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Abstract: This paper introduces a modified form of the inverse Lomax distribution
which offers more flexibility for modeling lifetime data. The new three-parameter
model is provided as a member of the truncated Lomax-G procedure. The new
modified distribution is called the truncated Lomax inverse Lomax distribution.
The density of the new model can be represented as a linear combination of the
inverse Lomax distribution. Expansions for quantile function, moment generating
function, probability weighted moments, ordinary moments, incomplete moments,
inverse moments, conditional moments, and Rényi entropy measure are investi-
gated. The new distribution is capable of monotonically increasing, decreasing,
reversed J-shaped and upside-down shaped hazard rates. Maximum likelihood
estimators of the population parameters are derived. Also, the approximate confi-
dence interval of parameters is constructed. A simulation study framework is
established to assess the accuracy of estimates through some measures. Simulation
outcomes show that there is a great agreement between theoretical and empirical
studies. The applicability of the truncated Lomax inverse Lomax model is
illustrated through two real lifetime data sets and its goodness-of-fit is compared
with that of the recent models. In fact, it provides a better fit to these data than
the other competitive models.

Keywords: Truncated Lomax-G family; inverse Lomax distribution; maximum
likelihood method; moments

1 Introduction

The inverse Lomax (IL) distribution is very flexible in analyzing situations of different types of hazard
rate function. It is a member of the inverted family of distributions, that is, the IL distribution is the reciprocal
of the well-known Lomax distribution. Kleiber et al. [1] reported that the IL distribution can be used in
economics and actuarial sciences. Singh et al. [2] the reliability estimators of the IL distribution were
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investigated under type-II censoring. Yadav et al. [3] discussed parameter estimators of the IL model in the
case of hybrid censored samples. Reyad et al. [4] regarded the Bayesian estimation of a two-component
mixture of IL distribution based on a type-I censoring scheme. Bantan et al. [5] provided entropy
estimators based on multiple censored scheme. The cumulative distribution function (cdf) of the IL
distribution is given by:

Gðy; b; dÞ ¼ 1þ b

y

� ��d

; y; b; d > 0; (1)

where, b and d are the scale and shape parameters respectively. The probability density function (pdf) of
the IL distribution is as follows:

gðy; b; dÞ ¼ bd
y2

1þ b

y

� ��d�1

; y; b; d > 0: (2)

Recent studies about the generalization and extensions of the IL distribution have been proposed by
several authors. Hassan et al. [6] provided the inverse power Lomax distribution. Hassan et al. [7]
introduced the Weibull IL distribution. ZeinEldin et al. [8] provided the alpha power transformed IL
distribution. Maxwell et al. [9] introduced the Marshall-Olkin IL distribution. ZeinEldin et al. [10]
introduced odd Fréchet IL distribution. Hassan et al. [11] proposed Topp-Leone IL distribution.

A classical strategy to generate families of probability distributions consists of adding parameter(s) to
baseline distributions. These families have the ability to improve the desirable properties of the
probability distributions as well as to extract more information from the several data applied in many
areas like engineering, economics, biological studies and environmental sciences. Another useful
generator that works with the truncated random variable. The notable studies about the truncated-G
families in this regard, are the truncated Fréchet-G [12], truncated inverted Kumaraswamy-G [13],
truncated Lomax-G [14], truncated power Lomax-G [15] and truncated Cauchy power-G [16].

Hassan et al. [14] suggested the newly truncated Lomax–G (TL-G) family with the following cdf,

Fðy; a; &Þ ¼
ZG y;&ð Þ

0

að1þ tÞ�ðaþ1Þ

1� 2�a
dt ¼ A 1� 1þ Gðy; &Þð Þ�að Þ; (3)

where a > 0; A ¼ ð1� 2�aÞ�1; & is the parameter vector and Gðx; &Þ is the cdf of any distribution and
the truncated Lomax pdf is the generator. The pdf associated with Eq. (3) is given by

f ðy; a; &Þ ¼ aAgðy; &Þ 1þ Gðy; &Þð Þ�a�1: (4)

The main purpose of this work is to suggest a more flexible and enhance model called the truncated
Lomax IL (TLIL) distribution. The key motivations of the TLIL distribution in the practice are (i) to
enhance the flexibility of the IL distribution by using TL-G, (ii) to introduce the modified form of the IL
distribution whose density can be expressed as a linear combination of the IL distributions, (iii) to
develop a new model with increasing, decreasing, reversed J-shaped and upside-down shaped hazard
functions and (iv) to provide better fits than the competing models. Further, we study various statistical
properties and estimate the model parameters by using the maximum likelihood (ML) method. Finally,
simulation studies as well as applications to real data are given.

