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Abstract: A line follower robot is an autonomous intelligent system that can
detect and follow a line drawn on floor. Line follower robots need to adapt accu-
rately, quickly, efficiently, and inexpensively to changing operating conditions.
This study proposes a deep learning controller for line follower mobile robots
using complex decision-making strategies. An Arduino embedded platform is
used to implement the controller. A multilayered feedforward network with a
backpropagation training algorithm is employed. The network is trained offline
using Keras and implemented on a ATmega32 microcontroller. The experimental
results show that it has a good control effect and can extend its application.
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1 Introduction

With the advancement of technology and science and improvement of productivity, robots are
increasingly being used in various fields ranging from industry, military, healthcare and related fields [1],
search and rescue, management, and agriculture, allowing humans to accomplish complicated tasks [2,3].
Currently, robots are developing in the direction of high precision, high speed, and stable safety [4]. To
design and manufacture useful products, intelligent mobile robots combine control, electronic, computer,
software, and mechanical engineering [5].

Mobile robots can move between locations to perform desired and complex tasks [6]. A mobile robot is
controlled by software and integrated sensors, such as infrared, ultrasonic, and magnetic sensors, and
webcams and GPSs. Wheels and DC motors are used to drive the robot [7].

Line follower robots can be utilized in many industrial applications, such as transporting heavy materials
and materials that pose a danger to human safely, e.g., nuclear products. These robots are also capable of
monitoring patients in hospitals and notifying medical personnel of dangerous conditions [8]. A
significant number of researchers have focused on control techniques and smart vehicle navigation, since
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traditional tracking techniques are limited owing to environmental instability under which a vehicle is
intended to move. Therefore, intelligent control mechanisms, such as neural networks, are required. Such
mechanisms provide a good solution vehicle navigation problems owing to their ability to learn the
nonlinear relationship between input and sensor values [9].

Deep learning technology has significantly advanced developments in artificial intelligence, particularly
in the fields of image processing, object recognition, detection, computer vision, and mobile-robot
control [10–13].

Deep learning is a branch of artificial intelligence used to solve various problems, particularly in logic
and rule-based systems [14]. Deep learning has helped researchers develop breakthrough methods related to
the perception capabilities of robotic systems. These methods empower robots to learn from sensory data
and, based on learned models, to react and take decisions accordingly [15]. Recent advances in human-
robot interaction, complex robotic tasks, intelligent reasoning, and decision-making are, to some extent,
the result of the evolution and success of deep learning algorithms [16]. Using deep learning techniques,
the ability of an intelligent robot to navigate and recognize a given place in a complex environment was
improved and approached human level capability [17].

Several attempts have been made to improve low-cost autonomous cars using different neural network
configurations. Kaiser et al. [18] used a multilayered perceptron network for mobile-robot motion planning.
The network was implemented on a PC with an Intel Pentium 350 MHz processor. In [19], the problem of
mobile-robot navigation was solved with the aid of a local neural network model.

In this study, low-cost implementation of a multilayered feedforward network with a backpropagation
training algorithm suitable for a line follower robot is realized using the Arduino platform.

2 Line Follower Robot Architecture

In this section, the architecture, engine capabilities, sensor system housing of the brain neural network,
system block diagram, and the design and implementation of the neural network are described. First, a
suitable configuration is selected to develop a line follower robot using three infrared sensors connected
through the Arduino Uno to the motor driver IC. This configuration is illustrated in the block diagram
shown in Fig. 1.

Implementing the system on the Arduino Uno ensures the following:

� moving the robot in the desired direction

� reading the infrared sensors for line detection

� predicting the direction using the deep learning controller

� controlling the four DC motors and determining the speed of the left and the right motors

The path line is shown in Fig. 2.

Figure 1: Block diagram of the line follower robot
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2.1 Mobile-Robot Construction

In this study, the proposed mobile-robot design can be easily modified and adapted to new and future
research studies. The physical appearance of the robot was evaluated, and its design was based on several
criteria, such as functionality, material availability, and mobility. During the analysis of different guided
robots of reduced size and simple structure.

The following parts were used in the robot’s construction:

1. Four wheels

2. Four DC motors

3. Two base structures

4. Control board formed using the Arduino ATmega 32 board

5. L298 IC circuit for DC-motor driving

6. Expansion board

7. Line tracking module

2.2 Arduino Uno Microcontroller

The Arduino Uno is a microcontroller board based on the ATmega328P (Fig. 3). It has 14 digital input/
output pins (six of which can be used as PWM outputs), six analog inputs, a 16-MHz quartz crystal, a USB
connection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the
microcontroller and can be simply connected to a computer with a USB cable. It can be powered by an AC-
to-DC adapter or a battery [20]. In this study, the Arduino microcontroller is very well suited to drive a PWM
signal for the DC motor. The microcontroller is capable of improving the output response of the DC motor
position control system.

