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Abstract: The process of segmentation of the cardiac image aims to limit the
inner and outer walls of the heart to segment all or portions of the organ’s bound-
aries. Due to its accurate morphological information, magnetic resonance (MR)
images are typically used in cardiac segmentation as they provide the best contrast
of soft tissues. The data acquired from the resulting cardiac images simplifies not
only the laboratory assessment but also other conventional diagnostic techniques
that provide several useful measures to evaluate and diagnose cardiovascular dis-
ease (CVD). Therefore, scientists have offered numerous segmentation schemes
to remedy these issues for producing more accurate diagnosis. This work conducts
a comparative study among several medical image segmentation schemes to find
the most accurate segmentation quality based on performance measurements such
as Hausdorff distance, peak signal-to-noise ratio (PSNR), and similarity Dice
coefficient. This paper utilizes a multi-axis Cardiac Magnetic Resonance Image
(CMRI) database in three axes for several case studies which provide the results
of various segmentation schemes. Additionally, throughout the experiments, the
performance time of every segmentation scheme is estimated and utilized in the
comparison process as an additional performance factor.

Keywords: CMRI; segmentation techniques; LV cavity segmentation

1 Introduction

The detection of CVD is vital as there may be a shortage of experienced surgeons when needed.
Fortunately, any issues that arise in the cardiovascular task or the cardiac cycle are reproduced in the
changing shape of the left ventricle (LV). This particular symptom can be used in monitoring
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cardiovascular function and can detect potential heart disease. Therefore, an analysis of the human cardiac
function requires a detailed explanation of the shape and structure of the left ventricle.

Image segmentation is considered a significant stage in medical image processing. The image
segmentation process includes splitting the MR image into different sets of pixels with identical features.
The bottom-up methods consist of a set of conventional image processing methods, such as
morphological operations and contour detection, which are systematically utilized for image segmentation
[1]. Active curve models (ACMs) rely on energy function which is concentrated to influence the partition.
The premise of ACM is to turn on with the primary curvature circumnavigated the required objective,
then to completely decompose it so that the segment energy is reduced as a result of the segmented
image [2]. A majority of ACMs are sensible to primary states since curvature initiation is important for
segmentation success. ACM is subject to issues regarding topological alternations and low contrast
images [3–4]. Active Size Models (ASMs) rely on ACM handle segmentation coupled with a template.
The form template uses earlier information such as learning manually annotated scores paired with
learning data sets. The Active Appearance Models (AAMs) use the same premise as, but take into
account the object texture variations and shape information. A set of manual learning data is utilized to
construct the model, and then this model is modified based on the utilized dataset statistical change.
AAM and ASM have constraints and limitations based on the teaching dataset variations. Reiterative
methods have high computing overhead. Database-driven segmentation methods rely on a regulated
learning model. The complete search is used to determine the final segmentation parameters [5,6].

The Level Set Method (LSM) may be considered as a well-established method for performing image
segmentation. It relies on the structure that utilizes the concept of level set lefts like the numerical
analysis described with shape and surface tracking. LSM is able to track topology alternations, which is
the primary drawback of ACMs. Therefore, LSM may be considered the optimal segmentation approach.
However, level calculations require complicated methods, such as LSM having runtime control issues and
requiring an optimal initialization, compounded with the high calculation costs and probability of being
trapped in the local minimum [7–9]. In the biomedical analysis field, image processing is considered a
vital step in identifying CVD. The main purpose of cardiovascular imaging is to paint the inner and the
outer walls of the heart to segment all or portions of the heart’s border [10]. Consequently, precise
segmentation of cardiac imaging is vital for diagnoses and intervention planning because it allows
specialists to accurately visualize the necessary cardiac cavities [11]. The information provided for
segmented CMRI images simplifies physical measurements by offering several useful measures for
evaluation and diagnosis of CVD. The medical image segmentation quality determines the exact
diagnosis, and whether surgery or medical therapy is required.

The paper remainder is structured as follows: Section 2 presents a general classification of medical
image segmentation techniques. Section 3 presents the investigated medical image segmentation schemes.
In section 4, key performance indicators utilized to compute the segmentation quality are presented.
Section 5 represents the experimental results. Comparative results are explored and discussed in section
6 and discussions. In the end, section 7 concludes the paper.

2 Classifications of Medical Image Segmentation Techniques

Image segmentation has various applications including in the biomedical field. Accurate segmentation
techniques are beneficial in aiding physicians and specialists in the early diagnosis of numerous diseases and
therefore can begin to monitor patient conditions appropriately. MR modality is a radiology tool for
visualizing human organ structures in detail [12]. In practice, most heart specialists use CMRI in the
detection of cardiac disease because it provides accurate morphology information, improves soft tissue,
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and pulverizes muscles. Because of these special features, CMRI has become commonly used to analyze
cardiac function, viability, and inequality [11].

