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Abstract: The prediction of the “ups and downs” of stock market prices is one of
the important undertakings of the financial market. Since accurate prediction helps
foster considerable economic benefits, stock market prediction has attracted sig-
nificant interest by both investors and researchers. Efforts into building an accu-
rate, stable and effective model to predict stock prices’ movements have been
proliferating at a fast pace, to meet such a challenge. Firstly, this paper uses a cor-
relation analysis to analyze the attributes of a stock dataset, processing missing
values, determining the data attributes to be retained data, then divide it in a train-
ing set and a testing set. Then, the LSTM model is subsequently used to predict
the retained attributes after the analysis and retention of prediction results to con-
struct a new testing set. At the same time, the Bo-XGBoost model based on
XGBoost is used to train the original training set. It uses Bayesian calculation
to optimize the parameters which are proved to be difficult to find the best solu-
tion in the XGBoost model. Finally, the LSTM-BO-XGBoost model proposed in
this paper is applied to “ES=F”, “YM=F”, “CL=F”, “*TNX”, “N225”, “NQ=F",
“AAPL”, “GC=F”, “JPY=X" and “SI=F” rates with 10 stocks in the forecast and
evaluated by four evaluation indexes: root mean square error (RMSE), average
absolute error (MAE), accuracy rate, and Fl-score. It is found that the LSTM-
BO-XGBoost model proposed in this paper performs better than LSTM in stock
price prediction. In order to further evaluate the performance of the algorithm, the
LSTM-BO-XGBoost mode is compared with the single LSTM network model
and RNN network model, the LSTM-BO-XGBoost hybrid model. The results
show that the LSTM-BO-XGBoost mode has high performance, stability and fea-
sibility than the others.

Keywords: LSTM; XGBoost; Bayesian optimization; stock price fluctuation
forecast; time series data

1 Introduction

The accurate prediction of the rise and fall of prices is one of the prominent issues associated with stock
markets, which can bring substantial economic benefits. Thus, it has become the most important issue for

This work is licensed under a Creative Commons Attribution 4.0 International License, which
@ @ permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.



mailto:656453927@qq.com
http://dx.doi.org/10.32604/iasc.2021.016805
http://dx.doi.org/10.32604/iasc.2021.016805

856 IASC, 2021, vol.29, no.3

investors and researchers alike. At the same time, the research about the construction of associated models
that are accurate, stable and effective at the same time has therefore becomes a hot topic.

Since stock price prediction is feasible and has been verified by McQueen et al. [1]. using the Markov
chain in 1991, many scholars have begun to construct models to predict the rise and fall of stocks. In the
following decades, scholars mostly used a single model to predict stock prices. As the single model has
certain limitations in solving complex stock time series forecasting problems, many researchers have
focused on combined models or using hybrid models to solve the problem of single models with good
results. Therefore, the combination of different forecasting models has attracted researches from many
fields, especially financial time series forecasting. To date, different stock price prediction technologies
have been developed. Among them, time series predictions, such as integrated learning, autoregressive
integrated moving average (ARIMA), support vector machine (SVM), BP neural networks and long and
short-term memory neural networks (LSTM) are widely used in the construction of stock price prediction
models [2-6].

