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Abstract: In this research article, we propose and study a new model the so-called
Marshal-Olkin Kumaraswamy moment exponential distribution. The new distri-
bution contains the moment exponential distribution, exponentiated moment
exponential distribution, Marshal Olkin moment exponential distribution and
generalized exponentiated moment exponential distribution as special sub-models.
Some significant properties are acquired such as expansion for the density func-
tion and explicit expressions for the moments, generating function, Bonferroni
and Lorenz curves. The probabilistic definition of entropy as a measure of uncer-
tainty called Shannon entropy is computed. Some of the numerical values of
entropy for different parameters are given. The method of maximum likelihood
is adopted for estimating the model parameters. We study the behavior of the
maximum likelihood estimates for the model parameters using simulation study.
A numerical study is performed to evaluate the behavior of the estimates with
respect to their absolute biases, standard errors and mean square errors for differ-
ent sample sizes and for different parameter values. Further, we conclude that the
maximum likelihood estimates of the Marshal-Olkin Kumaraswamy moment
exponential distribution perform well as the sample size increases. We take advan-
tage of applied studies and offer two applications to real data sets that prove
empirically the power of adjustment of the new model when compared to other
lifetime distributions.

Keywords: Marshal-Olkin Kumaraswamy family; moment exponential
distribution; quantile function; maximum likelihood estimation

1 Introduction

The modeling and analysis of lifetimes are important aspects of statistical work in a wide variety of
technological fields. The procedure of adding one or two shape parameters to a class of distributions to
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obtain more flexibility, especially for studying tail behavior, is a well-known technique in the statistical
literatures. Marshall et al. [1] proposed a method of adding a shape parameter to a family of distributions
and many authors used their method to extend several well-known distributions.

The cumulative distribution function (cdf) and the probability density function (pdf) of the Marshall-
Olkin (MO) family are defined as follows:

FMOðx; a; fÞ ¼ G x; fð Þ� 1� �a �Gðx; fÞð Þ½ �; (1)

and,

fMOðx; a; fÞ ¼ ag x; fð Þ
.

1� �a �Gðx; fÞð Þ½ �2; (2)

where, a > 0;�a ¼ 1� a; and �Gðx; fÞ ¼ 1� Gðx; fÞ is the survival function. The parameter �a is known
as a tilt parameter and interpreted �a in terms of the behavior of the hazard rate function (hrf) of �FðxÞ: This
ratio is increasing in x for �a � 1 and decreasing in x for �a 2 ð0; 1Þ(see [2]). It is obvious that many new
families can be derived from MO set up by considering different baseline distributions-G in Eq. (1).
These new families are usually termed as MO extended-G distribution. The generalized MO proposed in
[3] through exponentiating the MO survival function is defined as follows:

�FGMOðx; a; b; fÞ ¼ að�G x; fð ÞÞ
1� �að�G x; fð ÞÞ
� �b

: (3)

Tahir et al. [4] presented another generalization by exponentiating the cdf of the MO family; as
follows:

FG2MOðx; a; b; fÞ ¼ 1� að�G x; fð ÞÞ
1� �að�G x; fð ÞÞ

� �b
: (4)

[For more on MO distributions see [5–13]]. Cordeiro et al. [14] defined the Kumaraswamy-G (Kw-G)
class with the cdf and pdf given by

FKwðx; a; b; fÞ ¼ 1� 1� Gðx; fÞð Þa½ �b; (5)

and,

fKwðx; a; b; fÞ ¼ abg x; fð Þ Gðx; fÞð Þa�1 1� Gðx; fÞð Þa½ �b�1
; (6)

where a > 0 and b > 0 are shape parameters, in addition to those in the baseline distribution which partly
govern skewness and variation in tail weights. Handique et al. [15] proposed a new extension of the MO
family by considering the cdf and pdf of Kw-G distribution in (5) and (6) and call it MO Kumaraswamy-G
(MOKw-G) distribution with cdf and pdf given by:

FMOKwðx; a; b; a; fÞ ¼ 1� 1� Gðx; fÞð Þa½ �b
1� �a 1� Gðx; fÞð Þa½ �b

; (7)

and,

fMOKwðx; a; b; a; fÞ ¼ abag x; fð Þ Gðx; fÞð Þa 1� Gðx; fÞð Þa½ �b�1

1� �a 1� Gðx; fÞð Þa½ �b
� �2 ; (8)
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where G x; fð Þ is the baseline cdf depending on a parameter vector f; and a; b > 0; are additional shape
parameters. The MOKw-G family generalizes the Kw-G family as well as the MO family.