Various techniques have been introduced to solve the medical segmentation problem. Medical image
segmentation techniques are classified as: manual segmentation, thresholding techniques, edge-based
techniques, region-based techniques, and graph-based techniques.

2.1 Manual Segmentation

Manual segmentation requests a user to manually trace the desired boundaries. Usually special hardware
and software supporting user interactions are required. The advantage of manual method is that the user can
make full use of their medical knowledge. In many cases, experts’ results are treated as the ground truth
however, manual segmentation is an exceptionally time consuming, tedious, and laborious endeavor. In
addition to the extraneous work involved, manual results tend to be inconsistent across different users. To
solve this issue, averaging several users’ results is encouraged and thus it will increase the processing
time greatly. So, a post-processing procedure to streamline the user defined boundaries is optional.

2.2 Thresholding Techniques

Thresholding techniques make decisions by partitioning the image histogram into several parts. Pixels
that fall in a certain intensity range are classified into the same group. The main drawback of this technique is
that it cannot perform cardiac LV segmentation accurately as only intensity histogram is used, but spatial
information is ignored. Thus, morphological operations are usually needed to post-process the
segmentation results of threshold techniques [13].

2.3 Edge-based Techniques

Edge-based techniques depend on the discontinuity in the features of the image between different
regions corresponding to high intensity gradient values. It is a good indicator of the boundary locations
when edges are prominent in the image. For instance, Caselles geodesic ACM [2] can formulate a closed
curve based on high gradient and the curve regularity. The edge based techniques depend on the image
gradient to detect the objects with edges, but in practicality the evolving curve may not find the true
boundaries because medical images are often noisy with weak boundaries. The main handicap of these
techniques is that they require a good initialization step.

2.4 Region-based Techniques

Region-based techniques [14–19] partition the image into different regions that contain similar intensity
ranges. These techniques are more suitable for segmenting the textured images and they are based on region
growing and merging. They try to minimize the intensity difference inside each segmented region and
maximize the intensity difference between regions. The advantage of region-based techniques is that they
do not need a large image gradient to distinguish between two regions. By considering the information of
the regions into the energy functional, region-based techniques give better segmentation results than
edge-based techniques in the case of noisy images. However, some of region-based techniques may
provide bad segmentation depending on if they are wide or narrow band techniques.

2.5 Graph-based Techniques

Graph-based techniques are also called pixel-based techniques. Since edge and area-based methods have
limitations, it is desirable to use techniques that take the pixel information in the whole image into
consideration. A graph-based technique considers the image as a graph of vertices and edges. This allows
it to use both boundary and region information in image through the relationships between neighbors for
every pixel to obtain better results especially in medical segmentation [20–21].
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3 Implemented Segmentation Techniques

This section presents the implemented techniques through this research.

3.1 Caselles Segmentation Technique

Caselles technique is an active contour edge-based technique. The force function is estimated using the
image gradient. The curve is obtained in the high gradient regions. The regularization is intrinsic in this
technique. There is not a regularization term [2]. Energy criterion will be as follows:

E �ð Þ ¼ c1

Z 1

0
�0 að Þj j2 daþ c2

Z 1

0
g rI � að Þð Þð Þ2 da; (1)

where c1 and c2 are positive constants, ΓðaÞ is the curve, rI :ð Þ represents the intensity gradient.

gðIÞ ¼ 1

1þ rð G � I Þk k2 (2)

G að Þ ¼ 1

2pr2
exp � 1

2r2
aj j2

� �
(3)

@’

@t
að Þ ¼ cþ jð Þg I að Þð Þ r’ að Þk k þ rg I að Þð Þr’ að Þ (4)

G is Gaussian filter with variance r, and φ is a signed distance function. j¼ div r’ að Þ
r’ að Þk k

� �
corresponds to

contour evolution curvature. c is a scalar propagation term that works force to push the contour.

3.2 Chan-Vese Segmentation Technique

A Chan-Vese technique is an ACM without edges or LSM [14,15]. It is a region-based technique. This
technique implementation is done using active contours with level set. It separates the desired image into
dualistic similar (two) areas. It collapses an initial outline to obtain the foreground from the background
based on the layer set-function concept. This technique involves mathematical calculations representing
curvatures and exteriors on a fixed Cartesian grid. LSM is based on ACM on segment deformable
structures and time-varying objects [14].

