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Abstract: The Adoption of Artificial Intelligence (AI), Machine Learning (ML),
Internet of Things (IoT), cloud services, web-based software systems, and other
wireless sensor devices in the healthcare infrastructure have led to phenomenal
improvements and benefits in the healthcare sector. Digital healthcare has ensured
early diagnosis of the diseases, greater accessibility, and mass outreach in terms of
treatment. Despite this unprecedented success, the privacy and confidentiality of
the healthcare data have become a major concern for all the stakeholders. Data
breach reports reveal that the healthcare data industry is one of the key targets
of cyber invaders. In fact the last few years have registered an unprecedented rise
in healthcare data breaches. Hacking incidents and privilege abuse are the most
common threats and have exposed sensitive and protected health data. Experts
and researchers are working on various techniques, tools, and methods to address
the security issues related to healthcare data. In this article, the main focus is on
evaluating the impact of research studies done in the context of healthcare data
breach reports to identify the contemporary privacy and confidentiality issues
of sensitive healthcare data. Analysis of the research studies depicts that there
is a need for proactive security mechanisms that will help the healthcare organi-
zations to identify abnormal user behavior while accessing healthcare data. More-
over, studies also suggest that ML techniques would be highly effective in
securing the privacy and confidentiality of the healthcare data. Working further
on this premise, the present study also proposes a conceptual framework that will
secure the privacy and confidentiality of healthcare data proactively. The proposed
framework is based on ML techniques to detect deviated user access against Elec-
tronic Health Records. Further, fuzzy-based Analytical Network Process (ANP), a
multi-criteria decision-making approach, is used to assess the accuracy of the
supervised and unsupervised ML approaches for achieving a dynamic digital
healthcare data security environment.
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1 Introduction

The Electronic health (e-health) is an advanced form of conventional paper-based health infrastructure
that practices advanced healthcare information technology to enhance the care services. To provide efficient,
reliable, and cost-effective service to the patients, various ubiquitous technologies namely the Internet of
Medical Things, smart devices, web-based applications, wireless sensor devices, telemedicine devices, AI,
ML, and cloud services have been adopted by the healthcare service providers. These technologies have
significantly improved the dissemination of healthcare data among various interested entities and
facilitated in providing online care services such as online patient monitoring and telemedicine, etc.
Implementation of Electronic Health Record (EHR) systems is one of the major outcomes of health
information technology [1,2]. The EHR systems store the medical and treatment histories of patients as
records and make them accessible to the authorized users all the time. However, these health records are
frequently breached by the hackers. The EHR automates access to information and has the potential to
streamline the clinician’s workflow. It improves the decision-making ability of the healthcare
professionals and helps them in reducing the error rate in diagnosis.

Nevertheless, several potential hazards threaten the privacy and confidentiality of protected healthcare
data. The inherent complex and dynamic nature of the healthcare industry make EHR systems potentially
vulnerable to insider attacks that adversely affect the confidentiality of data. The healthcare sector is one
of the top three sectors that are currently facing the highest number of breached incidents [3]. Authentic
research studies and data breach reports reveal that the healthcare sector is highly susceptible to both
internal and external intrusions. There have been 225 healthcare data breach episodes in the first half of
2020 itself. 130 of these breach instances were because of hacking/IT incidents which; i.e., 57.77% of the
total number of breach cases [4], and 59 breaches were because of internal unauthorized access. Reports
also cite that 3033 healthcare data breach incidents engineered during 2010 to 2019 exposed
255.18 million patients’ records in the USA [5]. Out of the 3033 breach cases, 850 were disclosed
because of hacking/IT incidents, and 843 were exposed because of internal unauthorized access. The
healthcare data industry is being victimized by both internal as well as external threats. Healthcare data
breaches also harm the reputation of the organizations and service providers, resulting in the loss of
patients’ trust and, consequently, loss of revenue [6]. One of the main reasons for the unprecedented rise
in data breach cases is the selling value of health data records which is estimated to be ten to twenty
times higher than the credit card data in the online market [7]. Facts and figures reveal that due to its’
high sensitivity and valuable character, healthcare data has become the most sought-after entity for
intruders. Such a scenario calls for immediate intervention mechanisms to eliminate the possibilities of
healthcare data pilferage. To address the privacy and confidentiality issues of healthcare data, the authors
of this study have provided a theoretical Machine Learning framework that will detect suspicious user
access to an EHR system that holds the patients’ health records.