The exponential distribution is a very popular statistical model and, probably, is one of the parametric
models that most extensively applied in several fields [16]. Due to its importance, several studies introducing
and/or studying extensions of the exponential distribution are available in the literatures. Some forms of
exponential distribution are; the exponentiated exponential [17,18], beta exponential [19], beta
generalized exponential [20], moment exponential [21], exponentiated moment exponential [22],
generalized exponentiated moment exponential [23], extended exponentiated exponential [24], MO
exponential Weibull [25], MO generalized exponential (MOGE) [26], MO length-biased exponential
(MOLBE) [27], alpha power transformed extended exponential [28] and MO Kumaraswamy exponential
(MOKwE) [29] distributions.

Moment distributions have a vital role in mathematics and statistics, in particular in probability theory, in
the perspective research related to ecology, reliability, biomedical field, econometrics, survey sampling and
in life-testing. Dara et al. [21] proposed the moment exponential (ME) distribution through assigning weight
to the exponential distribution. They showed that their proposed model is more flexible model than the
exponential distribution. The pdf of the ME distribution is specified by:

gðx; bÞ ¼ x

b2
e

�x

b ; b; x > 0; (9)

where, b is the scale parameter. The cdf corresponding to (9) is

Gðx;bÞ ¼ 1� ð1þ x

b
Þ e
�x

b ; b; x > 0: (10)

In this paper, we introduce and study the MO Kumaraswamy ME (MOKwME) distribution. The
MOKwME model includes as special cases the generalized exponentiated ME (GEME), exponentiated
ME (EME), MOLBE, Kumaraswamy ME (KwME) and ME distributions, which are very important
statistical models, especially for applied works. It is interesting to observe that its hazard rate function
can be, increasing, decreasing, and upside-down bathtub. Accordingly, it can be used effectively to
analyze lifetime data sets. Some statistical properties of the proposed model are provided. Maximum
likelihood (ML) estimators of the model parameters are presented. A simulation study and an application
of the suggested model on real life data set are given.

2 Model Formulation

The cdf and pdf of the MOKwME distribution are obtained by substituting (9) and (10) in (7) and (8) as
follows:

Fðx;wÞ ¼ 1� 1� 1� �ðx;bÞð Þa½ �b
1� �a 1� 1� �ðx;bÞð Þa½ �b

; a; b; a; b > 0; x > 0; (11)

and,

f ðx;wÞ ¼ abax

b2
e

�x

b 1� �ðx; bÞð Þa�1 1� 1� �ðx; bÞð Það Þb�1 1� �a 1� 1� �ðx; bÞð Þa½ �b
� ��2

: (12)
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where, �ðx;bÞ ¼ 1þ x=b

� �
e
�x
b ;w ¼ ða; b; a; bÞ is a set of parameters. A random variable X has

MOKwME distribution will be denoted by X~ MOKwME ða; b; a; bÞ: The MOKwME distribution is a
very flexible model that approaches to some distributions as follows:

� For a ¼ 0 and b ¼ 1; we obtain EME distribution presented in [22]

� For a ¼ 1 and b ¼ 1; we obtain MOLBE distribution presented in [27].

� For a ¼ 0; b ¼ 1; and y ¼ x1=d we obtain, GEME distribution presented in [23].

� For a ¼ 1; b ¼ 1; and a ¼ 0; we obtain, ME distribution presented in [21].

� For a ¼ 1; we obtain, KwME distribution as a new model.

Next, we provide a simple motivation for the MOKwME distribution in the medical context as follows
(see [15]): Consider a random sample X1, X2,…, XN, where the Xi’s, i =1,2,…,N, be a sequence of identically
independent distributed random variables with survival function 1� 1� �ðx;bÞð Þa½ �b then
� If N has a geometric distribution with parameter a; ð 0 < a < 1Þ independent of Xi’s then the density of the
random variable W1= min( X1, X2,…,XN ) is that MOKwME ða; b; a; bÞ:

� If N has a geometric distribution with parameter 1=a; ða > 1Þ independent of, Xi’s then density of the
random variable W2 = max( X1, X2,…, XN ) distributed as MOKwME ða�1; a; b;bÞ:
This setup is usually common in oncology, where N represents the amount of cells with metastasis

potential and Xi denotes the time for the ith cell to metastasis. So, X represents the recurrence time of the
cancer.

