � � ; nK�1
SENg

(21)

where fselð�Þ represents the final AMLSEN-LSSVM model. In this way, the learning parameters and
ensemble sizes of different SEN layers are selected adaptively.
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4 Application Study

In this section, two UCI benchmarks and a practical DXN datasets are exploited to validate the proposed
methods. Primarily, each dataset is divided into two parts: training data and testing data. Then radius basis
function (RBF) is used for the kernel type of the LSSVM. Finally, the candidate kernel and RP datasets are
selected as Can_1{0.1, 1, 100, 1000, 2000, 4000, 6000, 8000, 10000, 20000, 40000, 60000, 80000, 160000}
and Can_2{0.1, 1, 6, 12, 25, 50, 100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200, 102400},
respectively. Seen from the samples, Can_1 and Can_2 illustrate that the candidate learning parameters
have a wide range. The order number and their values are shown in Tab. 1.

4.1 Data Description

In order to present preliminary results, two UCI benchmark datasets, Boston housing and concrete
compressive strength, are used to validate the proposed method, which are listed as follows.

For Boston housing data, the inputs include: (1) the per capita crime rate of the town (CRIM);(2) the
proportion of residential land zoned over 25,000 sq. ft. (ZN); (3) the proportion of non-retail business
acres per town (INDUS); (4) the Charles River dummy variables (CHAS); (5) the nitric oxide
concentrations (NOX); (6) the average number of rooms per dwelling (RM); (7) the proportion of owner-
occupied units built before 1940 (AGE); (8) the weighted distances to five employment centers of Boston
(DIS); (9) the index of radial highway accessibility (RAD); (10) the full property tax rate per $10,000
(TAX); (11) the pupil–teacher ratio of the town (B); (12) the lower status of the population (LSTAT); and
(13) the median value of owner-occupied homes per $1000 (MEDV). The output is the housing values of
the suburbs of Boston with data size 506.

For concrete compressive strength data, the inputs include: (1) cement; (2) blast furnace slag; (3) fly ash;
(4) water; (5) superplasticizer; (6) coarse aggregate; (7) fine aggregate of the various ingredients of concrete
placement per cubic meter; and (8) conserved days. The output is concrete compressive strength with data
size 1030.

4.2 Modeling Results

According to the candidate learning parameters, 14 � 17 = 238 sub-sub-models based on the LSSVM
are constructed. Correspondingly, the BBSEN method is employed to build 14 SEN-sub-models. The
statistical results are shown in Tab. 2.

Table 1: Order number and learning parameters value

Order 1 2 3 4 5 6

Kk
er 0.1 1 100 1000 2000 4000

Rr
eg 0.1 1 6 12 25 50

Order 7 8 9 10 11 12

Kk
er 6000 8000 10000 20000 40000 60000

Rr
eg 100 200 400 800 1600 3200

Order 13 14 15 16 17 –

Kk
er 80000 160000 – – – –

Rr
eg 6400 12800 25600 51200 102400 –
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Table 2: Statistical results of different SEN-sub-models for benchmark datasets

Order
number

Kernel
parameter
(KP)

Models Boston housing data Concrete compressive strength data

RMSE
(Testing)

Regularization
parameter (RP,
Order number)

Ensemble
size

RMSE
(Testing)

Regularization
parameter (RP,
Order number)