This work can be arranged as follows. In Section 2, we give the model description of the TLIL
distribution and provide a linear representation of its density and distribution functions. Section
3 provides some structural properties of the TLIL distribution. Estimation of parameters along with
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simulation study is considered in Section 4. Applications are given in Section 5 followed by comments and
conclusions.

2 Description of the Model

In this section, we define and provide the density and distribution function of the TLIL distribution. This
model is yielded by taking the base-line Eq. (3) to be the cdf of the IL model. A random variable Y is said to
have the TLIL, if its cdf is represented as:

Fðy; �Þ ¼ A 1� 1þ 1þ b

y

� ��d
 !�a" #

; y; b; d; a > 0; (5)

where, � � ðb; a; dÞ is the set of parameters. The pdf associated with Eq. (5) is given by

f ðy; �Þ ¼ Aadb
y2

1þ b

y

� ��d�1

1þ 1þ b

y

� ��d
 !�a�1

; y; b; d; a > 0: (6)

Expression of hazard rate function (hrf) is given by:

hðy; �Þ ¼ Aadb
y2

1þ b

y

� ��d�1

1þ 1þ b

y

� ��d
 !�a�1

1� A 1� 1þ 1þ b

y

� ��d
 !�a" #( )�1

: (7)

Graphic features of the pdf and hrf plots of Y ∼ TLIL ða; d; bÞ are represented in Fig. 1

Fig. 1 gives density and hazard functions plots for specified values of parameters. It is observed that the
pdf of the TLIL can be right-skewed, uni-modal and reversed J-shaped. The hazard function can be
increasing, decreasing, reversed J-shaped and upside-down bathtub.

Figure 1: Plots of the pdf and hrf for TLIL model
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2.1 Quantile Function and Median

The quantile function of Y, denoted by Q(u), is defined by inverting Eq. (5) as follows

QðuÞ ¼ b 1� u

A

� ��1

a � 1

2
4

3
5
�1

d
� 1

8>>>><
>>>>:

9>>>>=
>>>>;

�1

; (8)

where u~ U(0,1). Further, the TLIL distribution can be simply simulated from Eq. (8). The median of Y is
obtained by putting u = 0.5 in Eq. (8).

2.2 Linear Representation

Here, we provide the representation of cdf Eq. (5) and pdf Eq. (6) of the TLIL distribution. As mentioned
in Hassan et al. [14], the pdf of the TL-G family is expressed as follows:

f y; a; &ð Þ ¼
X1
j¼0

sjgðy; &ÞGðy; &Þj; (9)

where sj ¼ Aað�1Þj aþ 1
j

� �
: Hence, a useful expression of the TLIL distribution is produced by inserting

pdf Eq. (1) and cdf Eq. (2) in Eq. (9) as follows:

f y; �ð Þ ¼
X1
j¼0

sjbd
y2

1þ b

y

� ��dðjþ1Þ�1

¼
X1
j¼0

sj
ðjþ 1Þgðy; b; dðjþ 1ÞÞ; (10)

where, gðy; b; dðjþ 1ÞÞ is the pdf of the IL distribution with parameters b and dðjþ 1Þ: That is the pdf
Eq. (10) of TLIL is represented as a linear combination of the IL distribution.

Furthermore, Hassan et al. [14] provided a useful expression of cdf ½F y; &ð Þ�h; where h is an integer,
as follows:

½F y; &ð Þ�h ¼
X1
l¼0

SlGðy; &Þl; (11)

where Sl ¼ Ah
Ph
i¼0

�1ð Þiþl h
i

� �
aiþ l � 1

l

� �
: Hence, as mentioned in Eq. (11), the cdf ½F y; �ð Þ�h; of the

TLIL takes the following form:

½F y; �ð Þ�h ¼
X1
l¼0

Sl 1þ b

y

� ��dl

: (12)