In 2005, Pai et al. [7] proposed a hybrid method using the ARIMA and SVM models to predict stock
prices. Therein, actual stock price datasets were selected to test the prediction accuracy of the proposed
model, and the results of the calculation test were excellent. In 2009, Tsai et al. [8] combined neural
networks with decision trees to establish a stock price prediction model. Experimental results showed that
the prediction accuracy of the hybrid model was significantly higher than that of the single ANN and DT
model. In 2011, Yeh [9] developed a two-stage multi-core learning algorithm by combining sequence
minimum optimization and gradient projection methods. Through this algorithm, the advantages of
different hyperparameter settings could be integrated and the overall performance of the system could be
improved. Experiments showed that this method was superior to other methods. In 2013, Kazem et al. [10]
proposed a stock market price prediction model based on chaotic mapping, firefly algorithm and support
vector regression (SVR). Experiments demonstrated that the model had certain advantages. Based on the
research of the above scholars, it is not difficult to see that most of the previous model predictions have
concentrated on single or mixed models such as ARIMA, SVM and artificial neural networks. Since
2017, Selvin et al. [11] have used three different deep learning architectures to predict the prices of NSE
listed companies, and many scholars have focused on long and short-term memory neural network
(LSTM) stock predictions. In 2018, Kim et al. [12] proposed a new hybrid long-term short-term memory
(LSTM) model to predict stock price fluctuations. Experimental results proved that the GEW-LSTM
model was better than E-DFN (a model combining EGARCH and DFN and the best of existing models)
model in comparing various indicators. In the same year, Wang et al. [13] established a BP neural
network model and an LSTM model. Consequently, experimental comparisons found the prediction
results of the LSTM model to be more accurate. Through the comparative study of stock price time series
trend prediction methods, Li et al. [14] established that the performance of deep learning models MLP,
RNN, and LSTM was better than other models in terms of accuracy indication. In 2019, Ning et al. [15]
proposed the hybrid network model LSTM-Adaboost, and experimental results showed that the stock
price prediction accuracy of this model had been improved. Torralba et al. [16] proposed a deep learning
LSTM trend prediction model for stock prices for stock price prediction in the same year. In 2020, Qiu
et al. [17] used wavelet transform to denoise historical stock data based on LSTM and attention
mechanism, extract and train its features, and establish a stock price prediction model. Experimental
results proved that the coefficient of determination of the attention-based LSTM model was higher than
0.94, and the mean square error of the model was lower than 0.05. Li [18] proposed a closing price
prediction method based on feature selection (FS) and long short-term memory (LSTM) algorithms. The
empirical results indicated that, compared with the LSTM model, the FS-LSTM combined model
improved the accuracy of prediction and reduced the error between the true value and the predicted value
in the stock price prediction. Doshi et al. [19] proposed a data-driven method to optimize the choice of
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window length and multi-step prediction length. The performance of this model for certain evaluation
indicators was shown to be improved. Lee et al. [20] used long-term short-term memory (LSTM) to build
a deep network stock estimation model, and conducted experiments on the open data of the Taiwan Stock
Exchange from 2019/01 to 2019/10. Experimental results demonstrated that the LSTM model achieved
an average accuracy of 75% on the TWSE 0050 ETF.

In this paper, we propose an LSTM and Bayesian optimized XGBoost hybrid model (LSTM-BO-
XGBoost) based on correlation analysis to solve the problem of stock price fluctuation prediction. The
proposed LSTM-BO-XGBoost hybrid model first uses correlation analysis to analyze the attributes of the
stock dataset after missing value processing. Considering the analysis results, the retained data attributes
are determined, and the training set and the testing set are divided. The LSTM model is then used to
predict the retained attributes after analysis, and retain the prediction results to construct a new testing set.
At the same time, the XGBoost model is used to train the original training set. Since the XGBoost model
has many parameters and it is difficult to find the best solution, this paper uses Bayesian calculation to
optimize the parameters of the XGBoost model to construct the BO-XGBoost model. Finally, the
BO-XGBoost model is used to predict the new testing set. The LSTM-BO-XGBoost prediction model is
employed to predict the stock price and compared with the LSTM-XGBoost hybrid model, a single
LSTM network model, and the RNN network model.The results show that the better approximation
ability and generalization ability of the proposed model can fit the rise and fall of stocks well and
improve the prediction performance of a single LSTM model or a single XGBoost model in predicting
stock prices. The stability and feasibility of the LSTM-BO-XGBoost prediction model are further
assessed on 10 stock datasets.

2 Related Work

In this section, we introduce the Long and Short-Term Memory Neural Network (LSTM), the XGBoost
Model, and the Bayesian Optimization.