2.3 Tracking Sensor

The line tracking sensor used is capable of detecting white lines on a black surface and black lines on
a white surface (Fig. 4). The single line tracking signal provides a stable output TTL signal for more accurate
and stable line tracking. A multichannel operation can be easily achieved by installing the required line
tracking robot sensors [21].

Figure 2: Robot’s path line
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2.4 LN298 Motor Driver

The L298N motor driver (Fig. 5) comprises two complete H-bridge circuits; thus, it can drive a pair of DC
motors. This feature makes it ideal for robotic applications because most robots have two or four powered
wheels operating at 5- and 35-V DC with a peak current of up to 2 A. This module incorporates two screw
terminal blocks for Motors A and B, and another screw terminal block for the ground pin, the VCC for the
motor, and a 5-V pin, which can either be an input or output. The pin assignments for the L298N dual
H-bridge module are shown in Tab. 1. The digital pin, assigned from HIGH to LOW or LOW to HIGH, is
used for IN1 and IN2 on the L298N board to control the direction. The controller output PWM signal is
sent to the ENA or ENB to control the position. The forward and reverse speed or position control of the
motor is realized using the PWM signal [21]. Then, using the Arduino analogWrite() function, the PWM
signal is sent to the Enable pin of the L298N board, which drives the motor.

A diagram showing the wire connections used for the design and implementation of the mobile robot is
given in Fig. 6, including the embedded system, line tracking sensors, DC motors, and L298 IC circuit for
driving the motors.

3 Neural Network Controller for Line Follower Robot

A neural network is used to develop the robot control navigation. Here, the neural network predicts the
robot’s position on the path and provides a control signal to the IC driver for motion control (Fig. 7). The
neural network, i.e., a multilayered perceptron (MLP), demonstrates good characteristics relative to
solving classification problems that are similar to this study’s target problem. In addition, it is a relatively
simple architecture for implementation in a robot.

Figure 3: Arduino Uno

Figure 4: Tracking sensor
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3.1 Artificial Neural Network Mathematical Model

An artificial neural network (ANN) comprises many simple but highly interconnected processing
elements, and these elements are processed by variations in external inputs. The presented ANN structure
was constructed using multiple weighted hidden layers, which are supervised by a feedforward network
using a backpropagation algorithm, which is a widely used method in many applications [22].

ANNs are best suited to human-like operations, e.g., image processing, speech recognition, robotic
control, and the power sector for power system protection and control management. ANNs can be
compared to the human brain. The human brain operates quickly and comprises many neurons (or
nodes). Each signal or bit of information travels through a neuron, where it is processed, calculated,
manipulated, and then transferred to the next neuron cell. The overall processing speed of each neuron or
node may be slow; however, the overall network is very fast and efficient.

3.2 Artificial Neural Network Structure

The first layer used in the ANN is the input layer and the highest layer, i.e., the output layer. Each bit of
information is processed through a single layer, i.e., hidden layers (intermediate layer) and output layers. The

Figure 5: LN298 IC motor driver

Table 1: Follower-logic target/neuronal network manual training data

Sensor Motor Details

Left Middle Right Left Right

0 0 0 0 0 No line, vehicle stops

0 1 0 1 1 Line in the middle, vehicle moves forward with full speed

1 0 0 0 1 Vehicle on the edge of the right line, vehicle turns left with full speed

1 1 0 0 0.5 Vehicle on the middle of the right line, vehicle turns left with ½ speed

0 0 1 1 0 Vehicle on the edge of the left line, vehicle turns right with full speed

0 1 1 0.5 0 Vehicle on the middle of the left line, vehicle turns left with ½ speed

1 1 1 0 0 Stop
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signal or data are manipulated, calculated, and processed in each layer, and then transferred to the respective
network layers. Information is processed through layers or nodes in an ANN network; thus, more efficient
results can be achieved as the number of hidden layers increases.

The ANN operates through these layers and calculates and overwrites the results as it is trained using
given data. Thus, the entire network is quite efficient, can predict future outcomes, and make necessary
decisions. This is why ANNs are frequently compared to the neuron cells of the human brain.