3 Statistical Properties

3.1 Probability-Weighted Moments

The probability-weighted moments (PWMs) are less sensitive to outliers. They are utilized to study
characteristics of the probability distributions. They are sometimes used when maximum likelihood
estimates are unavailable or difficult to compute. The PWMs, denoted by �k;h; is defined as:
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�k;h ¼ EðYkðFðyÞhÞ ¼
Z1
0

ykðFðyÞhf ðyÞdy: (13)

where, k and h are positive integers. The class of the PWMs of the TLIL is obtained by substituting Eq. (10)
and Eq. (12) in Eq. (13) as follows

�k;h ¼
X1
l;j¼0

Slsjbd
Z1
0

yk�2 1þ b

y

� ��dðjþlþ1Þ�1

dy ¼
X1
l;j¼0

Slsjd�ð1� kÞ�ðdðjþ l þ 1Þ þ kÞ
�ðdðjþ l þ 1Þ þ 1Þ ; (14)

where; �ð0Þ ¼ �c, �ð�kÞ ¼ ð�1Þk
k!

’ðkÞ � ð�1Þk
k!

c for k ¼ 1; 2;…;c denotes Euler's constant and

’ðkÞ ¼Pk
i¼1

1

i
(see [17]).

3.2 Moments and Related Measures

Here, we provide an infinite sum representation for the n-th moment about the origin, inverse moments
and incomplete moments of the TLIL model, since it has a pivotal role in the study of the distribution and real
data applications. The n-th moment for the TLIL is obtained as follows:

l0n ¼
X1
j¼0

sjbd
Z1
0

yn�2 1þ b

y

� ��dðjþ1Þ�1

dy ¼
X1
j¼0

sjd�ð1� nÞ�ðdðjþ 1Þ þ nÞ
�ðdðjþ 1Þ þ 1Þ ; (15)

The first four moments are obtained by setting n =1, 2, 3 and 4 in Eq. (15). The n-th central moment (ln)
of Y is given by

ln ¼ EðY � l01Þn ¼
Xn
i¼0

ð�1Þi n
i

� �
ðl01Þil0n�i (16)

Based on Eq. (16), we can obtain the skewness and kurtosis measures using the well-known
relationships. Further, the moment generating function of the TLIL distribution for |t| < 1, is given by

MxðtÞ ¼
X1
j¼0

tnsjd�ð1� nÞ�ðdðjþ 1Þ þ nÞ
n! �ðdðjþ 1Þ þ 1Þ ; n ¼ 1; 2;…; (17)

The m–th inverse moment, for the TLIL distribution is derived by using pdf Eq. (10) as follows:

E Y�mð Þ ¼
X1
j¼0

sjd�ð1þ mÞ�ðdðjþ 1Þ � mÞ
�ðdðjþ 1Þ þ 1Þ ; m ¼ 1; 2;… (18)

The harmonic mean of the TLIL distribution can be obtained by using the first inverse moment.

Additionally, the n-th incomplete moment of Y can be obtained from Eq. (10) as follows:

xnðtÞ ¼
X1
j¼0

sjbd
Z t

0

yn�2 1þ b

y

� ��dðjþ1Þ�1

dy ¼
X1
j¼0

sjd b
nB 1� n; d jþ 1ð Þ þ n;

t

t þ b

� �
; (19)

where, B(.,.,t) is the incomplete beta function.
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3.3 Conditional Moments

The conditional moments and the mean residual lifetime function are of interest for lifetime models to be
obtained. The r-th conditional moment is defined as:

�rðtÞ ¼ 1
�FðtÞ

Z1
t

ðy� tÞrf ðyÞdy ¼
Xr
i¼0

ð�1Þr�iðni Þtr�i

�FðtÞ
Z1
t

yrf ðyÞdy: (20)

The r-th moment of the residual life of the TLIL distribution is obtained by substituting Eq. (10) in
Eq. (20) as follows

�rðtÞ ¼ d
�Fðt; �Þ

X1
j¼0

Xr
i¼0

ð�1Þr�iðri Þtr�isjb
rB 1� r; r þ dðjþ 1Þ; b

t þ b

� �
(21)

where B(.,.,t) is the incomplete beta function. In particular, the mean residual life of the TLIL model is
obtained by substituting r =1 in Eq. (21).

