Intelligent Automation & Soft Computing K Tech Science Press

DOI:10.32604/1iasc.2021.018256
Article

A General Technique for Real-Time Robotic Simulation in Manufacturing
System

Ting-Hsuan Chien'-", Cheng-Yan Siao” and Rong-Guey Chang’

1Department of Computer Science and Information Management, Providence University, Taichung, 433303, Taiwan
Department of Computer Science and Information Engineering, Advanced Institute of Manufacturing with High-Tech Innovations,
National Chung Cheng University, Chiayi, 621005, Taiwan
*Corresponding Author: Ting-Hsuan Chien. Email: thchien0616@pu.edu.tw
Received: 02 March 2021; Accepted: 17 April 2021

Abstract: This paper describes a real-time simulator that allows the user in the
factories to simulate arbitrary interaction between machinery and equipment.
We discussed in details not only the general technique for developing such a
real-time simulator but also the implementation of the simulator in its actual
use. As such, people on the production line could benefit from observing and con-
trolling robots in factories for preventing or reducing the severity of a collision,
using the proposed simulator and its related technique. For that purpose, we
divided the simulator into two main models: the real-time communication model
and the simulation model. For the communication model, we present the distrib-
uted messaging server structure and the database semaphore technique for hand-
ling the real-time peer-to-peer (P2P) connections and control. For the simulation
model, we used parallel programming and the general-purpose GPU (GPGPU)
technique to speed up the processing time of the simulation. In the paper, we
exhaustively explain how the simulator’s techniques are designed and implemen-
ted and verify two real world models with robots and robot-operating systems
(ROS). Moreover, we compare the results between our technique and the tradi-
tional method.

Keywords: Smart factory; cyber-physic system; general-purpose graphics
processing units

1 Introduction

The concept of “Industry 4.0” was first proposed in the 2011 EMO Hannover, it brought new business
models with smart manufacturing by integrating the computing, Cyber-Physical System (CPS), and Internet
of Things (IoT) in the traditional manufacturing process [1]. Since then, the whirlwind of Industry 4.0 began
to sweep across the the world, and the traditional machine in the factory has been replaced gradually by the
combination of controllers, sensors, and computers.

The robotic arm is a cogent reason why we need the aforementioned technique in the manufacturing
system. In the factory, the robotic arm is critical because of the rapid throughput and the product quality

This work is licensed under a Creative Commons Attribution 4.0 International License, which
@ @ permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.

mailto:thchien0616@pu.edu.tw
http://dx.doi.org/10.32604/iasc.2021.018256
http://dx.doi.org/10.32604/iasc.2021.018256

828 IASC, 2021, vol.29, no.3

requirements, and it has become an important symbol of national industrialization. Also, with the rising labor
costs and the decreasing threshold of robot manufacturing, the development of the robotics and related
equipment has received more attention from all walks of the world. From a survey of 2018 automatica
trend index, a total mount of 7,000 employees in seven countries were asked how robots and digitization
are changing the working world, and the result shows that most employees believe that automatic robots
offer the opportunity to qualify for higher-skilled work. Beside, the evolution calls for targeted training
and employees’ further education.

Sine the robotic arms(or robots) are important in the factory of future, we’ll face a new problem of how
to work with them. Therefor, the simulation of the robots and the targets becomes an important issue when
humans or machines work with the robots. Based on the simulation, we can evaluate different robots and
victims during the design phase of industrial systems and lead to better decisions. Besides, it supports
module development in replacing unavailable robots and machines (e.g., broken or used by another
person) or in long-running experiments (e.g., learning tasks [2]). In addition, the robot programs inside a
simulator offer the possibility to debug and test the result during execution directly, which is a great
supplement when the platforms do not provide any direct debugging facilities. Tab. 1 shows the features
of modern robot simulators. We can notice that these simulators only focus on robots but not on the
composition of the manufacturing system.