The neural network developed in this study comprises three inputs or neurons. The first input is
dedicated to the left sensor, the second is dedicated to the middle sensor, and the third is dedicated to the
right sensor. Note that the hidden layer comprises 10 neurons. Then, the output layer is formed of two
neurons for the left and right motors (Fig. 8).

Figure 7: Mobile robot motion control system

Figure 6: Wire connections
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In this network, n (=3) is the number of inputs, H (=10) is the number of hidden cells, and T (=2) is the
number of output layers. The weight between an input unit i and hidden unit j is denoted W1i, j, and the
weight between a hidden unit i and output unit j is denoted W2i,j. In addition, the hidden and output
layers employ a sigmoid function as the activation function.

Here, two-layered feedforward networks supervised by the backpropagation algorithm are employed.
Thus, two functions must be constructed, i.e., one for the inputs to hidden layers, and the other for the
hidden layers to output layers or targets. A block diagram showing the equations of the final output is
shown in Fig. 9.

4 Neural Network Controller Implementation

The neural network algorithm developed and implemented for the proposed mobile robot was
programmed in the C language for implementation in an embedded system. However, there are some
challenges associated with implementing a neural network in a very small system, and these challenges
have been significant for the inexpensive microcontrollers and hobbyist boards of earlier generations.
Fortunately, Arduinos, like many modern boards, can complete the required tasks quickly.

The Arduino Uno used in this study is based on Atmel’s ATmega328 microcontroller, and its 2 K of
SRAM is adequate for a sample network with three inputs, 10 hidden cells, and two outputs. By
exploiting the Arduino’s GCC language support for multidimensional arrays and floating point math, the
programming process becomes very manageable. The neural network architecture and algorithm design
apprenticeship are monitored offline by Keras, where the values of synaptic weights extract the
entailment. Here Keras was used to train the proposed ANN according to the following sensor positions
on the path line. The sensor positions are shown in Fig. 10 and indicated in Tab. 1.

Tab. 1 shows the manual training data for our neural network.

Figure 8: Neural network structure

Figure 9: Neural network equations
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After running 1000 iterations with a decaying learning rate, the weight of each dense was found with
RMS = 0.08%. Here, the weights connecting the input layer to the hidden layer are stored in a dense_1
matrix with three rows and 10 columns.

dense_1

� [−1.6969934, −3.46079, 4.466045, −3.3381639, 2.7561083, 2.5783126, −5.0599, 1.770869,
−0.8076482, −3.3734348],

� [ 2.807798, −2.7026825, 1.7920414, −5.039168, −1.7310187, 5.8257327, −2.5614583, −2.3312418,
−4.9812517, 0.24215572],

� [ 4.393107, 1.4633285, −2.6768272, −1.2254419, −4.0297103, 2.8168633, 2.6069236, −4.016101,
−3.3138442, 3.4869163]

In addition, the weights connecting the hidden layer to the output are stored in a dense_2 matrix with
10 rows and two columns.

dense_2

� [3.4826534, 0.99970883],

� [−2.990506, −4.2969046],
� [−2.000733, 4.053016],
� [−6.710817, −7.727256],
� [−3.4904156, 4.05857],
� [3.1300664, 3.464316],

Figure 10: Sensor positions
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� [0.44800535, −4.182376],
� [−3.768459, −0.8049714],
� [−7.593585, −7.1745195],
� [ 5.2892675, −2.603934]

A comparison between real targets and the predictions calculated by Keras is given in Tab. 2.

Table 2: Comparison of real targets and neural network predictions

Sensor Target Motor NN Motor

Left Middle Right Left Right Left Right

0 0 0 0 0 8.22e−04 8.18e−04

0 1 0 1 1 5.43e−04 9.99e−01

1 0 0 0 1 9.98e−01 9.98e−01

1 1 0 0 0.5 9.99e−01 6.46e−04

0 0 1 1 0 5.01e−01 9.99e−01

0 1 1 0.5 0 9.99e−01 4.98e−01

1 1 1 0 0 9.99e−01 9.99e−01

4.1 Arduino Implementation

A single neuron receives an input (In) and produces an output activation (Out), and the activation
function calculates the neuron’s output based on the sum of the weighted connections feeding that
neuron. The most common activation function, i.e., the sigmoid function, is expressed as follows.

Out = 1.0/(1.0 + exp(-In))

The following C code is used to compute the hidden unit activation.