Machine Learning, as a co-domain of Artificial Intelligence, ensures that historical data programs
(intelligent models) can be enlisted to learn, achieve experience, and improve system’s performance to
classify, predict future trends and make decisions without human involvement [8,9]. Every correct future
prediction or decision enhances the performance measure of the intelligent program. Artificial intelligence
and machine learning have changed the way people think and play a significant role in different fields of
life. ML-based models have been practiced in different areas to address real-life problems, and
fortunately, in most of the areas, they have achieved the desired targets. Weather forecasting, disease
analysis, and diagnosis, defense, sentimental analysis, marketing, traffic prediction, Fraud detection are
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some of the prominent examples of ML-based mechanisms. ML also has a significant role in cyber security
because of its proactive character to detect misuse and anomalous behaviors such as intrusion, fraud, and
email spam detection. Here we aim to address healthcare data’s confidentiality and privacy issues through
the ML approach. To achieve the stated objective, the study proposes a theoretical ML-based framework
that will describe the normal users’ behaviors of dynamic healthcare environment and detection of
suspicious or abnormal user behaviors against the normal user profiles. This model will help the
healthcare service providers to secure sensitive health data from suspicious accesses that result in
healthcare data breaches.

The rest of the work has been organized as: the second section of this research endeavor presents the
analysis of some important existing research studies; the third section discusses the healthcare data
privacy and confidentiality issue in the contemporary scenario; part 3.1-the sub-section discusses the
arrival rate and inter-arrival time of different data disclosures. The fourth section describes the ML-based
theoretical framework for suspicious user access detection. Section 4.1 provides Fuzzy-ANP based
idealness assessment of ML approaches. The final section concludes the proposed study.

2 Analyses of the Existing Research Studies

Research has an implicitly dynamic and a continuous character. It always starts with a problem and ends
with a problem. The researcher identifies a problem and finds solutions for it and at the end of the research
process, the determined results come up with some limitations as newly identified problems. This character
of the research makes it an ongoing process. Hence, to identify the actual research gap and the objectives of a
proposed research study, the researchers go through the existing literature relevant to the proposed theme.
Thus, in this sub-section, we will summarize the results of some of the existing literature studies.

� The authors of this research endeavor implemented the Actor-Network Theory to address the
complexity of dynamic healthcare environment and narrated the associations among the users who
are concerned with the digital healthcare data [10]. In this study, the researchers showed that the
complex network of individuals, service providers, and technologies that are involved in storing
and processing protected health data make it more vulnerable to intruders.

� In this research endeavor, the market effect of healthcare data breaches has been examined from the
patients’ perspectives and actions [11]. This study shows that data breaches did not affect patients’
short-term choices, but the overall effect of breach events over 3 years decreased the number of
outpatient visits and admissions significantly.

� This research study depicts the monetary effects and consequences of cyber intrusions on healthcare
organizations [12]. This study shows that though there is a variation in data breach cost reports, the
healthcare data breaches adversely affect the overall healthcare organizations with special reference to
Poland’s health sector. The reasons behind the data breach cost variation are different cost estimation
approaches, incomplete information, and insufficient disclosure of intrusions.

� In this comprehensive healthcare data breach study, the authors cite that with the advances in
healthcare technology, healthcare data breaches have also increased rapidly [5]. This research
endeavor depicts that hacking and other IT cyber incidents in the last five years have drastically
affected the healthcare sector. Furthermore, the cost of healthcare breached records has increased
rapidly as compared to the cost of breached records of other sectors. This study further reveals that
privilege abuse is the second biggest cause behind healthcare data breaches. The authors of this
work conducted an analytical study on healthcare data breaches from a digital forensic perspective
[13]. The study cited that irrespective of the technological revolution in the healthcare sector,
disclosure of protected health information is still at the peak. Most of the breached incidents show
the same pattern and are attributed to internal actors. Privilege abuse is an alarming issue in the
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healthcare sector and plays a significant role in illegal data disclosure. Various free and open source
EMR systems have been examined in this study and it has been found that these systems do not
provide a sufficient level of forensic logging needed to support investigations focusing on
privileged abuse.

� In this research study, the authors analysed data breaches faced by various organizations from
education to healthcare [14]. This study mainly focused on hacking incidents carried out on
various organizations by the intruders. It revealed that healthcare and business organizations were
the prime targets of the intruders and had very few mean inter-arrival times as compared to other
organizations. This implies that healthcare and business organizations are more frequently attacked
by the intruders because of the highly sensitive data.