Table 1: The feature comparison of modern robot simulators

Software CAD to Motion Off-Line Programming Real-Time Streaming Control of Hardware
Gazebo - Yes Yes
RoboDK Yes Yes Yes
SimSpark - No No
Webots - Yes Yes
OpenRAVE - No No

Another challenge in the simulation systems is the communications between robots and machines, it also
fits the fiels of CPS and IoT in Industry 4.0. In the factory, we can use wireless networks to provide adequate
communication facilities without a particular structure or restrictions. However, if the device is faced with
conditions or high load, the network needs to be carefully used to better exploit the capabilities without
any overloading. In this paper, we propose a real-time approach to communicate for the solving the
situation in our system.

Obviously, robots will be an essential part of our daily life as smart assistants in the factory. As a regular
part of the further applications, the robot’s operation should consider very dynamic, unstructured, and
partially unknown environments, co-working with a human user, preventing unnecessary collisions,
handling the physical contacts in a general way, and responsibly for sensor-based motions. This paper
will introduce our real-time simulator and the related technique to solve the above issue, and compare the
result with the traditional way by the use case in the real world.

2 Related Work

Craig R. Carignan mentioned the robotic arm in 2002 as an automatic control device that mimics the
human arm function and can perform various tasks. The robotic system has multiple joints that allow
motion in a flat or three-dimensional space or movement with linear displacement. The robotic structure

IASC, 2021, vol.29, no.3 829

consists of a mechanical body, a controller, a servomechanism, and a sensor, and then the program sets a
specified action according to the operation requirements.

An electric motor drives the operation of the robot to move one arm, open or close a clip, and pass
accurate feedback to the programmable logic controller. Those automatic device are mainly used to
complete the “wrist and hand” movements. It can be controlled by the skilled operator’s operation
sequence and can perform the correct regular operation as many times as possible. The movement
principle between different joints can be divided into the right angle coordinate type, the cylindrical
coordinate type, the polar coordinate type, and the joint coordinate type. At present, four prominent
industrial robots [3], i.e., KUKA in Germany, ABB in Switzerland, and Fanuc and Yaskawa in Japan, are
the most well-known manufacturers in the field of the robotic arm.

2.1 Robot in Manufacturing System

With the advent of Industry 4.0, robots are no longer pre-programmed and no need to set their repetitive
work individually [1,4]. Thus, as smart manufacturing tasks become more adapted and more flexible, the
development of intelligent manufacturing systems has shown great promise. Machines are less likely to
be pre-configured through traditional teaching methods but perform variable tasks and respond to
unexpected environments and operations. Besides, smart manufacturing also requires the system to
dynamically schedule these machine jobs based on workload and received tasks.

Different from standard manufacturing processes, intelligent manufacturing provides the advantages of a
distributed network machine that can accomplish different tasks through collaboration. The frame design of
the smart factory is shown in Fig. 1 [5]. At a low level, robotic devices can be developed into components
flexible in the system and be reused in multiple manufacturing processes. As noted above, robotic arms are
highly unrelated in platforms such as operating systems, programming languages, or communication
interfaces. Therefore, in some researches, they use middleware to create a unified abstraction to enable
communication and coordination dynamically between modules [6], which benefits the modification of
existing equipment and new material expansion to become an easy job.

Portable User Interface
Real Time

Encryption/ | |

Decryption I |

Real Time
Monitor

Mail Server Database Server Alarm Server

Real Time
Encryption/
Decryption I l

LN [N
» »
] 3

Portable User Interface

Figure 1: The architecture of the factory communication system

830 IASC, 2021, vol.29, no.3

On the factory communication system, we can develop many functions for facilitating the use of
machines such as human-machine interface, storage management, motion planning, and virtual
manufacturing. For example, customers can order products through the human-machine interface with
customized requests, e.g., changing to the favorite color and polishing the part’s shape. The system sends
these orders to the mission-planning model and utilizes information from the storage management
module. As a crucial part of system speed and brainpower, a generic planner based on the simplified
Markov Decision Process (RMDP) model can convert the customer’s order into a subtask sequence that
can be executed directly by the corresponding robot component. In addition, manufacturing control
systems, management systems, and CAD/CAM design plugins for the application are all critical parts of
the industrial manufacture process. Our research focuses on the co-work of layers and component-based
technologies.