Ensemble
size

1 0.1 EnAll-sub-sub 8.9735 all 17 16.1059 all 17

SEN-sub 8.5902 16–17 2 15.0883 15–17 2

Best-sub-sub 8.5902 17 1 15.0883 17 1

2 1 EnAll-sub-sub 6.9940 all 17 12.8921 all 17

SEN-sub 5.1031 16–17 2 12.4234 2–17 6

Best-sub-sub 5.1031 17 1 11.8064 6 1

3 100 EnAll-sub-sub 3.4288 all 17 9.8368 all 17

SEN-sub 3.1146 4–17 14 7.3687 4–17 4

Best-sub-sub 3.1953 8 1 7.7284 10 1

4 1000 EnAll-sub-sub 6.5492 all 17 15.9703 all 17

SEN-sub 3.2483 10–17 8 8.1098 11–17 7

Best-sub-sub 3.2637 13 1 8.1362 13 1

5 2000 EnAll-sub-sub 7.8296 all 17 16.4346 all 17

SEN-sub 3.2653 13–17 5 8.1475 14–17 4

Best-sub-sub 3.2681 15 1 8.1459 15 1

6 4000 EnAll-sub-sub 8.5535 all 17 16.6256 all 17

SEN-sub 3.2763 16–17 2 8.1642 16–17 2

Best-sub-sub 3.2705 17 1 8.1511 17 1

7 6000 EnAll-sub-sub 8.7715 all 17 16.6813 all 17

SEN-sub 3.3318 16–17 2 8.3123 16–17 2

Best-sub-sub 3.3022 17 1 8.2182 17 1

8 8000 EnAll-sub-sub 8.8700 all 17 16.7074 all 17

SEN-sub 3.4023 16–17 2 8.5411 16–17 2

Best-sub-sub 3.3586 17 1 8.3811 17 1

9 10000 EnAll-sub-sub 8.9245 all 17 16.7225 all 17

SEN-sub 3.4733 16–17 2 8.7862 16–17 2

Best-sub-sub 3.4187 17 1 8.5831 17 1

10 20000 EnAll-sub-sub 9.0216 all 17 16.7514 all 17

SEN-sub 3.7978 16–17 2 9.7130 16–17 2

Best-sub-sub 3.7030 17 1 9.4900 17 1

11 40000 EnAll-sub-sub 9.0632 all 17 16.7652 all 17

SEN-sub 4.2073 16–17 2 10.4129 16–17 2

Best-sub-sub 4.1183 17 1 10.2943 17 1

12 60000 EnAll-sub-sub 9.0759 all 17 16.7697 all 17

SEN-sub 4.3858 16–17 2 10.6267 16–17 2

Best-sub-sub 4.3268 17 1 10.5610 17 1
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Tab. 2 illustrates that: (1) the best SEN-sub-model of Boston housing dataset has KP 100 and RPs {25,
50, 100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200, 102400} with RMSE 3.1146 and an
ensemble size 14. The best sub-sub-model picks up KP 100 and RP 200 with RMSE 3.1953, and the best
EnAll-sub-sub-model possesses the same KP with RMSE 3.4288;(2) the best SEN-sub-model of concrete
compressive strength data has the KP 100 and RPs {25, 50, 100, 200, 400, 800, 1600, 3200, 6400,
12800, 25600, 51200, 102400} with RMSE 7.368 and an ensemble size 14. The best sub-sub-model
picks up KP 100 and RP 800 with RMSE 7.7284, and the best EnAll-sub-sub-model possesses the same
KP with RMSE 9.8368;(3) different KPs have different effects on the prediction performance of the SEN-
sub-models, so that parts of the best sub-sub-models have lower RMSEs than those of the SEN-sub-
models. Thus, setting a suitable RP is very important to demonstrate the relationship among RMSEs,
ensemble sizes, and different types of models with the single KP, which are shown in Figs. 2 and 3.

Table 2 (continued).

Order
number

Kernel
parameter
(KP)

Models Boston housing data Concrete compressive strength data

RMSE
(Testing)

Regularization
parameter (RP,
Order number)

Ensemble
size

RMSE
(Testing)

Regularization
parameter (RP,
Order number)

Ensemble
size

13 80000 EnAll-sub-sub 9.0821 all 17 16.7719 all 17

SEN-sub 4.4689 16–17 2 10.7145 16–17 2

Best-sub-sub 4.4297 17 1 10.6731 17 1

14 16000 EnAll-sub-sub 9.0910 all 17 16.7752 all 17

SEN-sub 4.5524 16–17 2 10.8124 16–17 2

Best-sub-sub 4.5645 17 1 10.7968 17 1
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Figure 2: Relationship between RMSEs and different types of models based on the single KP for the UCI
benchmark datasets
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Figs. 2 and 3 show that suitable learning parameters are crucial. From this perspective, the ensemble
size with the best prediction performance of the Housing and Concrete data are 14 and 6 in terms of
the same KP 100, respectively. However, the ensemble size of the SEN-sub-model does not increase with
the KPs after 4000.