In LSM, the curve is characterized by the set of zero levels of the level-set function that controls the
curvature movement. LSM has elastic behavior due to the smoothness and flexibility of the level set
function [15]. Assuming that we have an object, we can determine the boundary of the shape in different
cases using the level set function ’ as the following equations:

� ¼ ðx; yÞj’ x; yð Þ¼ 0f g; (5)

E ’ð Þ ¼
Z
�

F I að Þ; ’ að Þð Þdaþ k
Z
�

d ’ að Þð Þ r’ðaÞk kda (6)

where � represents the boundary of the object and E is the energy criterion, d is the Dirac function and λ is a
scalar weight and it weights the effect of the regularization term.

A data attached term is incorporated in the first integral of the above energy function, while the
regularization term is represented by the second integral to smooth the contour. The velocity term
represents the image features of the object.
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F I að Þ; ’ að Þð Þ ¼ H ’ að Þð Þ I að Þ � vð Þ2 þ 1� H ’ að Þð Þð Þ I að Þ � lð Þ2
� �

(7)

where H is Heaviside function and l and v are representing the mean intensities in the interior and exterior of
the contour. These parameters are changed at each iteration update.

v ¼
R
�H ’ að Þð Þ:I að Þ daR

�H ’ að Þð Þ da (8)

l ¼
R
� 1� H ’ að Þð Þð Þ:I að Þ daR

� 1�H ’ að Þð Þ da (9)

The curve evolution is estimated using PDE will be as follows:

@’

@t
að Þ ¼ d ’ að Þð Þ½kj� I að Þ�vð Þ2þ I að Þ�lð Þ2Þ� (10)

where j is the curvature term weighted byk. Chan-Vese technique could be a framework for many region-
based active contour segmentation techniques. An advantage of this technique is that it can segment noisy
images and it does not need to perform the smoothing process [14,15].

3.3 Lankton Segmentation Technique

The Lankton segmentation technique is a region-based ACM [16], which isolates the foreground from the
background in a model to perform medical segmentation including cardiac segmentation. Using the energy
minimization, the model can match the image. This technique segments non-homogeneous objects.

E ’ð Þ ¼
Z
�

dð’ að ÞÞ
Z
�

B a; bð Þ: F I bð Þ; ’ bð Þð Þdb daþ k
Z
�

dð’ að ÞÞ r’ að Þk kda (11)

where E is the energy function in Lankton technique, d is the Dirac function, and λ is the scalar weight of the
term of curvature and it represents the effect of the contour regularization term. B ða; bÞis a ball with radius r
which its center located at pointa.

B a; bð Þ ¼
1; a� bk k � r

0; otherwise

8<: (12)

In the Lankton-Chan Vese, the feature F will be as follows:

F I bð Þ; ’ bð Þð Þ ¼ H ’ bð Þð Þ I bð Þ � vað Þ2 þ 1� H ’ bð Þð Þð Þ I bð Þ � lað Þ2
� �

(13)

while in the Lankton-Yezzi, the feature F will be as follows:

F I bð Þ; ’ bð Þð Þ ¼ va � lað Þ2 (14)

where, va and la are the mean intensities localized by B a; bð Þ at a point a.

va ¼
R
� B a; bð Þ:H ’ bð Þð Þ:I bð Þ dbR

� B a; bð Þ:H ’ bð Þð Þ db (15)
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la¼
R
� B a; bð Þ: 1� H ’ bð Þð Þð Þ:I bð ÞdbR

� B a; bð Þ: 1� H ’ bð Þð Þð Þdb (16)

The evolution equation,

@’

@t
ðaÞ ¼ dð’ að ÞÞ

Z
�

B a; bð Þ:r’FðI bð Þ; ’ bð ÞÞdb þkd’ að Þj (17)

where the feature using the Lankton-Chan Vese is as follows:

r’F I bð Þ; ’ bð Þð Þ ¼ d ’ bð Þð Þ I bð Þ�vað Þ2�ðI bð Þ�laÞ2 (18)

And in the Lankton-Yezzi, the feature will be as follows:

r’F I bð Þ; ’ bð Þð Þ ¼ dð’ bð ÞÞ ðI bð Þ�vaÞ2
Av

� ðI bð Þ�laÞ2
Al

 !
(19)

where;Alis local exterior regions area and Av is local interior regions area.

Al ¼
Z
�

B a; bð Þ:ð1� H ’ að Þð Þ db (20)

Av ¼
Z
�

B a; bð Þ:H ’ að Þð Þ db (21)

when va and la are very different at every point a along the contour, the best of this energy is obtained. In the
Lankton technique local foreground and background should be different to get suitable results.