Moreover, the reversed residual life (RRL) is defined as the conditional random variable ð¡−Y|Y≤ð¡
which denotes the time elapsed from the failure of a component given that its life is less than or equal to
ð¡. The r-th moment of the RRL is defined by:

$rðtÞ ¼ 1

FðtÞ
Z t

0

ðx� tÞrf ðxÞdx ¼ 1

FðtÞ
Xr
i¼0

ð�1Þr�iðri Þtr�i
Z t

0

xrf ðxÞdx: (22)

The r-th moment of the RRL of TLIL distribution is obtained by substituting Eq. (10) in Eq. (22)
as follows

$rðt; �Þ ¼ d
Fðt; �Þ

Xr
i¼0

ð�1Þr�iðri Þtr�ibrB 1� r; r þ dðjþ 1Þ; t

t þ b

� �
: (23)

The mean of RRL (mean waiting time) represents the waiting time elapsed since the failure of an item on
condition that this failure had occurred. For, r = 1 in Eq. (23) we obtain the mean of RRL of the TLIL
distribution.

3.4 Rényi Entropy

The entropy affords a great tool to evaluate the amount of information (or uncertainty) exists in a random
observation relating to its parent distribution. A small value of entropy provides the smaller uncertainty in the
data. Hassan et al. [14] mentioned that the Rényi entropy of the TL-G distributions is defined as:

�tðY Þ ¼ ð1� tÞ�1 log
X1
i¼0

gi
�
Z1
�1

gðy; nÞtGðy; nÞidy; (24)

where gi
� ¼ ð�1ÞiðAaÞt tðaþ 1Þ þ i� 1

i

� �
: The Rényi entropy of the TLIL distribution is obtained by

substituting pdf Eq. (1) and cdf Eq. (2) in Eq. (24) as follows:
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�tðY Þ ¼ ð1� tÞ�1 log

Z1
0

db
y2

� �t

1þ b

y

� ��tðdþ1Þ�di

dy: (25)

So, after some manipulation, the Rényi entropy of the TLIL distribution is given by

�tðY Þ ¼ ð1� tÞ�1 log
X1
i¼0

gi
�b1�tdtB diþ td� tþ 1; 2t� 1ð Þ

" #
; (26)

where, B(.,.) is the beta function.

4 Estimation and Numerical Study

In this section, the ML estimators of the model parameters are derived in the case of complete samples.
Also, approximate confidence intervals (CIs) are obtained. Furthermore, a numerical study is conducted.

4.1 ML Estimators

Suppose that x1, x2,…,xn be the observed values from TLIL distribution whose lifetimes have the pdf
Eq. (6). The log-likelihood based on complete sample, is given by

log L ¼ n log Aadbð Þ � 2
Xn
i¼1

log yi � ðdþ 1Þ
Xn
i¼1

logWi � ðaþ 1Þ
Xn
i¼1

log 1þWi
�d

� �
; (27)

where, Wi ¼ 1þ b

yi

� �
: Then, the first partial derivatives of the log-likelihood are given by

@ log L

@a
¼ n

a
� n A 2�a log 2�

Xn
i¼1

log 1þWi
�d

� �
; (28)

@ log L

@b
¼ n

b
� ðdþ 1Þ

Xn
i¼1

yi Wið Þ�1 þ d aþ 1ð Þ
Xn
i¼1

yi
�1 Wi

� dþ1ð Þ 1þWi
�d

� 	�1
(29)

@ log L

@d
¼ n

d
�
Xn
i¼1

logWi þ ðaþ 1Þ
Xn
i¼1

Wi
�d logWi 1þWi

�d
� 	�1

: (30)

For interval estimation of the parameters, it is known that under regularity conditions, the asymptotic
distribution of ML estimators of elements of unknown parameters for a; b and d is given

â� að Þ; b� b̂
� �

d̂� d
� �

! N 0; I�1 a; b; dð Þ� �
; (31)

where, I�1 a; b; dð Þ is the variance-covariance matrix of the unknown parameters a; b and d: The elements of
the Fisher information matrix are obtained. Therefore, the two-sided approximate 2 100 percent limits for the
ML estimators of the population parameters for a; b and d can be obtained, respectively, as follows:

â� z2=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
var âð Þ

p
; b̂� z2=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var b̂
� �r

; d̂� z2=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var d̂
� �r

; (32)

where z2=2 is the 100 1� z2=2
� �

% standard normal percentile and var(.)’s denotes the diagonal elements of
the variance covariance matrix corresponding to the model parameters.
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4.2 Simulation Study

In this sub-section, we perform a simulation study to evaluate the behavior of the ML estimates (MLEs).
The attitude of the different estimates is checked in terms of their mean square errors (MSEs), standard errors
(SEs) and average lengths (ALs) of the CIs. 10000 random samples of sizes 30, 50, 75 and 100 are generated
from TLIL distribution. Four sets of parameter values are chosen as; ðiÞ � a ¼ 2:5; b ¼ 0:5; d ¼ 1:25ð Þ;
ðiiÞ � a ¼ 2; b ¼ 0:25; d ¼ 0:75ð Þ; ðiiiÞ � a ¼ 1:5; b ¼ 0:25; d ¼ 0:5ð Þ and ðivÞ � a ¼ 1:25; b ¼ð
0:25; d ¼ 0:25Þ: We generate the random number from TLIL distribution using Eq. (8). Then, we obtain
the ML estimators by solving numerical Eqs. (28)–(30). The AL of CIs for all estimates is obtained with
confidence level of 95 % using Eq. (32). We compute MSEs, SEs and ALs of the CIs of all estimates and
their results are listed in Tabs. 1 and 2.

Table 1: MSEs, SEs and ALs of the MLEs for TLIL distribution

n Measures (i) (ii)

a ¼ 2:5 b ¼ 0:5 d ¼ 1:25 a ¼ 2 b ¼ 0:25 d ¼ 0:75

30 MSE 2.0307 1.8101 0.7903 1.3591 0.4968 0.3187

SE 0.2181 0.1476 0.0633 0.1649 0.0603 0.0346

AL 0.8551 0.5785 0.2483 0.6463 0.2363 0.1357

50 MSE 1.8644 1.3712 0.7645 1.3516 0.3468 0.3089

SE 0.1635 0.0866 0.0380 0.1309 0.0267 0.0206

AL 0.6411 0.3396 0.1491 0.5132 0.1047 0.0808

75 MSE 1.8632 0.9086 0.7416 1.3083 0.3037 0.3012

SE 0.1318 0.0411 0.0273 0.1040 0.0166 0.0137

AL 0.5165 0.1612 0.1070 0.4079 0.0652 0.0537

100 MSE 1.6464 0.8515 0.7291 1.3006 0.2941 0.2981

SE 0.1166 0.0320 0.0251 0.0958 0.0124 0.0117

AL 0.4570 0.1255 0.0984 0.3755 0.0486 0.0459

150 MSE 1.5751 0.7546 0.6981 1.2597 0.2764 0.2949

SE 0.0923 0.0195 0.0160 0.0753 7.3890* 7.9447*

AL 0.3619 0.0765 0.0626 0.2950 0.0290 0.0311

Note: * Indicate that the value multiply 10�3.

Table 2: MSEs, SEs and ALs of the MLEs for TLIL distribution

n Measures (iii) (iv)

a ¼ 1:5 b ¼ 0:25 d ¼ 0:5 a ¼ 1:25 b ¼ 0:25 d ¼ 0:25

30 MSE 0.8450 0.1031 0.1109 0.4564 3.1732* 0.3244

SE 0.1057 0.0273 0.0316 0.1189 0.0101 0.1032

AL 0.4144 0.1071 0.1238 0.4660 0.0397 0.4045
(Continued)
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Based on the above tables, we conclude the following

� It is clear that MSEs, SEs and ALs decrease as sample size increases for all estimates.

� The MSEs for a and b estimates at set (iv) take the smallest values corresponding to the MSEs of
estimates of the other sets for all sample sizes.

� The MSEs for d estimates at set (iii) get the smallest values corresponding to the MSEs for the
estimates of the other sets for different sample sizes.

� As the value of a ; b and d decreases, the MSEs, SEs of MLEs and their ALs are decreasing.

� As the value of a ; b and d increases, the MSEs, SEs of MLEs and their ALs are increasing.

� The SEs and ALs for a ; d estimates based on set (iii) are smaller than the corresponding SEs of
estimates of the other sets in majority of situations. While, the SEs and ALs of bestimates at set
(iv) are the smallest values corresponding to SEs and ALs for other estimates from other sets for
different sample sizes.

