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Abstract: With the rapid growth of the Fourth Industrial Revolution (or Industry
4.0), five-axis machining has played an important role nowadays. Due to the
expensive cost of five-axis machining, how to solve the collision detection for
five-axis machining in real-time is very critical. In this paper, we present a parallel
method to detect collision for five-axis machining. Moreover, we apply the
bounding volume hierarchy technique with two-level bounding volume represent
the surface or solid of the object to reduce triangle meshes inside each axis of the
five-axis machine tool, and then matching the operating range limit of the five-
axis machine tool itself, delete the no colliding triangle mesh. Additionally, we
also propose some optimization with loop unrolling and prefetching techniques
to improve performance of collision detection. Our approach can reduce the
execution time significantly by computing six separating axes in plan and eleven
separating axis in non-plan between two triangle meshes based on the character-
istic of GPUs (Graphics Processing Units) for program acceleration. Our proposed
work consists of kinematic analysis and interpolation for axes to save the numer-
ous collision detection for five-axis machining computations. In this experiment,
the result shows that using the proposed approach above can achieve approxi-
mately 37.1 times speedup than that of CPU.
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1 Introduction

As Industry 4.0 has become the focus of industrial manufacturing, the Computer Numerically Controlled
(CNC) machine tools have played an essential role the industry. More advanced machining technologies use
five-axis CNC machining for complicated part fabrication. The Five-axis machine has two rotary tables that
improve the machining capability and quality. However, five-axis machining has high axial table colliding
chances due to the coordinated motion for rotating and translating tables. If the machine tool differs
during machining, it damages the machine itself and delays the productions. Therefore, how to prevent
axial table collisions during machining is very important for five-axis machining processes. Owing to the
expensive cost of machine tools, avoiding collision detection has become a critical issue.
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There are three types commonly used for five-axis machine tools: table tilting type, spindle tilting type,
and table/spindle tilting type. Although the table tilting type is used in this paper for theorem derivation and
explanation, the proposed approach can be applied to other types. Fig. 1 is an example of a commercially
available table tilting type for five-axis machines.

The machine design is usually modeled as STL format that uses triangular facets to describe designed
objects. Each triangular element contains three vertices and a normal facial vector. Most of the
commercially available Computer-Aided Design (CAD) software provide STL format for object design
output, as shown in Fig. 1(b).

In this paper, we propose a work about the real-time anti-detection to solve the issue mentioned earlier.
To achieve this objective, the proposed work consists of the following steps. We first perform the kinematics
analyses for five-axis motions. The format of the machine structure is modeled as STL used commonly in
CAD software. The input is the g-code that represents the tool motions to produce the surface of an
object. Since three-dimensional surface objects are modeled as triangle meshes for digital holography,
they are the primitive elements of three-dimensional objects in computers [1]. Hence, the intersection test
for two triangles will determine if the collision will occur. To improve performance, we try to eliminate
the triangle meshes that never collide based on the bounding volume hierarchy [2]. In this manner, we
can reduce the computation amount to save the computation time and thus obtain an ideal speedup. As
the GPUs have been used widely for many applications, we propose a parallel method to determine
whether two objects in a three-dimension space intersect or not in parallel. Compared with the traditional
way, the proposed similar approach can improve the performance again. Besides, with our domain
knowledge and experiences on GPU and CUDA (Compute Unified Device Architecture) programming,
we apply some optimization techniques such as loop unrolling, prefetching, alignment, strode access, and
interchanging the bounding volume to improve performance further.

The remainder of the paper is organized as follows. We describe the previous work related to our work in
Section 2. Then we present how to reduce the number of triangle meshes based on the bounding volume
hierarchy technique in Section 3. Next, we explain how to parallel the collision detection for two objects
on the GPU in Section 4. In Section 5, we show the results of our numerical experiments regarding our
proposed algorithm’s performance on GPUs. Finally, we summarize our findings with some concluding
remarks in Section 6.