� Authors of the study researched on the causes of the healthcare data breaches and concluded that the
main causes for the breaches were theft, loss, unauthorized access/disclosure, improper disclosure, or
hacking incidents [15]. This study also noted that the sources from where the healthcare data was
exposed included networks, paper films, e-mail, portable devices, desktop computers, and laptops.
The study observed that theft and loss compromised the largest data breaches as compared to
hacking incidents.

From the analysis of some of the important existing studies, it was found that the healthcare sector is
facing a major threat in the context of privacy and security breaches. Both the internal or external factors
are responsible for data breach episodes. Loss, theft or tampering of health data impair the reputation, and
business continuity of the healthcare organizations. Moreover, inaccurate information due to data breach
can also lead to errors in treatment and medication, thus endangering the patients’ health. Thus, the
security experts and researchers need to address the privacy and security issues of healthcare data.

3 Data Privacy and Confidentiality Issues

A paradigm shift in the present day electronic healthcare records effected by the recent pandemic
demand more foolproof security mechanisms [16]. As a result, in terms of sophistication, diversity, and
timeliness, the healthcare sector is experiencing a massive expansion in the volume of data. In today’s
digital age, data is the most precious commodity. Every digitalized industry produces huge quantities of
data. It is estimated that the amount of data produced each day throughout the world by 2025 will be
463 Exabyte and the number of IoT devices will reach up to 75 billion [17]. In 2018, 2.5 Exabyte data
was produced each day. 90% of the aggregate data has been produced in the last two years alone [18].
Thus, safeguarding the privacy and the confidentiality of such huge data is, unambiguously, a serious and
a challenging issue.

Data confidentiality defines the policies that ensure that customer-shared data is only used for the
intended purpose and should be protected from unlawful, unauthorized access, disclosure, or theft [5].
The ability of the customers to monitor how their personal information is obtained and used ensures
protection of the information. Privacy means ensuring that the health information of people is adequately
protected. Privacy or rather the lack of it is one of the major hurdles in gaining patients’ confidence and
introducing completely functional e-health systems. Privacy can also be also defined as having the
capacity to promote or encourage fundamental values such as personal autonomy. It also helps the
individuals to monitor how clinicians and other consumers handle and use their e-health information in
fields other than healthcare.

Major privacy and security challenges in e-healthcare are access control and authentication, data
Integrity, system Availability, Data Loss, and network security [5,19,20]. Cyber-security risks to health
care are frequently seen as primary instigators of data breaches, and while frequently real, this is not
often the only aspect that protected companies and business associates need to plan. Further, from
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2010 to 2019, 3033 data breach incidents were reported against the healthcare sector which collectively
disclosed 255.18 million patients’ records [5]. Furthermore, in the first nine months of the year 2020,
393 healthcare data breach incidents were reported that exposed 18.57 million patients’ records [21].

Survey reports state that in 2010, the average cost of a breached record was $219, while the cost of
healthcare breached record was $294. Interestingly, though the average cost of a breached record reduced
to $150 in 2019, the cost of healthcare breached records increased to $ 429 [5]. This 45% increment in
the value of breached healthcare data has been a major impetus for healthcare data predators who are
constantly preying upon the privacy of patients’ data. Tab. 1 given below represents the year-wise total
number of healthcare data breaches, the number of data breaches with different disclosure types, and the
number of exposed records from 2010 to 2020 [5, 21–25]. We have presented only the summarized data
for the first 9 months of the year 2020 because of the unavailability of data for the last three months. The
key issues in terms of healthcare data privacy and confidentiality are Hacking/IT incidents (mainly
includes ransomware, malware injection, and phishing), the unauthorized access (encompasses privileged
abuse and internal disclosure), theft/loss, and Improper data disposal. These issues have been identified
from healthcare data breach analysis and their graphic representation is shown in Fig. 1. The illustration
represents how different data disclosure types have affected the healthcare data industry year by year in
an increasing or decreasing trend. The analysis also reveals that hacking related incidents followed by
privileged abuse (internal disclosure) attacks are still growing abruptly and affect the healthcare industry
adversely. As part of an efficacious solution to the pressing crisis, this study has devised an ML-based
framework discussed in Section 4.