The survival and hazard rate functions of X are given, respectively, as follows:

�Fðx;wÞ ¼ a 1� 1� �ðx;bÞð Þa½ �b 1� �a 1� 1� �ðx;bÞð Þa½ �b
n o�1

; (13)

and

hðx;wÞ ¼ a b

b2
x e

�x

b 1� �ðx; bÞð Þa�1 1� 1� �ðx; bÞð Það Þ�1 1� �a 1� 1� �ðx;bÞð Þa½ �b
n o�1

: (14)

Plots of the pdf and hrf of the MOKwME distribution are displayed in Figs. 1 and 2, respectively, for
different values of parameters. As seen from Fig. 1, the shapes of the pdf take different forms. Also, it is clear
from Fig. 2 that the shapes of the hrf are reversed J-shaped, decreasing, increasing and upside-down bathtub
at some selected values of parameters.

Figure 1: The pdf of the MOKwME distribution for some values of parameters
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3 Statistical Properties

3.1 Expansion

Here, explicit expression for the MOKwME density function is provided. Since, the binomial expansion,
for real non-integer value of k, is given by:

ð1� yÞ�k ¼
X1
j¼0

�ðk þ jÞyj
�ðkÞj! ; yj j, 1; k > 0: (15)

Using (15) in pdf (12), we obtain

f ðx;wÞ ¼
X1
j¼0

ðjþ 1Þ a b að�aÞj x
b2

e

�x

b 1� ð1þ x

b
Þ e
�x

b

0
@

1
A

a�1

1� 1� ð1þ x

b
Þ e
�x

b

0
@

1
A

a0
@

1
A

bðjþ1Þ�1

: (16)

Again applying the binomial expansion in "previous equation", we obtain

f ðx;wÞ ¼
X1
i;j¼0

ð�1Þiðjþ 1Þ abað�aÞj bðjþ 1Þ � 1
i

� �
x

b2
e

�x

b 1� ð1þ x

b
Þ e
�x

b

0
@

1
A

aðiþ1Þ�1

: (17)

Hence the pdf of MOKwME distribution can be written as follows:

f ðx;wÞ ¼
X1
i;j¼0

wi;jaðiþ 1Þgðx; bÞ Gðx;bÞð Þaðiþ1Þ�1; (18)

where, wi;j ¼ bað�aÞj
ðiþ 1Þ ð�1Þiðjþ 1Þ bðjþ 1Þ � 1

i

� �
:

Eq. (18) reveals that the MOKwME density function is a linear mixture of EME density functions with
power parameter aðiþ 1Þ.

Figure 2: The hrf of the MOKwME distribution for some values of parameters
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3.2 Moments

Here, we discuss the sth moment for the MOKwME distribution. The sth moment for the MOKwME
distribution about zero is derived by using pdf (18) as follows:

l0s ¼
X1
i;j¼0

wi;j
aðiþ 1Þ

b2

Z1
0

xsþ1 e

�x

b 1� ð1þ x

b
Þ e
�x

b

0
@

1
A

aðiþ1Þ�1

dx: (19)

Suppose v ¼ x=b; then l0s can be written as follows:

l0s ¼
X1
i;j¼0

wi;j aðiþ 1Þbs
Z1
0

vsþ1 e�v 1� ð1þ vÞ e�vð Þaðiþ1Þ�1dv: (20)

Using binomial expansion, then

l0s ¼
X1
i;j;‘¼0

X‘
m¼0

bi;j;m;‘ b
s � sþ mþ 2ð Þ
ð‘þ 1Þsþmþ2 ; s ¼ 1; 2;… ; (21)

where bi;j;m;‘ ¼ aðiþ 1Þð�1Þ‘ aðiþ 1Þ � 1
‘

� �
‘
m

� �
:

The mean of the MOKwME distribution is obtained by putting s =1 in (21). The sth central moment (ls)
of X is given by

ls ¼ EðX � l01Þs ¼
Xs
i¼0

ð�1Þi s
i

� �
ðl01Þil0s�i: (22)