(a) (b)

Figure 1: (a) The table tilting type for five-axis machines, (b) The STL model of the machine
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2 Related Work

2.1 Separating Axis Theorem

Möller [3] designed an efficient algorithm to detect collision for two triangles. Held [4] also presented a
similar algorithm but in a different way. Both of them computed the signed distance of three vertices of a
triangle from the plane containing the other triangle. If all the values are the same sign, they do not intersect.
Otherwise, they may cross, and the problem is then reduced to an overlap test of two line segments
positioned on the same line of corner between the two planes containing the triangles. Moller computed a
parametric equation of the intersection of two planes, found the intervals for the line that lays inside each
triangle, and performed a one-dimensional interval overlap test. In contrast, Held reduced the problem to a
two-dimensional triangle/line-segment test after projecting to a convenient plane. Guigue et al. [5] then
followed Moller by using an orientated decision defined by a determinant of a 4 × 4 matrix to predict and
compute the signed distance of each vertex from orientated decision. The intersection test is then reduced to
check the signs of orientated decision. Tropp et al. [6] presented an algebraic approach similar to that of Held,
while the key observation is that the set of equations are strongly related to each other. They reused some
computation results for certain variables based on linear algebra. Then, the common elements of the different
equations can be applied to speed up the solution whilst exploiting the linearity of the matrix operations.
Chang et al. [7] adopted Moller’s algorithm based on OBB-based collision detection to improve it. Instead,
we use the splitting axis theorem and induce six separating axes in plan and 11 separating line axes in non-
plan between two triangle meshes to address this issue, as shown in Fig. 2.

2.2 Bounding Strategies

The idea of decreasing the execution time is to reduce the number of triangle meshes. Ritter proposed the
bounding sphere [8] to wrap any irregular object in the form of a sphere. This work can calculate efficiently
with few parameters. Cohen et al. proposed a collision detection method using AABB for the wrapped
volume [9] and projected X, Y, and Z axes of the object. Their work was convenient to set up the
wrapping by wrapping the thing with each X, Y, Z projection amount. Later, OBB was proposed by

Figure 2: Six separating lines in the plane and 11 splitting axes in the non-plane between two triangle
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Gottschalk et al. [10] to use the covariance matrix to calculate the three principal axis directions according to
the appearance of the object and then project the three main axis directions, respectively. In this way, the
bounding object was similar to the original one, and the number of bounding bodies was significantly
reduced. A k-DOP [11] was a convex polygon in a two-dimensional space or a convex polyhedron in a
three-dimensional space that contains an object. It is obtained by moving a set of infinitely distant
oriented planes to intersect the object. In addition, bounding this group of points and the smallest shell
must be convex in theory. The convex hull [12] was proposed to bound an object with the smallest
surface area and volume among all the shells. The advantage was that any graph can be simplified into a
convex hull of a group of points. are common bounding volume techniques.

3 Reducing Triangles Meshes with Two-Level Bounding Volume

In general, although it is better to bound an object from left to right, the rough collision detection time
becomes much longer and the memory size must be larger. The AABB is the bounding box aligned with the
axes of the coordinate system. In this paper, we will use AABB to represent a bounding object. For an
AABB, min and max mean the left top and the right down of a bounding object. When the object is
rotated, the min-max must be computed again. For the collision detection of two AABBs, O1 and O2, O1

and O2 will collide if and only if !(O1.max.x < O2.min.x || O1.min.x > O2.max.x), !(O1.max.y < O2.min.y
|| O1.min.y > O2.max.y), and !(O1.max.z < O2.min.z || O1.min.z > O2.max.z).

Considering into this concern account, we choose the AABB bounding volume in this paper because the
others are too complicated during the computation for bounding volume hierarchies. The advantages of AABB
are using less memory size, computing bounding sub-volume simply, and achieving a better performance. We
also use bounding volume hierarchies with AABB to reduce triangle meshes of two objects in the fetching stage
while using GPU. Moreover, the reduction of triangle meshes can save time to find separating axis numbers.
Thus, we first illustrate the AABB bounding volume technique and continue displaying the n level bounding
volume hierarchies with AABB. Because there are many multiprocessors and blocks in GPU, the hardware can
schedule blocks to multiprocessors in any order and thus the numerous blocks will be time consuming. For this
goal, the collision detection will be performed the rough collision detection based on the bounding volume
technique first and then compute the detailed collision detection stage.