2.2 Communication Protocols

The Robot World Cup (RoboCup) [7], as an example of multi-robot communication, was first held in
1997 to promote research on artificial intelligence and intelligent robot. The RoboCup Medium League
(MSL) is a high-level competition where two teams of five robots compete in football. Its rules follow the
official FIFA law but with more restrictions on robots and the environment [§]. During the game, the
robot communicates only use the wireless network mode. This paper proposes the unicast and multicast
communication modes to disable broadcast. According to the experiments, each team’s maximum
transmission bit rate is 20% of IEEE 802.11b (2.2 Mbps). However, most of these rules are not enforced
in practice and are often accompanied by problems of reduced communication quality. Efficient
communication is a critical factor leading to the team’s success during the game, but most teams only
schedule their robots by regularly transmitting information but ignore to consider the synchronization.

Therefore, in the worst case, where all robots try to deliver at the same time, causing communication
delays and further influencing communication. Meanwhile, other research presents that communication
pattern identification is an essential step in developing reusable software [9] by distinguishing between
two categories in a cooperative multi-robot system. In addition, robot state transmission is related to the
real world’s perception of robots’ sensors. Constantly exchanging these data can enhance the
understanding of the world for each robot. On the other hand, synchronous messages are related to the
need for robots’ communication to agree and keep the relationship behaviors in sync.

2.3 Collision Detection

Physical human-computer interaction (pHRI) research [10,11] is a global goal to achieve robotic
behavior and work closely with robots. The approach involves a novel mechanical design of the robotic
linkage and drive, design of reducing inertia/weight based on compatible components, extensive use of
external sensors for quick and reliable identification of human-robot proximity, and the development of
human consciousness movement planning and control strategies. One of the pHRI’s core issues is dealing
with collisions between robots and humans, whose primary motivation is to limit the human damage
caused by physical contact. The workspace should be monitored by using external sensors to avoid
undesired collisions to predict Dangerous situations.

However, since the relative motion between the robot and the person may be very fast or impossible to
predict, the use of external sensors may not be sufficient to prevent collisions. Besides, contact is inevitable
and necessary to perform the task when direct and intentional human interaction is required, and the contact
classification needs to be distinguished between expected and unintended connections. For the robot to react
as appropriately as possible, a common way is to collect the most considerable amount of physical
information from impact events, such as contact location and intensity. To systematize the contact
handling problem, a unified framework, called the collision event pipeline, is introduced to cover all the

TASC, 2021, vol.29, no.3 831

relevant phases that a collision may experience. It should be mentioned that the solution proposed in this
work can be easily extended to other types of robots other than manipulators. In addition, system
collision processing is very beneficial for some robots, like the robots that attempt to guide through the
appropriate detection and identification of user forces [12], the upper body robots with the
anthropomorphic system [13], and even the flying robot. Considering the floating base, there are still
some improvements for the humanoid robot [14], which requires a specific treatment of the system’s
angular momentum.

3 The Proposed Real-Time Communication Model

The main structure of the commissioning function consists of a sensor network, a datacenter, and
application programming interfaces (APIs). In the sensor network, the data is obtained from machine’s
background services and passed to the remote program. For handling this communication, we design a
shared memory for exchanging the data, and a queue for buffering function to transfer the data to the user
or datacenter library processing. As for the datacenter, it stores the monitored data in the database
(MongoDB) so that the user or the manager can query the record. Also, when reaching certain reporting
conditions, the monitoring terminal will alarm a warning letter to the manager. Regarding the API, it
provides the connection for the remote program and the processing of the data. It is also applied to
develop the graphic user interface of the desktop, mobile device, and datacenter. Next, we will describe
the techniques for implementing each function.