3.3 Incomplete Moments

The sth incomplete moment, say ss tð Þ is defined by:

ss tð Þ ¼
Z t

�1
xs f ðxÞ dx: (23)

Hence, the sth moment of MOKwME is derived by substituting (18) in (23) as follows:

ss tð Þ ¼
X1
i;j;‘¼0

X‘
m¼0

bi;j;‘;m bsc
sþ mþ 2

ð‘þ 1Þsþmþ2 ;
t

b

 !
; (24)

where cðk; tÞ ¼ Rt
0
xk�1e�kdx is the lower incomplete gamma function. The Bonferroni and Lorenz

curves and the Gini indices have applications in economics, reliability, demography, insurance and
medicine (see [30]). The Lorenz curve of MOKwME distribution is given as follows:

L½X � ¼ 1

l01

Zx
0

tf ðtÞdt ¼

P1
i;j;‘¼0

P‘
m¼0

bi;j;‘;m c
mþ 3

ð‘þ 1Þmþ3 ;
x

b

 !

P1
i;j;‘¼0

P‘
m¼0

bi;j;‘;m
� mþ 3ð Þ
ð‘þ 1Þmþ3

: (25)
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The Bonferroni curve of MOKwME distribution is obtained as

BF ½X � ¼ 1

l01FðxÞ
Zx
0

tf ðtÞdt ¼ 1

Fðx;wÞ

P1
i;j;‘¼0

P‘
m¼0

bi;j;‘;m c
mþ 3

ð‘þ 1Þmþ3 ;
x

b

 !

P1
i;j;‘¼0

P‘
m¼0

bi;j;‘;m
� mþ 3ð Þ
ð‘þ 1Þmþ3

: (26)

3.4 Moments of Residual Life Function

The residual life plays an important role in life testing situations and reliability theory. The nth moment
of the residual life is defined by:

$nðtÞ ¼ E½ðX � tÞn X . tj � ¼ 1
�FðtÞ

Z1
t

ðx� tÞn f ðxÞdx: (27)

Using the binomial expansion and pdf (18), then $nðtÞ can be written as follows:

$nðtÞ ¼ 1
�Fðt;wÞ

Xn
r¼0

X1
i;j¼0

n
r

� �
wi;jaðiþ 1Þð�tÞn�r

Z1
t

xrþ1

b2
e

�x

b 1� ð1þ x

b
Þ e
�x

b

0
@

1
A

aðiþ1Þ�1

dx: (28)

So, after simplification the nth moment of the residual life of MOKwME distribution is obtained as
follows:

$nðtÞ ¼ 1
�Fðt;wÞ

Xn
r¼0

X1
i;j;‘¼0

X‘
m¼0

n
r

� �
bi;j;‘;mð�tÞn�rbr�

r þ mþ 2

ð‘þ 1Þrþmþ2 ;
t

b

 !
; (29)

where �ðk; tÞ ¼ R1
t
xk�1e�kdx is the upper incomplete gamma and �Fðt;wÞ is the survival function of

MOKwME distribution In particular, the mean residual life (MRL) which represents the expected
additional life length for a unit which is alive at age t is obtained by substituting n =1 in (29).

3.5 Quantile

The P-th quantile function (also called the percentile of order p) of the MOKwME distribution is of the
form:

1� 1� 1� �ðx; bÞð Þa½ �b
1� �a 1� 1� �ðx;bÞð Þa½ �b

¼ P: (30)

In particular, the median, denoted by M, can be obtained from (30) by substituting P = 0.5 and solving
the following:

1� 1� 1� �ðx; bÞð Þa½ �b
1� �a 1� 1� �ðx;bÞð Þa½ �b

¼ 0:5: (31)

Solving the Eq. (30) numerically, the percentage points are computed for some selected values of the
parameters. These values are provided in Tab. 1.
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4 Shannon Entropy

Shannon [31] introduced the probabilistic definition of entropy as a measure of uncertainty. It is also a
useful instrument for comparing two or more distributions. The Shannon entropy of a random variable X is
defined by:

SHðf Þ ¼ �
Z1
�1

f ðxÞ logðf ðxÞÞdx
0
@

1
A: (32)

The Shannon entropy for the MOKwME distribution with pdf (12) is as follows:

SHðf Þ ¼ �
Z1
0

aba
x

b2
e

�x

b 1� �ðx; bÞð Þa�1 1� 1� �ðx; bÞð Það Þb�1 1� �a 1� 1� �ðx; bÞð Þa½ �b
� ��2

log aba
x

b2
e

�x

b 1� �ðx;bÞð Þa�1 1� 1� �ðx;bÞð Það Þb�1 1� �a 1� 1� �ðx; bÞð Þa½ �b
� ��2

2
4

3
5 dx:

(33)

Since the theoretical result of entropy is not in a closed form, some of the numerical values of entropy for
different parameters are given in Tab. 2.

Table 1: Percentage points for a; b; a and b

a b a = 0.1, b = 0.5 a = 1, b = 1.5

50% 75% 85% 95% 50% 75% 85% 95%

1 2 1.501 2.801 3.990 7.341 2.582 4.068 5.049 7.003

3 2.252 4.201 5.984 11.012 3.873 6.102 7.573 10.505

4 3.002 5.601 7.979 14.683 5.165 8.136 10.098 14.006

5 3.753 7.002 9.974 18.354 6.456 10.171 12.622 17.508

2 2 2.849 4.347 5.610 8.991 4.107 5.692 6.696 8.655

3 4.274 6.521 8.415 13.486 6.123 8.538 10.044 12.982

4 5.698 8.695 11.220 17.981 8.214 11.384 13.393 17.309

5 7.123 10.868 14.026 22.477 10.239 14.201 16.741 21.637

Table 2: Shannon Entropy for some values of a; b; a and b

a β a = 0.1, b = 0.5 a = 1, b = 1.5

1 2 0.641 0.857

3 0.984 1.033

4 1.227 1.158

5 1.415 1.255

2 2 0.470 0.462

3 0.642 0.550

4 0.763 0.613

5 0.857 0.661
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5 Maximum Likelihood Estimators

We consider the estimation of the unknown parameters of the MOKwME distribution using the ML
method. Let X1, X2, …, Xn be the observed values from the MOKwME distribution with set of
parameters w ¼ ða; b; a; bÞT : The log-likelihood function, denoted by LnL; based on complete sample for
the vector of parameters w can be expressed as

LnL ¼ n ln aþ n ln bþ n ln a� 2n ln bþ
Xn
i¼1

lnxi �
Xn
i¼1

xi
b
þ ða� 1Þ

Xn
i¼1

ln 1� �ðxi;bÞð Þ

þ ðb� 1Þ
Xn
i¼1

ln 1� 1� �ðxi;bÞð Það Þ � 2
Xn
i¼1

ln 1� �a 1� 1� �ðxi; bÞð Þa½ �b
� �

;

(34)

The partial derivatives of the log-likelihood function with respect to a; b; a and b components of the
score vector UðwÞ ¼ @LnL=@w ¼ ðUðaÞ;UðbÞ;UðaÞ;UðbÞÞT can be obtained as follows:

UðaÞ ¼ n

a
þ
Xn
i¼1

lnð1� �ðxi; bÞÞ � ðb� 1Þ
Xn
i¼1

lnð1� �ðxi;bÞÞ
1� �ðxi; bÞð Þ�a � 1ð Þ

� 2
Xn
i¼1

�ab lnð1� �ðxi; bÞÞð1� �ðxi;bÞÞa 1� 1� �ðxi; bÞð Þa½ �b�1

1� �a 1� 1� �ðxi; bÞð Þa½ �b
� � ;

(35)

UðbÞ ¼ n

b
þ
Xn
i¼1

ln 1� 1� �ðxi; bÞð Það Þ þ 2
Xn
i¼1

ln 1� 1� �ðxi; bÞð Þa½ �
1=�að Þ 1� 1� �ðxi; bÞð Þa½ ��b � 1

� �; (36)

UðaÞ ¼ n

a
þ 2

Xn
i¼1

1� 1� �ðxi;bÞð Þa½ �b

1� �a 1� 1� �ðxi;bÞð Þa½ �b
� �; (37)