2.1 Long and Short-Term Memory Neural Network (LSTM)

The Long Short-Term Memory Networks (LSTM), as a special type of RNN, were proposed by
Hochreiter and Schmidhuber in 1997 and improved by Alex Graves in 2012, which enhancement has
been widely promoted. As a variant of Recurrent Neural Network (RNN) [21], LSTM as a more popular
neural network is a good solution to the problem that RNN cannot handle long-distance dependence. The
hidden layer of the original RNN has two states, including a state that is very sensitive to short-term
input data and a cell state that stores long-term data changes. The LSTM has three inputs: the current
input value of the network, the previous output value, and the unit state; it also includes a tanh activation
layer. The specific structure of LSTM is shown in Fig. 1.
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Figure 1: LSTM structure diagram
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The LSTM includes input gate, forgetting gate and output gate. The forgetting gate calculates the value
of f; by o function, as shown in Eq. (1).

Ji=0(Wy - [hi—1,x] + by) (1
where f, represents the forgetting rate, o is the Sigmoid activation function, W, represents the weight of
J1> he; s the output value of the previous time, and by is the offset of f; .

After determining the forgetting rate f;, the input gate defines the information to be updated through the
sigmoid layer, and tanh function generates a new vector C,, as shown in Eqgs. (2) and (3).

i = U(Wi : [ht—lvxt] + bi) ()
C, = tanh(W¢ - [hi_1, %] + b¢) 3)

In the above Formulas, i, is the forgetting rate, W;, W and b,, bc are the weight and bias of each layer,
respectively, and tanh is the activation function C;, which is the new candidate value.

Cf :ft‘ctfl + itét (4)
where C; is the unit state value of the current hidden layer, and C,; is the unit state value of the previous
hidden layer.

The cell state is processed by tanh function to get a value between [—1,1], which is multiplied by the
output of sigmoid layer, and the result is the final output.
0r =Wy - [h—1,x;] + b,) Q)
ht = Oy * tanh(Ct) (6)

where o, is the forgetting rate, W, and b, are the weight and bias of the output gate, respectively, and 4,
represents the output of the hidden layer.

2.2 XGBoost Model

Extreme Gradient Boosting (XGBoost) is a machine learning tool based on massively parallel Gradient
Boosting as an enhanced version of the GB method, which is an algorithm based on residual optimization
designed to achieve high efficiency, flexibility and portability [22]. XGBoost provides parallel boosting
trees and establishes K regression trees, so that the predicted value of the tree group is close to the true
value. It has strong generalization ability, and can quickly and accurately solve many scientific data
problems. XGBoost is an improved algorithm of GBDT, and its core is the value of optimizing the
objective function. The objective function optimization process is detailed below.

The objective function of XGBoost can be expressed as Eq. (7):
n A K
obj(0) = > 1Y) + > Q) (7)
i1 k=1

If Taylor expansion is used to approximate the objective function, the original objective function can be
written as Eq. (8):

t—1)

n /\(
ob = D03 )+ &) + g a6+ Q) + € ®
=1
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Eq. (10) is defined as,

G = Ziel,- 8 Hj = Ziel,- hi (10)
and introduced into Eq. (9) to obtain Eq. (11),

. t 1
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where [(y;,p)is the training error of the sample x;, Q(f;) represents the regular term of the first tree, K
represents the total number of trees, f; represents k the first tree, j; represents the prediction result of the
sample x;, and C is a constant.

According to the optimal results of Egs. (10) and (11), the optimal decision tree node is found, and the
calculation and prediction are subsequently carried out. Fig. 2 shows the use of objective function to evaluate
the performance of the decision tree.

Instance index  gradient statistics

8 S

' E=4{2,375]
2 Yof on I I G=gp+mtos
.ﬂ. I ={1} I = {4} Hs = ho + hs + hs

3 n‘;‘;\» g3-h3 Gl =g1 G2=g4

H,=h Hy = hy
g

. G?