3.4 Shi-Karl Segmentation Technique

The Shi-Karl segmentation technique is a fast technique that depends on a level-set based curve
evolution approximation [17]. This technique consists of two phases or cycles to get a curve evolution
approximation without the use of PDEs. The two phases represent the data-dependent and the
regularization terms for the curve smoothness. Gaussian filtering is used to accomplish the smoothing
term. Switching mechanism using two linked lists is applied in the curve evolution phases to find the
final curve. To obtain fast evolution, the two linked lists are updated each iteration of the segmentation
process using this technique. The implicit function is considered to be a piecewise constant function of
four values. It can be expressed as:

að Þ ¼
3 if a is an exterior point
1 if a 2 Lout

�1 if a 2 Lin

�3 if a is an interior point

8>><>>: (22)

The two narrow-bands of neighboring points near the curve are stored into lists Lin and Lout. The curve
motion can be accomplished by switching points between the two lists. The data dependent speed Fd is
defined as:

Fd ¼
þ1; if f 2 ½I1; I2�

�1; otherwise

8<: (23)

where f signifies the segmented image and ½I1; I2� is the intensities variety for the segmented region [17].

20 IASC, 2021, vol.29, no.1



The Gaussian filter is of the form:

G að Þ ¼ 1

2pr2
exp � 1

2r2
aj j2

� �
(24)

The evolution of the curve is done along with a smoothing speed Fs to propose a curvature-dependent
smoothing regularization. For the boundary points, the smoothing speed is specified by:

FsðaÞ ¼
1; if G� H �b’ð Þ að Þ. 1

2�1; if G� H �b’ð Þ að Þ, 1
2

0; otherwise

8>><>>: (25)

where H represents the Heaviside function and H �b’ð Þ ¼ v, represents the object region indication function
covered by the zero-level set of b’. The feature function is given by:

F I að Þ; ’ að Þð Þ ¼ H ’ að Þð Þ I að Þ � vð Þ2 þ 1� H ’ að Þð Þð Þ I að Þ � lð Þ2 (26)

where v and l are two updatable parameters at each segmentation iteration.

v ¼
R
�H ’ að Þð Þ:I að Þ daR

�H ’ að Þð Þ da (27)

l¼
R
� 1� H ’ að Þð Þð Þ:I að Þ daR

� 1�H ’ að Þð Þ da (28)

3.5 Li Segmentation Technique

The Li segmentation technique is a region-based ACM [18]. It uses the formulation of the variational
level set. A region scalable fitting (RSF) energy functions. The average values of the local intensities are
considered to be the optimal fitting functions. Regions intensity information may be used as a
controllable scale. The usage of intensity varies from wide domain of the whole image using this certain
scale. Variational level set depends on the energy. Due to the regularization term, regularity of the level
set function is integrated in this technique to avoid expensive re-initialization procedures. Energy criterion
will be as follows:

E ’ð Þ ¼ h1

Z
�

Z
�

Kr a� bð Þ I bð Þ � f 1 að Þj j2H ’ að Þð Þdb
� �

da

þ h2

Z
�

Z
�

Kr a� bð Þ I bð Þ � f 2 að Þj j2 1� H ’ að Þð Þð Þdb
� �

da

þ v

Z
�

d ’ að Þð Þ r’ að Þk kda þl
Z
�

1

2
r’ að Þk k�1ð Þ2 da

(29)

where h1 and h2 are constants. The region-scalability is performed using the Gaussian kernel Kr with a
positive scalar r. The two first integrals of this equation represent the data dependent term localized
around each point a. Third integral represents the term of regularization to smooth the curve. Fourth
integral is an additional regularization term to preserve the signed distance effect of the level set in the
evolution process [18].
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Kr að Þ ¼ 1

ð2pÞn=2rn
e� ak k2=2r2 (30)

For a scale parameter r. 0. The two updatable functions f 1 and f 2 centered at pixel a are:

f 1 að Þ ¼ Kr� H ’ að Þð ÞI að Þð Þ
Kr�H ’ að Þð Þ ; (31)

f 2 að Þ ¼ Kr� 1� H ’ að Þð Þð ÞI að Þð Þ
Kr� 1� H ’ að Þð Þð Þ ; (32)

The following equation represents the curve evolution,

@’

@t
að Þ ¼ d ’ að Þð Þ h1

Z
�

Kr a� bð Þ I bð Þ � f 1 að Þj j2db þ h2

Z
�

Kr a� bð Þ I bð Þ � f 2 að Þj j2db
� �

þ vd ’ að Þð Þj þ l r2’ að Þ�j
� 	 (33)

Because of f 1, f 2; and Kr, this algorithm may segment the whole image.

3.6 Bernard-Friboulet Segmentation Technique

This technique is a variational B-spline region-based LSM [19]. The concept of discrete representation
of the associated implicit function is used by most of the level-set based ACMs. In this technique, a
continuous function represented in a B-spline concept is modeled. The energy functional is minimized to
get the solution of the segmentation of the variational problem in B-splines [22].