The idea of the n level bounding volume hierarchies with AABB is the rough collision detection in
levels. In other words, we are not concerned whether triangle meshes are overlapping or not. In Fig. 3,
there are many sub-AABBs (R2, R3, R4, R5, R6, R7, …) by segmenting the AABB (R1) between object1
and object2. Finding the collision regions of two objects is from the maximum size region to the
minimum size region. Regions R2, R4, R5 and the regions in R4 and R5 of object1 are not found, because
the regions do not collide with the regions of the object2. The order relation of finding the areas can be
presented by using breadth-first search (BFS) to search a tree structure. A tree node presents a region,
where the bigger areas is the parent node and the smaller areas in it are child nodes. In this manner, the
bounding volume hierarchies are models as an n-level tree. In BFS, if R2 in object1 does not be searched
depending on whether it collides with R2 and R3 in object2 or not, the child and offspring nodes of R2 in
object1 are not searched for them either.

In our design, we use a two level bounding volume hierarchies with AABB. For an example shown in
Fig. 4, O1 contains two sub-AABBs named S1_O1 and S2_O1 and O2 contains two sub-AABBs named S1_O2

and S2_O2. In the rough collision detection stage, to check whether the two objects collide or not, we only
detect the collision of O1 and O2. Moreover, if O1 and O2 collide, four cases must be checked: the collision
detection of S1_O1 and S1_O2, S1_O1 and S2_O2, S2_O1 and S1_O2, and S2_O1 and S2_O2. If S2_O1 and
S1_O2 collide, the threads of GPU will be assigned in a CUDA program to detect the collision of triangle
meshes in S2_O1 and S1_O2 in the detailed collision detection stage (see Section 4). As a result, the
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rough collision detection cannot make sure if two AABBs really collide. The detailed collision detection
must be performed to check it precisely.

4 Parallel Approach

Fig. 5 is the overview that a simulator replicates the five-axis machine tool’s motion and the collision
detection system is implemented on the GPU to meet the real-time constraint. This section fist depicts the
CUDA programming model and then presents how to perform optimization techniques to parallelize
collision detection on GPU. We also show a paralleling algorithm to improve collision detection
performance on the SIMD (Single Instruction Multiple Data) architecture.

R2

R1

R3

R4 R5 R6 R7

Object1

Object2

R1

R2 R3

R4 R5 R6 R7
˙
˙
˙

Figure 3: The n-level bounding volume hierarchies with AABB

S1_O1 S2_O1

S1_O2 S2_O2

O1

O2

Figure 4: An example for the rough collision detection and the detailed collision detection

Figure 5: The simulator is implemented on CPU and the collision detector is implemented on GPU
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4.1 CUDA Programming Model

CUDA is a parallel computing platform and programming model created by NVIDIA [13]. In Fig. 3, a
kernel function is composed of the parallel subroutine and the memory model. Implementation of every
thread in the grid is the kernel function. A grid is a collection of blocks, and a block is a collection of
threads. A wrap is a group of 32 threads executed physically in parallel. Two designs need to be noted.
Firstly, the wrap-based execution is the effective method on the SIMD architecture. Designing a warp to
execute the same thread effectively uses the SIMD architecture, Otherwise, the performance will
decrease. As an example, because the divergent thread design causes a reduction of parallelism, it is
possible not to use this design. Secondly, the thread number in a block is a multiple of 32. That is a
better design for the performance because the hardware does not need to add more warps to execute. If
the thread number in a block is not multiple of 32, it will add more warps to execute and decrease
performance.

4.2 Performance Improvement

To improve collision detection performance, we perform loop unrolling and prefetch to exploit
instruction level parallelism and loop level parallelism.

4.2.1 Loop Unrolling
Loop unrolling can extend the paralleling space by replicating the loop body many times, only adjusting

the loop termination code. We then can find threads enough to be assigned to GPU via dependence analysis.
If loops are independent, then they can be executed in parallel. Fig. 6 shows that the loop unrolling technique
is used to increase the parallel degree.