5 Applications to Real Data

In this section, we provide the applicability of TLIL distribution by using two real data sets. These data
have been used by several authors to show the superiority of other competing models. We also provide a
formative evaluation of the goodness of-fit of the models and make comparisons with other distributions.
The measures of goodness of fit including; the Akaike information criterion (AIC), Consistent AIC
(CAIC), Hannan-Quinn information criterion (HQIC), Anderson-Darling(A∗) and Cramér- von Mises
(W∗) are calculated to compare the fitted models. Generally, the best fit to the data that is correspond to
the lowest values of these statistics.

Table 2 (continued).

n Measures (iii) (iv)

a ¼ 1:5 b ¼ 0:25 d ¼ 0:5 a ¼ 1:25 b ¼ 0:25 d ¼ 0:25

50 MSE 0.8080 0.0776 0.1006 0.4435 1.6097* 0.0669

SE 0.0814 0.0136 0.0180 0.0894 5.6538* 0.0364

AL 0.3190 0.0534 0.0705 0.3506 0.0222 0.1426

75 MSE 0.7385 0.0684 0.0952 0.3987 1.1765* 0.0273

SE 0.0653 8.6751* 0.0122 0.0702 3.9515* 0.0191

AL 0.2558 0.0340 0.0479 0.2752 0.0155 0.0747

100 MSE 0.7243 0.0649 0.0938 0.3672 0.7097* 0.0221

SE 0.0562 6.4092* 9.8561* 0.0591 2.6644* 0.0148

AL 0.2204 0.0251 0.0386 0.2315 0.0104 0.0579

150 MSE 0.6873 0.0633 0.0932 0.3567 0.5559* 0.0123

SE 0.0454 4.1558* 6.4674* 0.0477 1.9260* 9.0701*

AL 0.1778 0.0163 0.0254 0.1870 7.5499* 0.0356

Note: * Indicate that the value multiply 10�3.
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5.1 Aircraft Windshield Data

The first data set was proposed by Murthy et al. [18], which represents the failure times for a particular
windshield device. For these data, we shall compare the TLIL model with the following models: the Zubair
Lomax (ZL) [19], gamma-Lomax (GL) [20], exponentiated transmuted generalized Rayleigh (ETGR) [21],
transmutedWeibull Lomax (TWL) [22], Kumaraswamy Lomax (KwL) [23], KumaraswamyWeibull (KwW)
[24], McDonald Weibull (McW) [25], beta Weibull (BW) [26] and transmuted Marshall-Olkin Fréchet
(TMOFr) [27]. The estimated parameters of these models and the corresponding SEs for windshield data
are provided in Tab. 3. The statistics AIC, CAIC, HQIC, A� and W� are mentioned in Tab. 4. The
estimated pdf, cdf, sf and PP plots for Aircraft Windshield data of the fitted models are displayed in Fig. 2.

It is clear from Tab. 3, Tab. 4 and Fig. 2 that the TLIL provides a better fit to the data and therefore could
be chosen as the best model.

5.2 Cancer Patient Data

This data set describes there mission times (in months) of a random sample of 128 bladder cancer
patients studied by Lee et al. [28]. For these data, we compare the fit of the TLIL with some other
distributions like; the ZL, transmuted modified Weibull (TMW) distribution [29], transmuted additive
Weibull (TAW) distribution [30], generalized inverse gamma distribution distribion [31], beta
exponentiated Burr XII (BEBXII) distribution [32], beta Fréchet (BFr) distribution [33] and ETGR

Table 3: MLEs and SEs (in parentheses) for Aircraft Windshield data

Distribution MLEs

TLILðd; b; aÞ 2.459 (0.251) 47.134 (14.289) 1151 (0.044)

ZLða; b; �Þ 826.196 (3505) 785.944 (3343) 4.471 (0.886)

KwLða; b; a; bÞ 2.615 (1.343) 100.276 (404.095) 5.277 (37.988) 78.677 (799.338)

ETGR ða; b; �; dÞ 0.034 (0.048) 0.379 (0.025) −0.354 (0.815) 26.430 (40.252)

KwWða; b; a; bÞ 34.660 (17.527) 81.846 (52.014) 14.433 (27.095) 0.204 (0.042)