The evolving curve � is the zero level-set of the continuous function ’ að Þ that satisfies [14]:
’ að Þ. 0; 8a 2 �in

’ að Þ, 0; 8a 2 �out

’ að Þ ¼ 0; 8a 2 �

8<: (34)

where �in and �out are the region in � bounded inside the object by � and the region outside the object.

’ að Þ¼
X
k

c k½ �bn a

h
k

� �
(35)

The implicit function ’ :ð Þ is B-spline functions combination. bn is the uniform B-spline of degree n in
symmetric dimension. A grid spanning � contains knots of the B-spline with a regular spacing. c k½ �and h
represent the B-spline coefficients and scale parameter that affects the smoothing degree. Energy criterion
is as follows,

E ’ð Þ ¼
Z
�

F I að Þ; ’ að Þð Þ daþk
Z
�

d ’ að Þð Þ r’ að Þk kda (36)

F I að Þ; ’ að Þð Þ ¼ I að Þ � vð Þ2 H ’ að Þð Þ þ I að Þ � lð Þ2 1� H ’ að Þð Þð Þ
� �

(37)

v ¼
R
�H ’ að Þð Þ:I að Þ daR

�H ’ að Þð Þ da (38)
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l ¼
R
� 1� H ’ að Þð Þð Þ:I að Þ daR

� 1�H ’ að Þð Þ da (39)

The evolution equation corresponds to every coefficient c½k0� is calculated as:

@E

@c½k0� ¼
Z
�

@F a; ’ að Þð Þ
@’ að Þ : bn

a

h
k0

� �
da (40)

where h is the scale factor to choose the evolving contour smoothness degree.

@F a; ’ að Þð Þ
@’ðaÞ ¼ dð’ að ÞÞ ðI að Þ�vÞ2� I að Þ�lð Þ2

� �
(41)

The level set evolution is obtained as:

ciþ1 ¼ ci � frcE ðciÞ (42)

where f is number of iteration and rc represents energy gradient.

4 Performance Metrics

To assess the performance of medical image segmentation methods, several segmentation performance
metrics are utilized such as Dice Metric (DM), PSNR and Haussdorff distance (HS) [23,24].

4.1 Dice Metric (DM)

The DM can be expressed as [23]:

DM ¼ 2ðAM \ ASÞ
AM þ AS

(43)

DM is a number between 0 and 1, where 0 and 1 indicates no overlapping at all and full overlapping.

4.2 PSNR

The PSNR can be mathematically expressed as [24]:

PSNR ¼ 10 log10
d

MSEðAM;ASÞ
� �

(44)

4.3 Haussdorff Metric (HS):

The Haussdorff distance is utilized for measuring the distance among subgroups of a metric space. The
HS can be expressed as [23]:

HS ¼ max D AM;ASð Þ;D AS;AMð Þð Þ (45)

D AM;ASð Þ ¼ max
x2AM

ðmin
y2AS

ð x� yk kÞÞ (46)

where AS and AM are the resulted contour and reference contour.

5 Experimental Results

The experimental results are categorized into two distinct sections to underline both the segmentation
and psoriasis lesion localization results. The presented results of this paper were obtained through using
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different 6 techniques to 300 sets of CVD. In this paper, multi-axis CMR database was used in three axes for
6 case studies to provide the results of various segmentation schemes. In this section, the employed
techniques for studying and segmenting medical images are executed using MATLAB. Figs. 1a–1f
present the Caselles segmentation technique results. These results indicate that this technique gives better
results when the initialization step is suitable and the image has a high intensity gradient at the edge
between the cavity and the myocardium of LV. It is also clear from the results that the blood pool
segmentation depends on the boundary features. Both of Li and Bernard segmentation techniques show a
wide band segmented results that are not reasonable to the blood pool segmentation as shown in Figs. 2
and 3. This is apparently visible in the Bernard segmentation technique where the segmentation partitions
of each slice to bright regions and dark regions cannot separate the LV cavity from other parts of the
image. The relationship between each pixel and its adjacent neighbors is considered. As it could be seen
from Figs. 4a–4f, the blood pool of LV is purely delineated. That is the resulted segmented image of the
Chan-Vese technique appears well-defined. Based on the obtained results, one can say Chan-Vese
technique works well with homogenous regions such as cardiac images. In addition, the resulted
segmented slices appear of high smoothing degree as well. The segmented images from the blood pool of
LV obtained using the Lankton-Yezzi segmentation is presented in Figs. 5a–5f. As it could be seen from
these figures, the quality of the segmentation process using the Lankton-Yezzi technique depends on the
initialization. As it could be seen from Figs. 6a–6f, the two cycles of Shi-Karl segmentation technique
produce good quality segmentation to the LV blood pool.