CPU

/* N triangle meshes on object1
M triangle meshes on object2 */

for ( i= 0 ; i< N ;i++)
{

for ( j= 0 ; i< M ;j++)
{

/* finding a separating line is form 1 to 17 */ 
find 1 's separating line;
find 2 's separating line;

find 17 's separating line;
}

}

GPU

Wrap 0 

Loop Unrolling

Figure 6: Loop unrolling can increase the parallelism
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If there are n triangle meshes on object1, and m triangle meshes on the object2, there are m × n threads in
total assigned to execute in parallel. Developers can avoid the thread divergence as much as possible.
Therefore, if there are the six separating lines or the 11 separating lines depending on whether they are in
a plane or not, they must be checked sequentially whether they can separate two triangle meshes in a
thread. If there are no separating lines to separate two triangle meshes in a thread, these two objects may
collide. This may result in different execution time for every thread because just finding a separating line
to check collision depends on which separating line can ensure if the collision happen. For a real-time
system, we considered the worst-case execution time as the performance issue. With the aid of loop
unrolling, we can exploit more parallelism to improve performance by executing more threads.

4.2.2 Prefecting Mechanism
To improve the memory bandwidth, we propose a prefetching mechanism to solve this problem.

Normally, we can use CUDA API (cudaMalloc (), cudaMemcpy ()) to load data from the memory of
CPU to the global memory of GPU. When the simulator’s cutter of the five-axis machine tool is moved
or rotated by motion control, the data in the global memory of GPU must be updated by GPU to detect
collision. Therefore, there is not a bottleneck during collision detection. In Fig. 7, there are six axes X, Y,
Z, A, B and Cutter. If the number of triangle meshes of the X axis and Y axis are N and M, N × M
threads must fetch different data from the X axis and Y axis of GPU’s global memory to execute in parallel.

4.2.3 Alignment and Stride Access
Based on the hardware’s warp-based execution, the maximum number of the threads is 1024 (32 × 32)

for a GPU block [14]. A thread will fetch data from the X axis and Y axis and design a data structure with a
two-dimensional block and a two-dimensional thread. The size of the two-dimensional block is (N/32+1) ×
(M/32+1). The row index and the column index of the two-dimensional block ae from 0 to N/32+1 and from

Grid 0 (Detect Collision for X and Y) 

Block(0,0)

Wrap 0 

Block(0,1) Block(bi,bj)
Thread(ti,tj)

Global Memory

X axis

A axis

Y axis

B axis

Z axis

Cutter

T

Collision Flag

Figure 7: A data prefetching model from global memory to execute
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0 to M/32+1, respectively. The size of the two-dimensional thread is 32 × 32, where the row index and the
column index are from 0 to 32. Thus, there are 1024 threads in every block. The thread (ti,tj) in the block (bi,
bj) fetches data from the index of X axis data is 32 × bi + ti and the index of Yaxis data is 32 × bj + tj. Thus, it
is possible to avoid thread divergence and result in a higher parallel degree on GPU because of this design. If
the execution result of thread (ti,tj) in the block (bi,bj) is true, the colliding flag in global memory will be set to
indicate that the two objects will collide. Therefore, because kth thread in a block fetches kth data in GPU’s
global memory, the misaligned access pattern and stridden access problems do not occur. Thus, GPU can use
the coalesced memory technique to improve the performance of the fetching data.

4.2.4 Interchanging the Bounding Volume
Unfortunately, a problem will occur while using two-level bounding volume hierarchies in the rough

collision detection stage. In Fig. 8, all sub-regions of O1 overlap with sub-regions of O2, S1_O1 overlaps
with S1_O2, and S2_O1 coincides with S2_O2. In this case, since GPU’s threads will fetch all triangle
meshes in O1 and O2 in the detailed collision detection stage, the performance does not improve. We
propose a solution by interchanging the sub-regions in two level bounding volume hierarchies to solve
this problem. Regions R_S1_O1, R_S2_O1, R_S1_O2 and R_S2_O2 are designated as the new regions
after the interchanging. In this way, the threads can fetch R_S2_O1 and R_S1_O2 to execute the detailed
collision detection on GPU and the performance will be improved.

5 Experimental Result

This section implements the proposed collision detection system and measures execution time on CPU
and GPU. We also simulate the motion of the five-axis machine tool to perform collision detection.