/* j loop computes hidden unit activations */

for(j = 1; j <= NumHidden; j++)

{

SumH[j]=WeightIH [0][j];
for(i = 1; i <= NumInput; i++) {

SumH[j] += Input[i] * WeightIH[i][j];

} Hidden[j] = 1.0/(1.0 + exp(-SumH[j]));

}

We use the following C code to compute the output unit activation:

/* k loop computes output unit activations */

for(k = 1; k <= NumOutput; k++)

{

SumO[k]=WeightHO [0][k];
for(j = 1; j <= NumHidden; j++) {

SumO[k] += Hidden[j] * WeightHO[j][k];
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} Output[k] = 1.0/(1.0 + exp(-SumO[k]));

}

4.2 Neural Network Implementation Using Python and Keras

The neural network architecture and algorithm design apprenticeship are monitored offline by Keras,
where the values of synaptic weights extract the entailment.

Keras is a powerful and easy-to-use Python library for developing and evaluating deep learning models.
It wraps around the efficient numerical computation libraries Theano and TensorFlow, and this allows users
to define and train neural network models using only a few short lines of code.

1. A random number generator is initialized with a fixed seed value; thus, the same code can be run
repeatedly, and the same result is obtained.

from keras.models import Sequential

from keras.layers import Dense

import numpy

numpy.random.seed(7)

2. The models in Keras are defined as a sequence of layers. A fully-connected network structure with
three layers is used, and the fully-connected layers are defined using the Dense class. The first layer is
created with the input_dim argument by setting it to 3 for the three input variables. The number of
neurons in the layer can be specified as the first argument, and the activation function can be specified
using the activation argument. Note that the sigmoid activation function is used for all layers. The
hidden layer has 10 neurons and expects three input variables (e.g., input_dim=3). Finally, the output
layer has two neurons to predict the class.

model = Sequential()

model.add(Dense(10, input_dim = 3,activation = ‘sigmoid’,use_bias = False))

model.add(Dense(2, activation = ‘sigmoid’,use_bias = False))

3. Once the model is defined, it can be compiled. Here, the loss function must be specified to evaluate a
set of weights, and an optimizer is used to search through different weights in the network. The mse loss and
rmsprop algorithms are used for our target case.

# Compile model

model.compile(loss = ‘mse’, optimizer = ‘RMSprop’, metrics = [rmse])

4. The proposed model can be trained or fit to the loaded data by calling the fit() function. The training
process runs for a fixed number of iterations through a dataset called epochs. Here, the batch size is the
number of instances evaluated before performing a weight update in the network via trial and error.

# Fit the model

model.fit(X, Y, epochs = 10000, batch_size = 10)

5. The proposed neural network was trained on the entire dataset, and the network performance was
obtained for the same dataset.

# Evaluate the model

scores = model.evaluate(X, Y)

The complete code is given as follows.

from keras.models import Sequential

from keras.layers import Dense

import numpy
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from keras import backend

# from sklearn.model_selection import train_test_split

#from matplotlib import pyplot

# fix random seed for reproducibility

numpy.random.seed(7)

def rmse(y_true, y_pred):

return backend.sqrt(backend.mean(backend.square(y_pred - y_true), axis = −1))

# # split into input (X) and output (Y) variables

X = numpy.loadtxt(‘input_31.csv’, delimiter = ‘,’)

Y = numpy.loadtxt(‘output_31.csv’, delimiter = ‘,’)

#(trainX, testX, trainY, testY) = train_test_split(X, Y, test_size = 0.25, random_state = 6)

# create model

model = Sequential()

model.add(Dense(10, input_dim = 3, activation = ‘sigmoid’,use_bias = False))

model.add(Dense(2, activation = ‘sigmoid’,use_bias = False))

# Compile model

model.compile(loss = ‘mse’, optimizer = ‘RMSprop’, metrics = [rmse])

# Fit the model

model.fit(X, Y, epochs = 10000)

# evaluate the model

#result = model.predict(testX)

#print(result- testY)

scores = model.evaluate(X, Y)

The vehicle with the trained neural network controller was successfully tested on various paths. Note
that its speed must be variable to cope with real situations. The neural controller can be further refined by
adding speed input such so that the robot can move faster in a straight path and reduce its speed in curves.

5 Conclusion

In this study, we have proposed a mobile-robot platform with a fixed four-wheel configuration chassis
and an electronic system designed using Arduino Uno interfaces. The results demonstrate that neural
networks are well suited to mobile robots because they can operate with imprecise information. More
advanced and intelligent control methods based on computer vision and convolutional neural networks
can be developed and implemented using a Raspberry Pi, which is more powerful than any Arduino board.
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