For the 14 SEN-sub-models, the BBSEN method is used again to obtain the SEN-model with a different
ensemble size, and the detailed statistical results of the SEN-models are illustrated in Tab. 3.
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Figure 3: Relationships between ensemble sizes and different models based on the single KP for the UCI
benchmark datasets

Table 3a: Statistical results of all SEN-models for the Boston housing dataset

Ensemble Size SEN-sub-model (KP) number RMSE Ensemble size Metric index k = 0.5

2 2 1 6.5189 4 0.07497

3 3 2 1 4.7546 18 0.07358

4 4 3 2 1 4.0554 26 0.07610

5 5 4 3 2 1 3.7270 31 0.07884

6 6 5 4 3 2 1 3.5499 33 0.07944

7 7 6 5 4 3 2 1 3.4546 35 0.08093

8 8 7 6 5 4 3 2 1 3.4036 37 0.08289

9 9 8 7 6 5 4 3 2 1 3.3781 39 0.08512

10 10 9 8 7 6 5 4 3 2 1 3.3827 41 0.08767

11 11 10 9 8 7 6 5 4 3 2 1 3.4121 43 0.09050

12 12 11 10 9 8 7 6 5 4 3 2 1 3.4538 45 0.09345

13 13 12 11 10 9 8 7 6 5 4 3 2 1 3.5011 47 0.09646
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Tab. 3 shows that:(1) in the Boston housing dataset, the SEN-model with an ensemble size 9, KPs {0.1,
1, 100, 1000, 2000, 4000, 6000, 8000, 10000}, has the best prediction performance (RMSE 3.3781) among
all the SEN-models, which is higher than that of the best SEN-sub-mode, but lower than that of the EnAll-
SEN-sub-model;(2) in the concrete compressive strength dataset, the SEN-model with an ensemble size 9,
KPs {0.1, 1, 100, 1000, 2000, 4000, 6000, 8000, 10000}, has the best prediction performance (RMSE
8.2221) among all the SEN-models. However, it is larger than that of the best SEN-sub-mode, but lower
than that of the EnAll-SEN-sub-model; (3) the best SEN-sub-models in the above datasets has the best
prediction performance. Moreover, the prediction performance of different SEN-models is not further
improved with the increase of the ensemble size. The relationship between RMSEs and the ensemble
sizes of SEN models is shown in Figs. 4 and 5.

Table 3b: Statistical results of all SEN-models for the concrete compressive strength dataset

Ensemble Size SEN-sub-model (KP) number RMSE Ensemble size Metric index k = 0.5

2 2 1 12.8102 8 0.07228

3 3 2 1 9.9116 12 0.06506

4 4 3 2 1 8.9488 19 0.07158

5 5 4 3 2 1 8.5528 23 0.07602

6 6 5 4 3 2 1 8.3599 25 0.07827

7 7 6 5 4 3 2 1 8.2641 27 0.08097

8 8 7 6 5 4 3 2 1 8.2247 29 0.08393

9 9 8 7 6 5 4 3 2 1 8.2221 31 0.08706

10 10 9 8 7 6 5 4 3 2 1 8.2942 33 0.09054

11 11 10 9 8 7 6 5 4 3 2 1 8.4228 35 0.09429

12 12 11 10 9 8 7 6 5 4 3 2 1 8.5617 37 0.09808

13 13 12 11 10 9 8 7 6 5 4 3 2 1 8.6963 39 0.10185
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Figure 4: RMSE of SEN model with different ensemble sizes for the UCI benchmark datasets
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The above results show that it is essential to make a tradeoff between prediction performance and model
complexity. The proposed indices of different SEN-models with k = 0.5 are shown in Tab. 3, and the metric
index curves of the SEN-model with different k values are shown in Fig. 6.
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Figure 5: Ensemble size of SEN model with different ensemble sizes for the UCI benchmark datasets
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Seen form Fig. 6, the optimal value of the metric index shifts to the left with increasing coefficient (k)
value. Thus, it can be determined by the practical requirement. The prediction curves of the best SEN-sub-
model (SENsub) and the best SEN-model (SenSENsub) on the minimum prediction errors as well as the
ensemble all SEN-sub-model (EnSENsub) are shown in Figs. 7 and 8, respectively.