3.1 Approach to Real-Time Communication

As shown in Fig. 2, the remote real-time communication system is divided into three parts: Sensor
Network, Datacenter, and APIs. This system can be used as a monitoring server (Agent), and Datacenter
and APIs are connected to the Server’s endpoint (User). The corresponding connection architecture is
shown in Fig. 3, and the format of the data transfer is JavaScript Object Notation (JSON). The following
is a detailed technique of implementing three parts.

Distributed “Nair
Database) \

e and Control m
System erVe

Figure 2: The Overview of our real-time communication model

3.1.1 Sensor Network

We use the DLL file to exchange data with the robot controller and utilize the shared memory
mechanism (#pragma) to perform Inter-Process Communication (IPC). Also, to avoid the repetition of
exchanging the data, we implemented a buffer by using two queues (SET and GET) in the dynamic-link
library (DLL) file, our system provide the DLL for various devices to transmit the data to the datacenter,
it will increase data transmissions rate due to decreasing the loss of the exchange data caused by network

832 IASC, 2021, vol.29, no.3

factors or delays. Besides, when the machine information is transmitted to the User or the datacenter, the
Agent continuously sends the updated data of the machine to all the Users connected to it without
waiting for any particular Users. This approach can be used to take the initiative to request information
and achieves higher immediacy.

For real time and local connection
Agent User

Database

Web
Service

Manger

Figure 3: The architecture of real-time communication

3.1.2 Datacenter

This part is focus on how to fufill the data storage in the communication model, the most thing of the
datacenter is to process and store the received information. Considering the file format is JSON and the
relevance of the receiving data, we store the data received from Agent side by MongoDB. After the
Agent program transmits the data to the datacenter, the data is parsed through a JSON parser, and the
processing time is encapsulated and stored in the datacenter. Our datacenter also provide the query syntax
for Users to analysis the data from Agent side. Also, in datacenter, another important thing need to be
implemented is the alarming server, considering the various situations, we adopts the server to a flexible
way, an alarming server for the communication model is built if there is no alarming server, once the
alarming server or the other alarming method is used, the alarm message can be sent directly through our
module’s communication APIs.

3.1.3 Communication APIs

This part is mainly of two key points: one is providing a interface to get JSON file that connects to the
Agent and obtains the machine data, and the second is to get the analysis from the JSON file. We designed the
socket APIs to substitute the local APIs for future development and use. The TCP protocol is adopted for the
Agent connection thread, and a data stream receives data continuously thorgh the socket. The User applies
the JSON library to parse the data from the data stream. One thing need to be considered is that the PC(User)
can only receive the data from Agent and query from the database, while the datacenter is allowed to stored
the data into database. The difference is shown in Fig. 4.

3.2 Database Semaphore

Before discussing the database semaphore, we should start with the race condition. If two processes in
the shared memory need to be communicated, the two processes and the operating system share the same
memory space block. As the situation in Fig. 5, one process first enters the data into the Share Memory,
and then another process is taken out from the Shared Memory. However, this cannot ensure that the
second process receives the latest information. Assuming the initial value of the data is one, the program
is during the execution of the two programs, and the number is incremented by one simultaneously. The
result of the number execution is two, but the correct one should be three, where the impact of the
different execution order is called Race Condition.