Obj = =2 max +37

5 g5, h5 ’

The smaller the score is, the better the structure is

Figure 2: Application of objective function to evaluate decision tree performance

2.3 Bayesian Optimization

Since hyperparameter selection in machine learning has always been a challenging task, most of the
hyperparameters were manually adjusted in the past. In order to solve this problem, the means to find the
optimal parameters of the model has also become a hot topic for many scholars. Bayesian optimization
(BOian Optimization, BO) is an efficient method for the global optimization of black box functions with
noisy output. Since Bayesian optimization can find a better hyperparameter combination in a shorter
period of time, it is highly popular among scholars. When BO performs parameter optimization, two
components are used: surrogate model and acquisition function. The purpose of the surrogate model is to
approximate the current objective function, and the acquisition function is the next most important when
the best possible input is found for the current data. The specific BO parameter optimization framework
is shown in Tab. 1 [23]. In each iteration of Bayesian optimization, firstly the acquisition function is
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maximized under the “prior” of the proxy model. Then the new evaluation points are passed into the system
as input and new outputs are obtained to update the probabilistic proxy model.

Table 1: Bayesian parameter optimization framework

Algorithm 1 Bayesian optimization

lI: forn=1,2,... do

2:  select new X,,+; by optimizing acquisition function a

X1 = argmax o(X; D)
X

3:  query objective function to obtain yp,+;
4: augment data D, 1 = {D,, (Xy+1,Vn+1)}
5:  update statistical model

6: end for

3 Model Construction

In this paper, the LSTM-BO-XGBoost model which is combination of correlation analysis, LSTM, and
Bayesian optimization of the XGBoost is proposed to solve the problem of stock price fluctuation prediction.
Firstly, the proposed LSTM-BO-XGBoost hybrid model analyzes the “Open”, “High”, “Low”, “Close”,
“Volume”, “Adj Close” data features, and the time information is added to the stock dataset after
processing the missing values. Next, the correlation between the obtained information and the stock
fluctuations is analyzed, the reserved stock attributes are determined as “Open”, “High”, “Low”, “Close”
and “Adj Close” according to the analysis results, and the training and testing set are split. The LSTM
model is then used to train the attributes of the resulting training set, then executed to make the
respective predictions and retaining the prediction results to construct a new testing set. At the same time,
the original training set is trained by using the parameters of the XGBoost model. Due to the high
number of parameters in the XGBoost model, finding the optimal solution is a difficult task. In order to
solve this problem, this paper uses the Bayesian optimization algorithm to optimize the hyperparameters
of the XGBoost model and to construct the BO-XGBoost model. Finally, the BO-XGBoost model is used
to predict with the new testing set. The specific flow chart of the model is shown in Fig. 3.

The construction process of LSTM-Bo-XGBoost model is as follows:

(1) Acquisition of historical data of stock indexes and processing of missing values;

(2) The “Date” attribute in the data set is decomposed into three attributes, “Year”, “Month” and
“Weekday”, which are referred to as the time component;

(3) Analyze the correlation between the six attributes of “Open”, “High”, “Low”, “Close”, “Volume”, and
“Adj Close” in the stock data set, as well as the time information after conversion and the stock rise and fall;

(4) The analyzed data were sorted out to remove the attributes with Low correlation with the rise and fall
of the stock, and finally the five attributes of “Open”, “High”, “Low”, “Close” and “Adj Close” were
retained.

(5) The LSTM method in the Keras package is adopted to implement the LSTM model. The attributes of
“Open”, “High”, “Low”, “Close” and “Adj Close” in the stock historical data set are trained respectively to
construct the LSTM stock price prediction model, in which units = 128 and batch_size = 64 in the LSTM model;

(6) The LSTM stock price prediction model is used to predict the attributes of “Open”, “High”, “Low”,
“Close” and “Adj Close”;
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(7) The predicted results of “Open”, “High”, “Low”, “Close” and “Adj Close” were reorganized to
construct the “text” test set.

(8) XGBRegressor method in Sklearn package is adopted to realize XGBoost algorithm and build
XGBoost stock price prediction model;

(9) The parameters of XGBoost model were optimized by using Bayesian optimization algorithm. The
attributes of “Open”, “High”, “Low”, “Close” and “Adj Close” in the stock historical data set were trained to
build the BO-XGBoost stock price prediction model.