The above results show that the proposed method can model the two UCI benchmark datasets
effectively, which can make an adaptive selection of the learning parameters.
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Figure 7: Prediction curves of the Boston housing data
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Figure 8: Prediction curves of the concrete compressive strength data
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4.3 Comparative Results

The proposed method is compared with the PLS, KPLS, GASEN-BPNN, and GASEN-LSSVM
approaches. Concretely, the number of latent variables (LVs) and kernel LVs (KLVs) are decided by the
leave-one-out cross-validation, and the number of hidden nodes of the GASEN-BPNN is set to two times
plus one of the original inputs’ number. Thus, the structure of BPNN is 13-27-1 for the housing data, and
8-16-1 for concrete data. Meanwhile, the learning parameters of GASEN-LSSVM are used as ones of the
best sub-sub-model in the proposed method. For GASEN-BPNN and GASEN-LSSVM, the modelling
process is repeated 10 times to overcome their randomness.

Tab. 4 shows that the proposed method has the best prediction performance without any disturbance.

Although the GASEN-based prediction results are disturbed within a certain range due to the random
initialization of the input weights and the bias of BPNN and population GA, the PLS/KPLS methods can
activate the extracted latent variables to construct a linear or nonlinear model with a single KP for stabilization.

4.4 Discussions

4.4.1 Kernel Parameter
KP determines the geometry of the feature space, which can be calculated by using the Fisher

discrimination for classification problem. Actually, due to the deficiency of the range obtained for the
regression problem, the candidate KP set in our proposed method serves as the key factor to obtain an
effective soft sensor model. In addition, a wide range of KPs must be used for very small sample data
with complex characteristics, such as DXN.

4.4.2 Regularization Parameter
RP is always decided by the cross validation or other optimization methods. In terms of results, a small

number of modeling samples require more RPs, that is, the ensemble size increases with decrease of the
number of samples. Moreover, a large KP requires a small number of RPs. As a result, the reasonable
range should also be optimized in the future studies.

4.4.3 Ensemble Size
Selecting a suitable number of ensemble sub-models from candidates in the SEN-modeled process

means that more ensemble sub-models leads to the more complex method, which implies sub-sub-models
can measure the complexity of the proposed AMLSEN method. In practice, the ensemble size of the
SEN-model in the proposed method is selected to make a trade-off between prediction accuracy and
model complexity. Additionally, the ensemble size of the SEN-sub-model is implicitly determined by

Table 4: Statistical results of comparative methods

Boston housing data Concrete compressive strength data Denote

RNSEs RMSEs

Max Mean Min Max Mean Min

PLS – 4.681 – – 10.92 – LVs = 4/ LVs = 7

KPLS – 3.195 – – 8.179 – KLVs = 8/ KLVs = 8

GASEN-BPNN 11.2478 8.9307 5.0509 14.8580 12.0756 10.3971 (13-27-1)/(8-17-1)

GASEN-LSSVM 3.3480 3.2899 3.2393 10.1777 10.0149 9.7490 (100,200)/(100,800)

This paper 3.027 7.163
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using the BBSEN algorithm in terms of prediction performance. Thus, the proposed method has a flexible
structure to demonstrate the conclusion that the ensemble size increases with the decrease of the number
of training samples.

5 Conclusions

A new soft measuring method is proposed based on the AMLSEN-LSSVM algorithm, and many sub-
sub-models based on the different candidate learning parameters are constructed by using the LSSVM.
According to the same KP, these candidate sub-sub-models are selectively fused to obtain SEN-sub-
models by using the BBSEN, which are selectively combined by using the BBSEN again for building
SEN models with different ensemble sizes. Ultimately, the final soft measuring model is determined
based on a newly defined metric index. The simulation results based on the benchmark datasets show the
effectiveness of the proposed method, which demonstrate that not only the proposed method can be used
for softly measuring other difficult-to-measure process parameters in different industrial processes, but
also a more common adaptive multi-layer SEN modeling framework can be explored.
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