3.1 Arrival Rate and Inter-Arrival Time of Different Data Disclosures

Arrival rate defines the number of arrivals of an event or object that occurred per unit of time whereas
inter-arrival time specifies the time between two arrivals that occurred in a system. Arrival rate and inter-
arrival time helps us to determine the frequency of different data disclosure types concerned with time
and allows us to build a clear vision of the frequency of data breach attacks [14]. Such an analysis will

Table 1: Healthcare data breaches with different disclosure types

Year Number of
Data
Breaches

Theft/
Loss

Hacking/
IT
Incidents

Unauthorized Access/
Disclosure (Internal)

Improper
Disposal

Unknown Exposed
Records in
Millions

2010 199 148 8 8 10 25 5.530

2011 200 136 17 27 7 13 13.150

2012 217 138 16 25 8 30 2.800

2013 278 150 25 64 13 26 6.950

2014 314 143 35 76 12 48 17.450

2015 269 105 57 101 6 0 113.270

2016 327 78 113 129 7 0 16.400

2017 359 73 147 128 11 0 5.100

2018 365 55 158 143 9 0 33.200

2019 505 51 274 142 7 31 41.200

2020 393 37 262 77 13 4 18.57

Total 3426 1114 1112 920 103 177 273.62
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help the healthcare organizations and security experts to prioritize and identify the most severe attack
types, thus using the information to contain and minimise the impact of disclosures effectively. Arrival
rate and inter-arrival time are inverse of each other and are mathematically calculated with the help of
Eqs. (1) and (2).

Arrival Rate ¼ 1

inter arrival time
(1)

Inter Arrival Time ¼ 1

arrival rate
(2)

Time period mentioned in this study is 2010 to September 2020. And in most cases, the hour is
considered as a unit. But data breach reporting is either carried out on a monthly or yearly basis. Thus,
we also considered the unit here as either a month or a year. For a crisp and better analysis, we will
consider month as a unit of time to calculate the arrival rate and inter-arrival time of the healthcare data
breaches related to different disclosure types such as theft/loss, hacking/IT incidents, Internal disclosure,
and Improper disposal. Therefore, the mentioned period (2010 to September 2020) consists of a total of
129 months. In this study, we will calculate the arrival rate and inter-arrival time of data breaches in three
different cases:

� Case-I will determine these two parameters of the whole period.

� Case-II will calculate separately the first half (2020-2015) of the time period.

� Case-III will examine the inter-arrival time of the last half (2015-2020) of the period separately.

Different case analyses will help us to find out the trend of a data breach in three different scenarios and
examine the pattern of change and the extent of the magnitude of the disclosure. Tab. 2, given below
represents the above three cases separately with the final calculated results of arrival rate and inter-arrival
time of different data disclosure attack types.

Results of Tab. 2 precisely reveal that in the last five or six years, the number of hacking related attacks
increased rapidly whereas the cases of theft/loss show a sufficient decrement. However, privileged abuse
(internal disclosure) type attacks also increased but not as much as the hacking related incidents.
Improper disposal of unnecessary healthcare data does not show any significant change from case-II to
case-III. In the II case of the study, the hacking/IT, incidents arrival rate was 2.194 per month, whereas in
the III case it goes up to 14.652 breaches per month and its inter-arrival time reduces to 0.068 from
0.455. This makes it an alarming issue for both the healthcare organizations and researchers. Further,
Privilege abuse (unauthorized internal disclosure) type attacks also grow from 4.180 to 10.432 in arrival
rate with sufficient reduction in inter-arrival time from 0.239 to 0.095. Thus, privacy and confidentiality
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Figure 1: Different data disclosure types since 2010 to 2020
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of healthcare data need the urgent focus of researchers and security experts who must find out strong
technical solutions for the crisis. In the next section of this study, we have provided machine learning
based proactive solution to ensure healthcare data’s privacy and confidentiality.

4 Theoretical Machine Learning-Based Framework

The theoretical framework provides concepts with their description of the study that is under
consideration [25,26]. It provides demonstrations and understandings about the concepts that encompass
the concerned work and convey a platform for a practical model that addresses the existing problem in a
real life environment. The study aims to provide a theoretical ML framework that ensures the
confidentiality of EHRs in the dynamic healthcare environment. It will provide a proactive mechanism for
the detection of anomalous or suspicious user accesses against the protected health records and enhance
the security attribute of healthcare data.