Figure 1: Sample results of Caselles technique

Figure 2: Sample results of Li technique

Figure 3: Sample results of Bernard-Friboulet technique
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6 Comparative Results

This section compares the performance of the studied medical image segmentation techniques. The
segmentation quality is measured through comparing the resulted slices of different schemes with manual
segmented slices using DM, PSNR, HS, and the execution time. The key performance matrices mean
values of LV segmentation techniques are given in Tab. 1. Caselles, Chan-Vese and Shi-Karl techniques
can successfully segmented the CMR slices. Also, Lankton technique gives good DM results, but it
consumes much time to get closer to the object borders. Bernard and Li wideband segmentation
techniques can’t give good results for segmenting LV blood pool.

Figure 4: Sample results of Chan-Vese technique

Figure 5: Sample results of Lankton technique

Figure 6: Sample results of Shi-Karl technique

Table 1: Average comparative results of segmentation on slices from the first, second, and third dataset using
different techniques

CMR Slice NO. Segmentation technique Mean DM PSNR Mean HS Mean Execution time

CMR Slice 1 Caselles 0.924 20.16 15.662 3.063245

Chan-Vese 0.964 22.38 9.962 2.506578

Li 0.434 9.52 150.872 8.163245

Lankton 0.964 22.30 11.902 3.313245

Bernard 0.264 5.93 149.822 131.4166

Shi-Karl 0.964 22.55 7.612 2.099911
(Continued)
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The summery of the obtained results is explained in Tab. 2 that show the overall cardiac segmentation
results in diastole and systole phases of the cardiac cycle of the heart. Most LV segmentation of CMR slices
in the diastolic phase gives results better than the systolic phase results.

Table 1 (continued).

CMR Slice NO. Segmentation technique Mean DM PSNR Mean HS Mean Execution time

CMR Slice 2 Caselles 0.914 20.70 12.302 3.223245

Chan-Vese 0.924 21.08 8.962 3.043245

Li 0.394 9.34 151.712 8.086578

Lankton 0.934 21.21 9.902 3.489911

Bernard 0.254 6.26 159.422 97.78325

Shi-Karl 0.924 20.98 8.962 1.903245

CMR Slice 3 Caselles 0.884 22.33 8.712 3.269911

Chan-Vese 0.954 22.49 7.302 2.979911

Li 0.364 8.86 154.542 8.029911

Lankton 0.944 24.02 5.902 4.019911

Bernard 0.244 6.36 162.242 89.30658

Shi-Karl 0.954 22.25 7.972 2.073245

CMR Slice 4 Caselles 0.874 18.96 18.702 3.213245

Chan-Vese 0.994 25.69 5.022 2.976578

Li 0.374 9.07 153.062 7.939911

Lankton 0.934 21.71 9.902 3.429911

Bernard 0.264 6.42 160.692 93.71991

Shi-Karl 0.994 25.26 5.142 2.063245

CMR Slice 5 Caselles 0.754 16.62 17.392 3.909911

Chan-Vese 0.984 24.90 5.372 3.256578

Li 0.384 9.95 157.172 9.326578

Lankton 0.894 20.35 12.902 3.913245

Bernard 0.224 6.09 164.432 72.36325

Shi-Karl 0.974 24.62 5.902 2.026578

CMR Slice 6 Caselles 0.954 23.31 10.752 2.893245

Chan-Vese 0.994 26.10 5.022 2.499911

Li 0.394 10.23 158.112 8.633245

Lankton 0.964 24.05 8.712 3.129911

Bernard 0.224 6.19 165.822 109.9433

Shi-Karl 0.994 26.43 5.022 1.583245
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Shi-Karl and Chan-Vese techniques give good results in term of both the DM and computation time, but
they don’t take the characteristics of the edges in consideration. Although the Shi-Karl technique gives better
results in the equality values, the final outline of the Chan-Wes technique seems smooth due to the decryption
of the level playing function used in the Shi-Karl technique. The DM column in Tab. 2 compares the DM
values for all of the examined segmentation techniques. From that column, it’s clear to see that Shi-Karl
and Chan-Vese techniques have highest and close values of DM measurements while the lowest similarity
value is obtained by Bernard-Friboulet technique. The quality of the segmentation for all the examined
techniques is measured using PSNR as shown in Tab. 2, PSNR column. In this column, the PSNR values
for all of the examined segmentation techniques are compared. From that column, it’s easy to note that
Shi-Karl and Chan-Vese techniques have highest and close values of PSNR measurements while the
lowest value is obtained by Bernard-Friboulet technique. The next column in Tab. 2 entitled HS
compares the HS values for all of the examined segmentation techniques. The lowest and close HS
measurements are obtained using both of the Shi-Karl and Chan-Vese segmentation techniques while
Bernard-Friboulet and Li techniques have the highest values of HS measurements. So, the obtained
results of cardiac segmentation using Bernard-Friboulet and Li segmentation techniques are not accurate,
wideband, and far from the ground truth. One more final point to state is that, both of Shi-Karl and Chan-
Vese techniques have the lowest and close segmentation time as listed in Tab. 2. In conclusion, based
on the obtained results, one can notice that, compared to all of the examined segmentation techniques,
Shi-Karl segmentation technique produce best quality segmentation to the LV blood pool, and also it
takes the lowest segmentation time. To be fair, we must say that, the Chan-Vese technique occupies the
second rank from the segmentation quality and segmentation time points of view. Its results are very
close to Shi-Karl technique. According to these results, Shi-Karl and Chan-Vese are the best in between
the tested segmentation techniques. On the other hand, the LV blood pool segmentation quality
obtained by Li and Bernard segmentation techniques is the worst. Such techniques also consumes the
longest segmentation time. Therefore, in the range of the tested data sets and the examined
segmentation techniques, we can say that, Li and Bernard segmentation techniques cannot separate the
LV cavity from other parts of the image.