UðbÞ ¼ �2n

b
þ
Xn
i¼1

xi
b2

�
Xn
i¼1

ða� 1Þ
ð1� �ðxi;bÞ

@�ðxi; bÞ
@b

þ
Xn
i¼1

aðb� 1Þ 1� �ðxi;bÞð Þa�1

1� 1� �ðxi;bÞð Það Þ
@�ðxi; bÞ

@b

þ 2
Xn
i¼1

ab�a 1� 1� �ðxi;bÞð Þa½ �b�1 1� �ðxi; bÞð Þa�1

1� �a 1� 1� �ðxi; bÞð Þa½ �b
� � @�ðxi;bÞ

@b
;

(38)

and,

@�ðxi;bÞ
@b

¼ x2i
b3

e

�xi
b : (39)

The ML estimators of the model parameters are determined by solving the non-linear equations
UðaÞ ¼ 0; UðbÞ ¼ 0; UðaÞ ¼ 0; and UðbÞ ¼ 0: These equations cannot be solved analytically and
statistical software can be used to solve them numerically via iterative technique.

6 Simulation Study

A numerical study is performed to evaluate the performance of the estimates with respect to their
absolute biases (ABs), standard errors (SEs) and mean square errors (MSEs) for different sample sizes
and for different parameter values. The numerical procedures are described through the following steps:
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Step 1:A random sample X1,…,Xn of sizes n =10, 20, 30, 50 and 100 are selected, these random samples
are generated from the MOKwME distribution.

Step 2: Four different set values of the parameters are selected as, Set1 � ða¼ 0:3;
b¼ 0:8;a¼ 0:8;b¼ 0:5Þ; Set2 �ða¼ 0:6;b¼ 0:8;a¼ 0:5;b¼ 0:7Þ; Set3 �ða¼ 0:1;b¼ 1:3;a¼ 1:1;b¼ 0:9Þ
and Set4 � ða¼ 0:9; b¼ 1:3; a¼ 0:3; b¼ 1:2Þ:

Step 3: For each sample size, the ML estimates (MLEs) of α, β, a and b are computed.

Step 4: Steps from 1 to 3 are repeated 1000 times, then, the ABs, SEs and MSEs of the estimates are
computed.

Numerical results are reported in Tabs. 3 and 4, from these tables, the following observations can be
detected on the behavior of estimated parameters from the MOKwME distribution.

� The ABs, SEs and MSEs decrease as sample sizes increase (see Tabs. 3 and 4).

� The ABs of a decrease as the value of b increases (see Tab. 3). Also, the ABs of b increase as the value of b
increases, in approximately, most of the situations.

� For fixed values of b and as the values of b and a increase, the ABs and MSEs are decreasing, in
approximately most of situations (see Tab. 3). As the values of a increase and for fixed values of b; the
ABs and MSEs for all estimates decrease (see Tab. 4).

7 Real Data Applications

In this section, we fit the MOKwME distribution into two distinct real data sets and we compare the
performance with those of MOLBE, GEME, MOGE, EME, ME and MOKwE distributions. In each real

Table 3: ABs, SEs and MSEs of MOKwME parameter estimates for Set 1and Set 2

Set1≡(α = 0.3, β = 0.8, a = 0.8, b=0.5) Set2≡(α = 0.6, β = 0.8, a = 0.5, b=0.7)