The advanced digital healthcare environment is predominantly concerned with the users that are
patients, healthcare professionals who might be doctors, nurses, lab technicians, billers or system admins,
and others (a user who can access on the behalf of a patient in an emergency). All these users’ profiles
have got different types of privileges to access healthcare data. The same levels of users usually get the
same type of privileges such as all doctors, all nurses, all billers, all patients, and all other users. With the
granted privileges, healthcare data is accessed in different ways by different types of system users. User
accesses with different attributes such as user id, device id, patient id, time and duration, user action are
recorded in the system log. Normal user accesses against the health information system repeats the same
pattern by the same level of users [6]. Thus with the consultation of the concerned domain security
experts, a labeled data set can be prepared from the historical log data to train and test the supervised ML
model. And then it can be used in the healthcare environment to identify any abnormal or suspicious user
access. But the preparation of a labeled data set is time consuming, costly, and expert dependent. Hence,
the authors of the study have provided another scenario which is the implementation of an unsupervised
ML-based model. The proposed model will distribute the historical log records in different clusters based
on similarity and dissimilarity. The accuracy of the system will be determined on some part of the
historical log data. After that, this model will be installed in the healthcare environment to detect the
suspicious user access in future. For the identification of the abnormal user accesses against the system,
log data will be provided to the model on specific time bases such as after every 24 h or once in a week.

Table 2: The Arrival rate and inter arrival time of different type’s healthcare data disclosures

Theft/Loss Hacking/IT
Incidents

Unauthorized Access/
Disclosure (Internal)

Improper
Disposal

Case-I
(2010-2020)

No of breaches 1114 1112 920 103

Arrival Rate/Month 8.635 8.620 7.131 0.798

Inter Arrival Time 0.115 0.116 0.140 1.253

Case-II
(2010-2015)

No of breaches 820 158 301 56

Arrival Rate 11.388 2.194 4.180 0.777

Inter Arrival Time 0.087 0.455 0.239 1.287

Case-III
(2015-2020)

No of breaches 399 1011 720 53

Arrival Rate 5.782 14.652 10.434 0.768

Inter Arrival Time 0.172 0.068 0.095 1.302
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In this way, the implementation of the proposed anomaly detection model will help the healthcare service
providers to secure sensitive healthcare data in a better way. Moreover, the model will also aid in
providing early information about the suspicious accesses against the system. This will also save time
because then the security experts will investigate only those log records that are identified as suspicious
because the investigation of thousands of log records is time consuming, hectic, uneconomical, and
ineffective. Fig. 2 presents the conceptual view of an EHR system integrated with a machine learning
model to identify deviated user behaviors while accessing healthcare data. Implementation of our
proposed theoretical ML-based model will be considered in our future work. The next sub-section of the
current section provides an assessment of supervised and unsupervised ML approaches by using the
fuzzy-based ANP approach; a well-known and efficient multi-criteria decision-making technique.

4.1 Idealness Assessment of Supervised and Unsupervised Approaches

The Idealness assessment of two dominant ML approaches will help the researchers and healthcare
service providers to select more ideal and suitable ML approach for healthcare data’s privacy in a
proactive fashion. The authors of the study assessed two dominant techniques of machine learning
namely, the supervised and the unsupervised learning approaches through fuzzy-based Analytical
Network Process (ANP). The analytical network process is an MCDM problem solving technique and is
most suitable for addressing the problems that can produce multiple solutions. It can measure
dependencies among criteria and also alternatives [26]. The numerical assessment of this work will
provide a quantitative evaluation of two machine learning approaches and identified attributes. For that, a
domain expert group is consulted to identify a criterion (attribute) set for this assessment. A set of five
attributes has been selected to assess two different ML approaches against healthcare data security. These
attributes are Nature of Data, Anomaly Detective, Misuse Decisive, Accuracy level, and Appropriateness.
Fig. 3 given below presents the Network structure of these attributes with a pair of alternatives.

� Nature of Data: The nature of data defines the natural characteristic of the historical (past) data that is
to be needed for the ML-based model. It can be either labeled or unlabeled data. The labeled data is
very rare and needs more financial resources for its generation. Whereas, the unlabeled data is
available in abundance and is utilized by unsupervised ML techniques only.

� Anomaly Detection: Anomaly detection defines an attribute of the ML-based approach to identify or
detect unknown or newly generated attack types. The behavior of these attack types does not exist in

Figure 2: Conceptual EHR system with ML based anomaly detection model
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the supporting database of the model. An ML-based model analyzes the attack types and tries to
predict its class based on its knowledge and experience.