7 Conclusion

In this research paper, the performance of the studied segmentation techniques is evaluated and
compared using a multi-axis 3D multi-layer CMRI dataset using several key performance indicators such
as PSNR, DM, and HS. During the experiments, the same 3D short-axis multilayer CMR dataset is used

Table 2: Average comparative results of LV blood pool segmentation of CMR slices in systole phase and
diastole phase

Segmentation
technique

Systole phase Diastole phase

DM PSNR HS Execution time DM PSNR HS Execution time

Caselles 0.8906 20.4466 15.239 3.858478 0.8423 19.5841 14.956 3.858478

Chan-Vese 0.9673 22.5383 8.544 3.708178 0.9615 22.6916 8.673 3.708178

Li 0.3948 21.2941 159.882 13.45968 0.3048 7.9966 164.699 13.45968

Lankton 0.8781 20.82 15.269 4.942078 0.8648 19.66 14.941 4.942078

Bernard 0.2848 19.175 161.582 208.9577 0.2098 5.8391 166.881 208.9577

Shi-Karl 0.9765 22.5758 7.367 2.632378 0.9641 23.1866 8.826 2.632378
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for various case studies to illustrate the results of such segmentation techniques. In the range of the tested
datasets and examined segmentation techniques, it is noticed that the Shi-Karl segmentation technique is
the best due to the resulted segmentation quality and segmentation time points of view. The Chan-Vese
technique occupies the second rank from the segmentation quality and segmentation time points of view.
Its results are particularly close to the Shi-Karl technique results. However, LV blood pool segmentation
quality obtained by the Li and Bernard segmentation techniques is the worst. Such techniques also
consume the longest segmentation time. Therefore, in the range of the tested datasets and the examined
segmentation techniques, we can state that the Li and Bernard segmentation techniques cannot separate
the LV cavity from other parts of the image. According to these results, the Shi-Karl and Chan-Vese
techniques are the optimal choice among the tested segmentation techniques in separating the LV cavity
from other parts of the CMR images.

Acknowledgement: This study was funded by the Deanship of Scientific Research, Taif University
Researchers Supporting Project number (TURSP-2020/08), Taif University, Taif, Saudi Arabia.

Funding Statement: This study was funded by the Deanship of Scientific Research, Taif University
Researchers Supporting Project number (TURSP-2020/08), Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. Mazaheri, P. Suhaiza, R. Wirza and R. M. Tayebi, “Echocardiography image segmentation-a survey,” in Int.

Conf. on Advanced Computer Science Applications and Technologies, Kuching, Malaysia, pp. 327–332, 2013.

[2] V. Caselles, R. Kimmel and G. Sapiro, “Geodesic active contours,” International Journal of Computer Vision, vol.
22, no. 1, pp. 61–79, 1997.

[3] S. Engelhardt and K. H. Maier-Hein, “Automatic cardiac disease assessment on cine-MRI via time-series
segmentation and domain specific,” in 8th International Workshop, STACOM 2017, Statistical Atlases and
Computational Models of the Heart. ACDC and MMWHS Challenges. Vol. 10663, Springer, 2018.

[4] R. Kashyap and V. Tiwari, “Active contours using global models for medical image segmentation,” Int. Journal of
Computational Systems Engineering, vol. 4, no. 2/3, pp. 195–201, 2018.

[5] J. Carneiro, C. Nascimento and A. Freitas, “The segmentation of the left ventricle of the heart from ultrasound data
using deep learning architectures and derivative-based search methods,” IEEE Trans. on Image Processing, vol.
21, no. 3, pp. 968–982, 2012.

[6] O. S. Faragallah, “An enhanced semi-automated method to identify the endo-cardium and epi-cardium borders,”
Journal of Electronic Imaging, vol. 21, no. 2, pp. 023024, 2012.