5.1 Test Platform

Tab. 1 shows the test platform. The simulator and the collision detection system of the five-axis machine
tool have been implemented on CPU and GPU.

5.2 Simulation Flow

To measuring time and displaying the execution results of our parallel collision detection algorithm, we
ensure the following. (1) Write an interpreter simply to interpret G-codes that are the most widely used
numerical control (NC) programming language. (2) Convert the five-axis machine tool into digital data
represented as triangle meshes. (3) Display the digital data on the computer screen with OpenGL. (4)

O1

O2

S1_O1 S2_O1

S1_O2 S2_O2

R_S1_O1

R_S2_O1

R_S1_O2

R_S2_O2

O1

O2

Figure 8: The problem and solution of the two-level bounding volume hierarchy in the rough collision
detection stage
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Write motion control simply with the sample time = 0.1 ms and the federate = 10000 mm/min. (5) Simulate
the motion of the five-axis machine tool. For example, if the cutter moves a unit toward the X direction, the
five-axis machine tool must move the X axis first and then move Z axis. (6) Perform the collision detection
for the eight cases: Cutter-X, Cutter-Y, Cutter-A, Cutter-C, Z-X, Z-Y, Z-A and Z-C.

In Fig. 9, we can begin to simulate the five-axis machine tool’s motion in the computer. When the cutter
moves a minimum unit, the program performs the collision detection for the eight cases above. If the two
objects collide, the program stops running.

5.3 Performance Evaluation

We measure the execution time of the eight cases mentioned above on GPU and CPU. The execution
time on GPU is the CUDA profiling tools. The numbers of triangle meshes of X, Y, and Z axes are
44,136, and 180. The numbers of triangle meshes of A, C, and the cutter are 164, 548, and 716. The
execution time for CPU and GPU are shown in Tabs. 2 and 3. From the result, we can see that the
Cutter-C case takes more execution time than the others because there are more numbers of triangle

Table 1: Test platform

CPU type Inter Xeon CPU E5-2620

CPU clock 2.0 GHz

Host memory 16 GB

GPU type Tesla K20c

GPU clock 2600 MHz

Device memory 5 GB

CUDA capability 3.5

CUDA driver CUDA 5.0

Operating system CentOS release 6.4

Host compiler Gcc (GCC) 4.4.7

Device compiler Nvcc 5.0

Figure 9: The five-axis CNC machine tool and its simulator
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meshes. Moreover, using our parallel method on GPU, the proposed work can improve the performance by
37.1 times compared to CPU in terms of average execution time.

6 Conclusion

We have presented an efficient method for axial table collision detection on five-axis machining in this
paper. Our approach includes analyzing machine kinematics and interpolating for separating axes that get rid
of complicated cross-product computation. The performance result shows that the proposed approach is very
efficient with GPU compared with the conventional detection method. Besides, there is usually a tiny
embedded system in machine tools. Our parallel method on GPU is workable. Therefore, the performance
of our parallel method is adjustable based on the limitation of a real-time system.
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Council, Taiwan, ROC under the grant of project MOST 108-2218-E-194-007.
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Table 2: Execution time on CPU (us)

AVG MIN MAX

Z-Y 8323.44 4949.18 18169.06

Z-A 12729.96 6721.09 24505.73

Z-C 39336 13095.01 48574

Z-X 11198.24 6105.13 22214.41

Cutter-A 31290 15576.16 40528

Cutter-C 89698 39336 108174

Cutter-Y 22895.64 19203.72 33078

Cutter-X 14562.96 9691.56 23376.91

Table 3: Execution time on CPU (us) and speedup of average execution time compared to CPU

AVG MIN MAX Speedup

Z-Y 256.29 140.12 537.57 32.47

Z-A 306.24 199.27 695.53 41.56

Z-C 1082 388.16 1407.63 36.35

Z-X 327.54 179.68 688.24 34.18

Cutter-A 762.17 508.21 1165.77 41.05

Cutter-C 2260.53 1287.31 3108.75 39.68

Cutter-Y 648.92 498.83 986.98 35.28

Cutter-X 401.46 302.69 781.43 36.27
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