� Misuse Detective: Misuse detection also ensures the characteristic of ML-based approaches to detect
known attacks. The attack detection is based on signatures that are already known for the model.
Approaches used for the misuse detection provide high accuracy but are ineffective for identifying
unknown attacks.

� Accuracy level: Accuracy is one of the prominent characteristics of machine learning techniques. It is
measure through various measuring scales such as precision, sensitivity, specificity, area under curve
etc. It defines the performance accuracy of an ML-based model with respect to other models or
techniques.

� Appropriateness: Appropriateness as a characteristic defines the suitability or fitness of a machine
learning technique in a specified environment. It depicts how well an ML-based approach
simulates the specified environment. Here, our specified environment is healthcare and its digital
smart systems are used to store and process electronic health records.

4.1.1 Adopted Methodology
The research methodology is based on a systematic, step-wise procedure to conduct the experiment of

idealness assessment on the Supervised and the Unsupervised Machine Learning techniques. The proposed
experiment will assess the overall idealness of both ML techniques with respect to the attribute set identified
by various domain experts. The selected attribute set is considered from a healthcare cyber-security
perspective. For that, the fuzzy Analytical Network Process (ANP) has been implemented to complete
this work. ANP approach comes under the umbrella of the MCDM problem solving domain [27,28]. This
research paper practically examines the ANP by using fuzzy logic so as to make it efficient and effective
for deriving more accurate results. Fuzzy logic is considered as an advanced structure of classical logic
and has acquired a major significance in those problems domains where a solution might vary between
absolute true and absolute false. Such a solution might be absolutely true, partially true, absolutely false, or
partially false. Such a varied range helps to categorise and address the uncertainty of the information [29].
Analytical network process is an MCDM problem solving technique and is the best technique for addressing
the problems that can produce multiple solutions. It can measure dependencies among criteria and also the
alternatives [28]. That makes it more efficient for depicting the real life problems and produce accurate
results as compared to the analytical hierarchy process (AHP). Fuzzy-based ANP is applied, in this work for
determining the weights of criteria (factors/attributes). Fig. 4 illustrates the step-wise working procedure of
this work. Numerical formulas are discussed in the following subsections.

Figure 3: ANP based attributed and alternative structure
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Step_1: Triangular Fuzzy Number (TFN) is structurally as a triplet (f1, f2, f3) where f1 < f2 < f3 and
f1 symbolize lower value, f2 middle one and < f3 symbolizes higher value. The membership function of
the fuzzy number ~T is demonstrated with the help of Eqs. (3) and (4) and the number is known as TFN.
Fig. 5 and Tab. 3 depict the structure of a TFN and scale, respectively.

lTðxÞ¼ F ! ½0; 1� (3)

lT xð Þ ¼

f1� f2
f2� f1

; f1 � x � f2

f3� x
f3� f2

; f2 � x � f3

0; x. f3 Otherwise

8>>>><
>>>>:

(4)

Figure 4: Working diagram of fuzzy based ANP

Figure 5: Structure of a TFN
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After that fuzzy conversion is performed on these numeric values. To convert a numeric value into a
TFN, Eqs. (5)–(8) are applied [27] and symbolized as (f1ij, f2ij, f3ij) where, f1ij presents low value, f2ij
presents the middle one, and f3ij presents upper value. Further, TFN [ɳij] is defined as:

gij ¼ f 1ij; f 2ij; f 3ij
� �

(5)

where; f 1ij � f 2ij � f 3ij

f1ij ¼ min Jijd
� �

(6)

f 2ij ¼ ðJij1; J ij2; J ij3Þ
1
x (7)

and f3ij ¼ max Jijd
� �

(8)

The relative importance of values among two attributes is denoted by Jijk with the help of expert
opinions and above given equations, also attribute pairs are judged and denoted by i and j. Further, the
operations on two TFNs are performed with the help of Eqs. (9)-(11). Suppose, T1 and T2 are two TFNs,
T1= (f11, f21, f31) and T2= (f12, f22, f32). Then operational rules on them are as:

f11; f21; f31ð Þ þ f12; f22; f32ð Þ ¼ f11 þ f12; f21 þ f22; f31 þ f32ð Þ (9)

f11; f21; f31ð Þ � f12; f22; f32ð Þ ¼ f11 � f12; f21 � f22; f31 � f32ð Þ (10)

ðf11; f21; f31Þ�1 ¼ 1
f31

;
1
f21

;
1
f11

� �
(11)

Step_2: Experts’ responses are used to establish pair-wise comparison matrix and by applying Eq. (12),
consistency Index (CI) is determined as follows:

CI ¼ cmax � q
q� 1

(12)

where, CI: Consistency Index and q: number of compared elements. The Consistency Ratio (CR) is
calculated using a random index Eq. (13).