(10) The BO-XGBoost stock price prediction model is used to forecast the reconstructed data set “text”
after the LSTM prediction;

(11) Compare the difference between the real value and the predicted value, and judge the performance
of LSTM-BO-XGBoost model in predicting the rise and fall of stocks.
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Figure 3: Construction of LSTM-XGBoost model

4 Simulation Experiment

The experiment is carried out using Intel i7 3.1GHz dual-core 4-thread CPU and Windows 8 operating
system. The simulation platform is pycharm, and the python language is used for programming with the
sklearn, pandas, numpy, keras, matplotlib, bayes opt and other packages. The experimental dataset is
downloaded from https://finance.yahoo.com, randomly select 10 stocks from January 2002 to August
2020, which are “ES=F”, “YM=F”, “CL=F”, “*"TNX”, “N225”, “NQ=F”, “AAPL”, “GC=F”, “JPY=X"
and “SI=F”, and get “Open”, “High”, “Low”, “Close”, “Volume”, “Adj Close” and “Date time series”
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data from them. Among them, 80% of the data in each stock data are used as the training set, and 20% of the
data are used as the testing set. The fluctuations of the 10 stock datasets are shown in Fig. 4.
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Figure 4: (continued)
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Figure 4: Variations (“ups and downs”) of 10 stocks

4.1 Evaluation Index

Root mean square error (RMSE), mean absolute error (MAE), determination coefficient R and Accuracy
are used to evaluate the performance of the stock prediction model.

(1) Root Mean Square Error (RMSE) is the Square of the deviation between the observed value and the
true value to judge the degree of fit of the model. The smaller the value, the better the prediction performance
of the model. The calculation formula is shown in Eq. (12).

IS, ) 2
RMSE = \/ZZ 0 =) (12
i=1

where y is the predicted true value and ¥ is the predicted value.

(2) Mean absolute error (MAE), also called the average absolute deviation, can well reflect the actual
situation of the error between the predicted value and the true value. The calculation formula is shown in
Eq. (13).

MAE:%Z 0 — 50| (13)
i=1

(3) Accuracy, which indicates the percentage of the number of correct predictions to the total number of
samples in the prediction results. For a given stock test data set, the ratio of the number of samples correctly
classified by the fluctuation classifier to the total number of samples.

TP+ TN

A = 14
CUraY = Tp L TN + FP+ FN (14)

TP and FP are the correct and incorrect numbers of predicting the stock price rise, and 7N and FN are the
correct and incorrect numbers of predicting the stock price fall.

(4) f1-score is a comprehensive evaluation index of the equilibrium accuracy (pre) and recall rate (recall)
of the classification problem. The maximum is 1 and the minimum is 0.

2 * pre x recall

(15)

1 pu—
J1-score pre + recall

4.2 Experimental Comparison

Firstly, the correlation analysis among the attributes of “Open”, “High”, “Low”, “Close”, “Volume”,
“Adj Close”, “converted time information” and “stock ups and downs” in the data set of 10 stocks and
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the stock ups and downs was conducted. Then, the attributes with little correlation are deleted respectively
through the display of heat map. The heat chart of correlation analysis of 10 stocks are shown in Fig. 5.
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Figure 5: Heat chart of correlation analysis of 10 stocks

It is clearly seen in Fig. 5, that the attributes of “Year”, “Month” and “weekday” in the 10 stocks have the
lowest correlation with the attribute of “ups_and _downs” in most of the stocks. Therefore, the three attributes
of “Year”, “Month” and “weekday” are removed. Due to the inhibitory effect of “Volume” attribute on the
model in the process of model training, the “Volume” attribute was also removed in this paper, and five
attributes of “Open”, “High”, “Low”, “Close” and “Adj Close” were retained for the final data training
and prediction.