McW ða; b; a; b; cÞ 17.686 (6.222) 33.639 (19.994) 1.940 (1.011) 0.306 (0.045) 16.721 (9.622)

BWða; b; a; bÞ 34.180 (14.838) 11.496 (6.730) 1.360 (1.002) 0.298 (0.060)

TMOFrða; b; r; dÞ 200.747 (87.275) 1.952 (0.125) 0.102 (0.017) −0.869 (0.101)

Table 4: The measures of goodness of fit for Aircraft Windshield data

Distribution AIC CAIC HQIC A* W*

TLIL 267.323 267.623 270.255 0.6702 0.0639

ZL 268.515 269.022 271.447 0.708 0.072

KwL 270.296 270.802 280.019 0.868 0.097

ETGR 269.975 270.481 279.700 0.786 0.085

KwW 281.434 281.941 291.158 1.506 0.185

McW 283.899 284.669 296.053 1.591 0.199

BW 305.028 305.534 314.751 3.220 0.465

TMOFr 309.472 309.978 319.195 2.404 0.320
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distribution The estimated parameters along with their SEs are provided in Tab. 5. The statistics of the fitted
models are presented in Tab. 6. We note from Tab. 6 that the TLIL gives the lowest values of AIC, CAIC,
HQIC, A∗ and W∗ as compared to the other competitive models. Therefore, TLIL distribution provides the
best fit for the cancer patient data. More information can be found in Fig. 3.

Figure 2: Plots of estimated pdf and cdf for Aircraft Windshield data

Table 5: Estimates and SE (in parentheses) for cancer data

Distribution MLEs

TLIL ðd; b; aÞ 1.429 (0.151) 41.006 (10.109) 12.589 (0.053)

ZL ða; b; �Þ 2.677 (1.005) 7.235 (7.009) 1.32 (1.855)

BEBXII ða; b; c; b; kÞ 22.186 (21.956) 20.277 (17.296) 0.224 (0.144) 1.780 (1.076) 1.306 (1.079)

GIG ða; b; c; b; kÞ 2.327 (0.369) 0.0002 (0.0002) 17.931 (7.385) 0.543 (0.042) 0.001 (0.0003)

BFr ða; b; a; bÞ 12.526 (24.469) 33.342 (36.348) 27.753 (71.507) 0.169 (0.104)

ETGR ða; b; �; dÞ 7.376 (5.389) 0.047 (0.004) 0.118 (0.260) 0.049 (0.036)

TMW ða; a; b; �Þ 0.0002 (0.011) 0.1208 (0.024) 0.8955 (0.626) 0.407 ( 0.407)

TAW ða; b; a; b; �Þ 0.00003 (0.0061) 1.0065 (0.035) 0.1139 (0.032) 0.9722 (0.125) −0.1630 (0.280)

Table 6: The measures of goodness of fit for cancer data

Distribution AIC CAIC HQIC A* W*

TLIL 825.827 826.02 828.99 0.1514 0.023

ZL 827.465 827.659 830.942 0.340 0.048

BEBXII 841.268 841.760 855.528 0.900 0.134

GIG 839.824 840.316 854.085 2.618 0.410

BFr 842.965 843.290 854.373 1.121 0.168

ETGR 866.350 866.675 877.758 2.361 0.398

TMW 836.450 836.775 847.858 3.125 0.760

TAW 838.478 838.970 852.739 3.113 0.703
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As seen from Fig. 3 that the TLIL provides a better fit to cancer data and so could be preferred than the
other competitive model.

6 Concluding Remarks

We provide a new three-parameter lifetime distribution depends on the recent truncated Lomax-G
family. The new truncated Lomax inverse Lomax model offers flexibility for modeling lifetime data.
Expressions of density and distribution functions are obtained as a linear combination of the inverse
Lomax distribution. Several mathematical properties of the new model are derived like; probability
weighted moments, quantile function, moment generating function, ordinary and incomplete moments,
inverse moments, conditional moments, and Rényi entropy. The maximum likelihood method of
estimation is employed to obtain the point and approximate confidence interval of population parameters.
We assess the accuracy of estimates viz simulation study. Applications to two real data are utilized to
illustrate the importance and usefulness of the new model compared to some models.
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