[7] S. P. Bordas, E. Burman, M. G. Larson and M. A. Olshanskii, “Geometrically unfitted finite element methods and
applications,” in Proc. of the UCL Workshop, Springer, Berlin, Germany, 2017.

[8] S. Y. Yeo, J. Romero, M. Loper, J. Machann and M. Black, “Shape estimation of subcutaneous adipose tissue
using an articulated statistical shape model,” Computer Methods in Biomechanics and Biomedical
Engineering: Imaging & Visualization, vol. 6, no. 1, pp. 51–58, 2018.

[9] I. B. Ayed and A. Mitiche, “A region merging prior for variational level set image segmentation,” IEEE Trans. on
Image Processing, vol. 17, no. 12, pp. 2301–2311, 2008.

[10] V. Tavakoli and A. A. Amini1, “A survey of shaped-based registration and segmentation techniques for cardiac
images,” Computer Vision and Image Understanding, vol. 117, no. 9, pp. 966–989, 2013.

[11] J. Ringenberg, M. Deo, V. Devabhaktuni, O. Berenfeld, P. Boyers et al., “Fast, accurate, and fully automatic
segmentation of the right ventricle in short-axis cardiac MRI,” Computerized Medical Imaging and Graphics,
vol. 38, no. 3, pp. 190–201, 2014.

28 IASC, 2021, vol.29, no.1



[12] K. Nadar, “Magnetic Resonance Imaging,” November 20, 2015. [Online]. Available at: http://en.wikipedia.org/
wiki/MRI.

[13] A. Ahirwar, “Study of techniques used for medical image segmentation and computation of statistical test for
region classification of brain MRI,” International Journal of Information Technology and Computer Science,
vol. 5, no. 5, pp. 44–53, 2013.

[14] S. Soomro, A. Munir and K. N. Choi, “Hybrid two-stage active contour method with region and edge information
for intensity inhomogeneous image segmentation,” PloS ONE, vol. 13, no. 1, pp. e0191827, 2018.

[15] X. F. Wang, D. S. Huang and H. Xu, “An efficient local Chan-Vese model for image segmentation,” Pattern
Recognition, vol. 43, no. 3, pp. 603–618, 2010.

[16] S. Lankton and A. Tannen, “Localizing region-based active contours,” IEEE Trans. on Image Processing, vol. 17,
no. 11, pp. 2029–2039, 2008.

[17] Y. Shi and W. C. Karl, “A real-time algorithm for the approximation of level-set based curve evolution,” IEEE
Trans. on Image Processing, vol. 17, no. 5, pp. 645–656, 2008.

[18] K. Ding, “A simple method to improve initialization robustness for active contours driven by local region fitting
energy,” arXiv preprint: 1802.10437, pp. 1–9, 2018.

[19] O. Bernard, D. Friboulet and M. Unser, “Variational B-spline level-set: a linear filtering approach for fast
deformable model evolution,” IEEE Trans. Image Processing, vol. 18, no. 6, pp. 1179–1191, 2009.

[20] L. Grady, “Random walks for image segmentation,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 28, no. 11, pp. 1768–1783, 2006.

[21] Z. Gao, L. Liu, H. Liu, J. Gao, S. Xu et al., “Automatic segmentation of the left ventricle in cardiac MRI using
local binary fitting model and dynamic programming techniques,” PLoS ONE, vol. 9, no. 12, pp. e114760, 2014.

[22] B. Ayed and A. Mitiche, “A partition constrained minimization scheme for efficient multiphase level set image
segmentation,” in IEEE Int. Conf. on Image Processing (ICIP), Atlanta, GA, pp. 1641–1644, 2006.

[23] G. N. Geweid, M. A. Elsisy, O. S. Faragallah and R. F. Razai, “Automatic tumor detection in medical images using
a non-parametric approach based on image pixel intensities,” Expert Systems with Applications, vol. 120, no. 1,
pp. 139–154, 2019.

[24] O. S. Faragallah, H. El-Hoseny, W. El-Shafai, W. A. El-Rahman, El-Sayed H. S. et al., “A comprehensive survey
analysis for present solutions of medical image fusion and future directions,” IEEE Access, vol. 9, pp. 11358–
11371, 2021.

IASC, 2021, vol.29, no.1 29

http://en.wikipedia.org/wiki/MRI
http://en.wikipedia.org/wiki/MRI

	Performance Evaluation of Medical Segmentation Techniques for Cardiac MRI
	Introduction
	Classifications of Medical Image Segmentation Techniques
	Implemented Segmentation Techniques
	Performance Metrics
	Experimental Results
	Comparative Results
	Conclusion
	flink8
	References