CR ¼ CI=RI (13)

Table 3: Linguistic-terms and respective TFNs

Saaty Scale Definition Fuzzy Triangle Scale

1 Equally important (1, 1, 1)

3 Weakly important (2, 3, 4)

5 Fairly important (4, 5, 6)

7 Strongly important (6, 7, 8)

9 Absolutely important (9, 9, 9)

2
4
6
8

Intermittent values between two adjacent scales (1, 2, 3)
(3, 4, 5)
(5, 6, 7)
(7, 8, 9)
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Generated matrix is reasonably called consistent if CR < 0.1. Here, the random index is specified by RI
and is taken from Saaty [26].

Step_3: After the completion of step_2, the result is obtained in the form of a reasonably consistent
matrix. Then by applying the defuzzification (alpha-cut) method taken from [28], TFN values are
converted to quantifiable values. Defuzzification is determined through Eqs. (14)-(16).

la;bðgijÞ¼½b:gaðf1ijÞþð1�bÞ:gaðf3ijÞ� (14)

Where, 0 ≤α ≤ 1 and 0 ≤ β≤ 1

Such that,

ga f 1ij
� � ¼ f 2ij � f 1ij

� �
:aþ f 1ij (15)

ga f 3ij
� � ¼ f 3ij � f 3ij � f 2ij

� �
:a (16)

The values of α and β lie between 0 and 1 and are used in the above equations.

Step_4: In this step, the process of paired comparisons is done in between groups including goal,
attributes, sub-attributes, and alternatives in the form of priority vector that results in the formation of the
super-matrix.

The systematic and step-wise methodology discussed above will be adopted in this work to carry out a
case study on two dominant ML approaches for idealness assessment with respect to healthcare data security.
In the next section of this work, we will provide numerical calculations with the results of this study.

4.1.2 Numerical Analysis and Results of Assessment
ANP under the fuzzy environment has been used in this work for greater accuracy and efficiency. To

determine the overall idealness and performance nature of two different machine learning approaches,
five above mentioned attributes have been considered for this experiment. These attributes are symbolized
as Nature of data (M1), Anomaly detective (M2), Misuse detective (M3), Accuracy level (M4), and
Appropriateness (M5) in the following tables. With the help of Eqs. (3)–(16), specified in the
methodology section, assessment of the supervised and the unsupervised approaches under fuzzy-based
ANP environment has been examined as follows:

Firstly, the linguistic-terms are converted into numeric values, and then these values are converted into
aggregated TFNs by using the Saaty’s scale, as shown in Tab. 3 and also by applying Eqs. (3)–(11).
Conversion of crisp numbers into TFN values is carried out by using Eqs. (5)–(8). After that, for
establishing a pair-wise comparison matrix for specified attributes, numerical calculations are carried out
and the final results are depicted in Tab. 4. Then by applying Eqs. (12) and (13), CI and RI have been
determined. For the consistency of the pair-wise comparison matrix, the consistency ratio (CR) should be
< 0.1. Our generated calculations for CR also satisfy the criteria (CR = 0.07). Hence, our matrix is
consistent. Further, by adopting Eqs. (9)–(11) addition, multiplication, and reciprocal operations on TFNs
have been performed and those intermediate operation results become helpful in completing this study.
However, their representation in this study is not necessary and will also increase the page limit of this
study. By applying Eqs. (14)–(16) on pair-wise comparison matrix, the defuzzification process has been
carried out by using the alpha-cut method. Thereafter, the normalized values and the defuzzified local
weights of attributes are represented in Tab. 5. Taking help from the local attribute-weights, the attributes’
weights and priorities have been determined. The results are represented in Tab. 6. And the graphical
representation of the same is depicted in Fig. 6.
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Table 4: Pair-wise comparison matrix