n Measure â b̂ â b̂ â b̂ â b̂

10 MSE 0.090 0.169 0.633 0.250 1.360 0.173 0.194 0.616

AB 0.299 0.124 0.795 0.500 0.329 0.408 0.353 0.482

SE 0.000 0.101 0.000 0.000 0.354 0.025 0.084 0.196

20 MSE 0.088 0.060 0.566 0.248 0.857 0.142 0.179 0.592

AB 0.296 0.244 0.749 0.498 0.301 0.367 0.314 0.406

SE 0.000 0.051 0.000 0.000 0.196 0.019 0.064 0.146

30 MSE 0.085 0.059 0.561 0.246 0.694 0.112 0.161 0.494

AB 0.291 0.244 0.746 0.496 0.356 0.325 0.269 0.424

SE 0.000 0.000 0.000 0.000 0.138 0.015 0.054 0.102

50 MSE 0.068 0.054 0.410 0.215 0.519 0.106 0.157 0.493

AB 0.260 0.068 0.545 0.432 0.390 0.318 0.291 0.466

SE 0.000 0.000 0.000 0.000 0.086 0.010 0.038 0.074

100 MSE 0.066 0.024 0.342 0.187 0.271 0.089 0.131 0.299

AB 0.174 0.024 0.231 0.354 0.486 0.286 0.226 0.502

SE 0.000 0.000 0.000 0.000 0.019 0.009 0.028 0.022
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data set, the MLEs and their corresponding SEs (in parentheses) of the model parameters are obtained. -2 log-
likelihood (-2LnL), Akaike information criterion (AIC), the correct Akaike information criterion (CAIC),
Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC), Anderson-Darling
(A�) statistic, Cramér- von Mises (W�) statistic and Kolmogorov-Smirnov (K-S) statistic are used to
assess the effectiveness of the models. The model with the smallest value of these measures gives a better
representation of the data set than the others.

First Real Data Set: The first data refer to Smith et al. [32] which represent the strengths of 1.5 cm glass
fibers, measured at the National Physical Laboratory, England. The data are:

0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.0, 0.74, 1.04, 1.27, 1.39, 1.49,
1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69,
1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30,
1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89.

The MLEs and their corresponding SEs (in parentheses) of the model parameters are listed in Tab. 5.
Also, the above suggested statistical measures of all models are listed in Tab. 6. It is observed, from
Tab. 6, that the MOKwME distribution gives a better fit than other fitted models.

The empirical pdf and estimated cdf for the first data set are provided in Figs. 3 and 4.

Second Real Data: The second data were discussed in Ristić et al. [26], which represent the strength
data measured in GPA, the single carbon fibers, and impregnated 1000-carbon fiber tows. Single fibers
were tested under tension at gauge length 1 mm. The data are:

Table 4: ABs, SEs and MSEs of MOKwME parameter estimates for Set 3and Set 4

Set3≡(α = 0.1, β = 1.3, a = 1.1, b = 0.9) Set4≡(α = 0.9, β = 1.3, a = 0.3, b = 1.2)

n Measure â b̂ â b̂ â b̂ â b̂

10 MSE 0.010 0.950 0.870 0.806 0.810 1.163 1.147 1.430

AB 0.100 0.967 0.908 0.897 0.900 1.078 1.043 1.196

SE 0.000 0.038 0.067 0.011 0.000 0.000 0.077 0.004

20 MSE 0.001 0.772 0.678 0.802 0.810 0.950 0.996 1.334

AB 0.099 0.843 0.657 0.893 0.900 0.975 0.976 1.145

SE 0.000 0.034 0.044 0.010 0.000 0.000 0.046 0.003

30 MSE 0.001 0.594 0.456 0.794 0.810 0.950 0.994 1.322

AB 0.098 0.533 0.635 0.891 0.900 0.975 0.976 1.121

SE 0.000 0.023 0.042 0.000 0.000 0.000 0.037 0.002

50 MSE 0.001 0.409 0.410 0.718 0.808 0.759 0.927 1.067

AB 0.098 0.851 0.581 0.844 0.899 0.871 0.942 1.017

SE 0.000 0.017 0.038 0.000 0.000 0.000 0.028 0.001

100 MSE 0.001 0.395 0.387 0.712 0.793 0.759 0.861 0.543

AB 0.098 0.547 0.505 0.821 0.890 0.871 0.893 0.067

SE 0.000 0.014 0.015 0.000 0.000 0.000 0.025 0.000
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Table 5: MLEs of all models and the corresponding SEs (in parentheses) for the first data

Distribution �̂ ĥ â ĉ b̂ â b̂

MOKwME – – 18.426 – 1.959 2.041 87.374

– – (21.488) – (1.839) (0.861) (179.452)

MOLBE – – – 0.001 31.696 – –

– – – (0.0017) (26.351) – –

GEME – – 0.393 6.399 20.544 – –

– – (0.142) (1.44) (21.726) – –

MOGE 5.484 94.469 47.044 – – – –

(0.567) (72.603) (36.566) – – – –

EME – 12.925 – 0.313 – –

– – (3.641) – (0.026) – –

ME – – – – 0.753 – –

– – – – (0.067) – –

MOKwE 0.551 – 20.755 – – 4.603 37.667

(0.399) – (24) – – (2.096) (53.661)