After the prediction attributes of each stock are determined, LSTM model is used to train and predict
each attribute. The sliding window of the five attributes of “Open”, “High”, “Low”, “Close” and “adj.
Close” is set to 1, which corresponds to single-step prediction, and the epochs is set to 1, and the
batch_size is set to 64. The XGBoost parameters are optimized by the Bayesian algorithm with five-fold
cross-validation and cv=5. In the case of 25 iterations of the Bayesian algorithm, the BO-XGBoost model
is built by finding the optimal solutions of nine parameters of XGBoost model, including “n_estimators”,
“max_depth”, “learning rate”, “min_child weight”, “reg_alpha”, “reg lambda”, “colsample bytree”,
“min_child sample” and “n_jobs”. The training set of the BO-XGBoost model uses data from the top
80% of the 10 stocks. The BO-XGBoost trained model was saved, and the prediction results of each
attribute of the LSTM model were integrated with the time attribute to form the test training set. The BO-
XGBoost trained model is used to predict the new test set, and the final prediction results of the stock
rise and fall are obtained. Taking the stock rise and fall prediction of “ES=F” as an example, the
experimental comparison data of the LSTM-BO-XGBoost model, LSTM-XGBoost model, LSTM and
RNN models in the evaluation indexes RMSE, MAE, Accuracy and f1_score are shown in Fig. 6 and Tab. 2.

Fig. 6 and Tab. 2 respectively show the average values of RMSE, MAE, Accuracy and f1_score of four
models of LSTM-BO-XGBoost, LSTM-XGBoost, LSTM and RNN after 30 times of training. It is clear from
Tab. 2 that the Accuracy and f1 score of the LSTM-BO-XGBoost model are 8% and 20% higher,
respectively, than those of the single LSTM model.

Through the experimental comparison of 10 stock rise and fall predictions, “ES=F”, “YM=F”, “CL=F”,
“TNX”, “N2257, “NQ=F”, “AAPL”, “GC=F", “JPY=X" and “SI=F”, it is not difficult to find that the LSTM-
BO-XGBoost model is more stable and efficient than the LSTM-XGBoost model, the single LSTM model
and the RNN model which performs well in stock price prediction. Then it is verified that the LSTM-BO-
XGBoost model proposed in this paper has certain feasibility and stability in predicting the trend of stock
rise and fall.
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Figure 6: Comparison of RMSE, MAE, Accuracy and fI_score of each model

Table 2: Comparison results of 20 mean values predicted the “ES=F” model

MODELS LSTM-BO-XGB LSTM-XGB LSTM RNN
RMSE 610.35 812.43 646.80 643.50
MAE 15.60 20.86 47.52 16.56
Accuracy 0.60 0.60 0.52 0.54
f1 score 0.75 0.75 0.55 0.59

5 Conclusion

In this paper, a hybrid model (LSTM-BO-XGBoost) based on the correlation analysis of LSTM and
XGBoost enhanced by Bayesian optimization was proposed to solve the challenge of stock price forecast.
The resulting LSTM-BO-XGBoost hybrid model firstly uses correlation analysis to assess the attributes of
the stock data set after missing value processing. The reserved data attributes are determined based on the
analysis results, and the training set and testing set are divided. At the same time, the XGBoost model is
used to train the original training set. Since there are many parameters in the XGBoost model, it makes it
difficult to find the optimal solution. Therefore, this paper uses Bayesian algorithm to optimize these
parameters and construct the BO-XGBoost model. Finally, the BO-XGBoost model is used to predict the
new testing set. The proposeed LSTM-BO-XGBoost forecasting model is used to forecast stock prices,
and compared with the LSTM-XGBoost mixed model, single LSTM network model and RNN network
model. The results show that the proposed model has better approximation ability and generalization
ability in the stock price forecast, can fit the rise and fall of the stocks well, and improve the single
LSTM model or single XGBoost prediction performance of boost model in predicting stock prices. The
performance of the model is verified by the experimental comparison of different models in predicting
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variations in “ES=F”, “YM=F”, “CL=F”, “*TNX"”, “AN225”, “NQ=F", “AAPL”, “GC=F”, “JPY=X" and
“SI=F” rates, and is evaluated by four indexs including root mean square error RMSE, average absolute
error MAE, accuracy and fl_score for 10 stocks. It is found that the LSTM-BO-XGBoost model has
more stable and good performance in the prediction of 10 stocks than the others.The overall prediction
performance, however, needs to be further improved. As a number of stocks have a certain noise impact,
this should be considered on stock price variations at a later stage of research to improve the performance
of the model for stock price prediction. This model and its future improvements may constitute a valuable
reference for people to master the prediction of rise and fall of stock prices.
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