M1 M2 M3 M4 M5

M1 1.00000, 1.00000,
1.00000

1.06210, 1.53110,
1.99110

0.51110, 0.62110,
0.86110

1.73110, 2.31110,
2.92110

1.69220, 2.41220,
3.15220

M2 0.51110, 0.65110,
0.94110

1.00000, 1.00000,
1.00000

1.18110, 1.47110,
1.87110

0.79110, 0.96111,
1.14111

1.46220, 1.86220,
2.22220

M3 1.16111, 1.67110,
1.96110

0.53110, 0.68111,
0.85110

1.00000, 1.00000,
1.00000

1.09211, 1.34110,
1.87110

1.61220, 2.34220,
3.15220

M4 0.34110, 0.43110,
0.58110

0.88110, 1.04110,
1.26110

0.53220, 0.74220,
0.53220

1.00000, 1.00000,
1.00000

1.50220, 1.93220,
2.35220

M5 0.32220, 0.41330,
0.59440

0.45220, 0.52220,
0.67777

0.32450, 0.43450,
0.63250

0.42750, 0.52750,
0.67750

1.00000, 1.00000,
1.00000

Table 5: Defuzzification by using alpha-cut method

M1 M2 M3 M4 M5 Weightage

M1 1.000000 1.778150 0.892170 2.563180 2.667120 0.28811

M2 0.562140 1.000000 1.751180 1.212170 1.853180 0.18911

M3 1.121110 0.571710 1.000000 0.989170 2.606160 0.26511

M4 0.390210 0.825150 1.011140 1.000000 2.177140 0.24185

M5 0.375130 0.540710 0.384140 0.459140 1.000000 0.25732

CR = 0.07124420

Table 6: Global weights of attributes

Attributes Global Weights Global Priorities

M1 0.1819500 5

M2 0.2119710 2

M3 0.1824960 4

M4 0.2427190 1

M5 0.1908640 3

Global Weights0

0.1

0.2

0.3

M1
M2

M3
M4

M5
0-0.1 0.1-0.2 0.2-0.3

Figure 6: Graphic depiction of attribute weights
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From the numerical analysis of the results, it was found that among the five identified attributes, the
Accuracy level (M4) got the highest global weight (0.2427190) followed by the Anomaly detective (M2)
with 0.2119710 global weight. The Misuse detective (M3) and Nature of Data (M1) got the lowest global
weights. Thus, the prioritized order of these attributes, according to this assessment that is based on
fuzzy-based ANP approach, is as: Accuracy level (M4), Anomaly detective (M2), Appropriateness (M5),
Misuse detective (M3), and Nature of Data (M1). Therefore, the implications of this evaluation are that
among the two specified techniques- supervised and unsupervised machine learning as alternatives- the
unsupervised approach is more ideal for health data security as compared to the supervised approach. The
results established that Accuracy, Anomaly detective, and appropriateness attributes have got the highest
global weights. Hence, they are more ideal for an unsupervised approach because of the following reasons:

� Available healthcare log data is unlabeled; this feature better suits the unsupervised machine learning
approach. This depicts the appropriateness (M5) attribute of the unsupervised learning approach.

� The anomaly detective (M2) attribute is also best depicted by the unsupervised approach as compared
to the supervised approach because of independence on labeled data.

� The Accuracy level (M1) is better in the supervised approach but the unsupervised also provides good
accuracy that is acceptable in dynamic environments.

5 Conclusion

The healthcare sector is one of the top data industries of the world that holds and processes sensitive and
valuable data. Healthcare sector has become the most vulnerable target of intruders and the number of attacks
against healthcare data is increasing rapidly. Healthcare data is being breached and exposed through Hacking
(ransomware, malware, and fishing), and internal unauthorized access. The soaring cases of data theft call for
more effective security mechanisms. The present research endeavor’s theoretical framework for ensuring
healthcare data confidentiality based on supervised and unsupervised machine learning is an attempt in
this direction. Implementation of these models will help the healthcare organisations to identify
suspicious user accesses against the protected healthcare data in a more robust manner. Moreover, the
effective implementation of the model will also reduce the time spent in investigation and the cost
incurred in the process. This work also depicts that the unsupervised machine learning approach is an
ideal option for maintaining healthcare data security as compared to the supervised approach. Research is
a dynamic process, thus we cannot claim that our identified attribute set is optimal but it is also an ideal
choice. Moreover, the proposed assessment approach- fuzzy-based ANP is an effective MCDM approach
but not optimal. So, researchers can practice other techniques for better results if possible. In our future
work, we will focus on the implementation of the proposed theoretical framework.
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