Table 6: Statistics measures for the first data

Distribution –2LnL AIC BIC CAIC HQIC W* A* K-S

MOKwME 24.568 32.568 41.141 33.258 35.94 0.225 2.108 0.468

MOLBE 144.923 148.923 153.209 149.123 150.609 1.228 22.8 1.000

GEME 29.735 35.735 42.164 36.142 38.264 1.283 24.89 0.884

MOGE 32.983 38.983 45.413 39.39 41.512 0.285 2.268 0.845

EME 60.161 64.161 68.448 64.361 65.847 0.259 2.253 0.997

ME 132.635 140.635 136.778 141.324 135.477 1.154 21.373 1.000

MOKwE 25.002 33.002 41.574 33.691 36.373 0.233 2.322 0.484

Figure 3: The empirical pdf of the MOKwME distribution for the first real data
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2.247, 2.64, 2.908, 3.099, 3.126, 3.245, 3.328, 3.355, 3.383, 3.572, 3.581, 3.681, 3.726, 3.727, 3.728,
3.783, 3.785, 3.786, 3.896, 3.912, 3.964, 4.05, 4.063, 4.082, 4.111, 4.118, 4.141, 4.246, 4.251, 4.262, 4.326,
4.402, 4.457, 4.466, 4.519, 4.542, 4.555, 4.614, 4.632, 4.634, 4.636, 4.678, 4.698, 4.738, 4.832, 4.924,
5.043, 5.099, 5.134, 5.359, 5.473, 5.571, 5.684, 5.721, 5.998, 6.06.

The MLEs and the SEs of the model parameters are listed in Tab. 7 whereas Tab. 8 gives the statistics
measures of all models. It is observed, from Tab. 8, that the MOKwME distribution gives a better fit than
other fitted models.

Figure 4: The empirical cdf of the MOKwME distribution for the first real data

Table 7: MLEs of all models and the corresponding SEs (in parentheses) for the second data

Distribution �̂ ĥ â ĉ b̂ â b̂

MOKwME – – 12.504 – 0.619 23.655 1.509

– – (76.031) – (1.491) (107.352) (4.701)

MOLBE – – – 0.006 36.284 – –

– – – (0.008) (23.94) – –

GEME – – 81.268 0.905 0.529 – –

– – (31.778) (0.089) (0.087) – –

MOGE 1.9 62.842 48.377 – – – –

(0.191) (59.043) (38.121) – – – –

EME – 43.247 – 0.68 – –

– – (17.653) – (0.06) – –

ME – – – – 2.13 – –

– – – – (0.201) – –

MOKwE 0.502 – 0.0069 – – 30.207 0.362

(0.012) – (0.011) – – (7.306) (1.302)
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The empirical pdf and cdf for the second data set are provided in Figs. 5 and 6.

8 Concluding Remarks

In this paper, we introduce a new probability model called the Marshal-Olkin Kumaraswamy moment
exponential. The new model includes; exponentiated moment exponential, generalized exponentiated
moment exponential, Marshall-Olkin length-biased exponential and moment exponential distributions. At
the same time, it contains the Kumaraswamy moment exponential distribution as a new model. We study
some of its structural properties including an expansion for the density function and explicit expressions

Table 8: Statistics measures for the second data

Distribution -2LnL AIC BIC CAIC HQIC W* A* K-S

MOKwME 136.039 144.039 143.031 144.823 136.524 0.395 3.592 0.001

MOLBE 245.592 249.592 249.088 249.818 246.562 1.808 71.707 1.000

GEME 143.934 149.934 149.178 150.395 145.389 0.427 3.627 0.612

MOGE 141.107 147.107 146.352 147.569 142.563 0.555 5.892 0.895

EME 142.479 146.479 145.975 146.705 143.449 0.458 4.066 0.254

ME 233.212 241.212 234.96 241.996 233.697 1.758 64.685 1.000

MOKwE 144.949 152.949 151.942 153.734 146.89 0.482 4.459 0.039

Figure 5: The empirical pdf of the MOKwME distribution for the second real data

Figure 6: The empirical cdf of the MOKwME distribution for the second real data
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for the moments, generating function, Bonferroni and Lorenz curves. The maximum likelihood method is
employed for estimating the model parameters. The usefulness of the new model is illustrated by means
of an application to real data set.
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