IASC, 2021, vol.29, no.3 833

~~~~~

xegodt [P BAER:  MIS-5-5T 140,123, 102. 221 v
L
D40 KARR:  NIE-1-0TT

PC Datacenter

Figure 4: The difference of transmission data between hosts and database
- \/ &

Figure 5: Race condition caused by multiple READ (R) or WRITE (W)

Referring to the semaphore approach, we propose a data collision prevention method considering the
database as the main object and further improve the performance based on the data’s usage.

As shown in Fig. 6, we divide the database into two parts: critical resources and non-critical resources.
Critical resources represent data that interacts with the request in the database, where conflicts may occur
when multiple requests access such data. Non-critical resources will not cause conflicts when such data is
accessed simultaneously. Note that if the data is read-only, it must be non-critical resources. The data in
critical resources is the situation we want to deal with. For this reason, we add a Semaphore Table in the
database to record all the resources that the request needs to access and sets the semaphore’s upper limit
for each resource access. When multiple requests require data in the same critical resource, they will be
numbered according to each request’s order. When the number is less than an upper limit, the request can
access the resource at the same time. If the limit is exceeded, it needs to wait in a queue. According to
the above method, the database’s access speed can be effectively improved, the conflict situation can be
avoided, and the immediacy of the remote system can be significantly enhanced.

4 Simulation Technique and CPU-GPU Coherence

There are many simulation software for factory design in recent years. Through virtual simulation
technology, the production planning process can pre-plan the production line layout, equipment



834 IASC, 2021, vol.29, no.3

configuration, manufacturing process path, logistics, etc., of the factory and analyze, evaluate, verify the
model based on the preview. It discovers the problems in the system operation and the areas to be
improved, and adjusts and optimizes in time to reduce the number of changes and rework of the physical
system in the subsequent production execution, so that to effectively reduce costs construction period and
improve the efficiency. In general, the simulation software consumes the most resources during the
simulation process to calculate each model’s movement and drawing. Whether the calculation of the
motion result or the re-drawing part is a large number of matrix operations, it is possible to perform
parallelization operations on this part.

Shared Database

acquire acquire

release release

Critical
Resources

Non-Critical
Resources

Figure 6: Semaphore table in the shared database

As shown in Fig. 7, the parallelization for the simulation is divided into two parts. First, we confirm the
components can be operated and the core resources can be used, according to the input profile and the core
resource including the CPU and GPU. We then use the CPU to allocate the data to be calculated for each
component and process the subsequently returned data because they are smaller and not suitable for
parallelization. In the second part, we perform the parallelization of each component’s operations
according to the previous step. If the system is equipped with a GPU, the procedure will be parallelized
based on CUDA. If there is no GPU or the GPU is fully loaded, the CPU transfers to the idle state and
uses OpenMP to perform parallelization.

Our method is different from the traditional parallelization operation on CPU or GPU since we utilize
GPU and CPU dynamically to speed up the data transfer between CPU and GPU as an integral part of
coherence.

As illustrated in Fig. 8, the shared memory block is used when CPU and GPU access data. The GPI’s
query speed to access the memory is much slower than that of the CPU, so our method is to add a region table
inside the GPU to record the shared memory block address that the GPU can use when the GPU needs to
access the shared memory resources. This does not need to perform the query operation and directly
access the memory, which can significantly reduce the transfer delay between GPU and CPU.

5 Experimental Results

For the real-time communication model, we implemented the model between the robot arm and the
various components in the factory, and then established the required database using the technology to
reduce the packet’s size to minimize the transmission burden. Finally, we used the semaphore in the
database to resolve data conflicts when accessing critical resources at the same time.



TIASC, 2021, vol.29, no.3 835

class
Robot_Arm_Rotation

int next_thread <~
D

N
int total_thread; INNER_Class
Robot_Arm_Rotation_parameter

public Brep Object_box;

lic Rhin
public Box boxToolA2; public Rhino Doc
. . bl t thread, =0
Vector3d Object_rotation_axis = Vector3d. (@ «is; publicint fhreac_num
— public double angle
parent public double speed

Robot_Arm_Rotation_pararieter paral

di tch
public void Joint1StepRotate() @ PR
child (\ .

Figure 7: Parallel computing for simulation in the manufacturing system

GPU CPU
Cluster Cluster
Region Table
Directory
Memory

Figure 8: Region table in the GPU

First, a regional network that is usually built in the factory was used. The relevant experimental
configuration is described in Tab. 2. We tested the transmission method using our packet transmission
and the general XML configuration, and then compared the average time from node to terminal transfer.
The experimental results are shown in Fig. 9. From the left figure, we can see that our method of
transmitting and processing data is about 2.5 times faster than the traditional method. With the increase of
data transmission volume, the gap becomes more transparent. Second, we evaluated the efficiency of our
semaphore method by continuing the aforementioned experimental platform. We changed the related
machine data transmitted to the transfer database and accessed some shared values. If the semaphore is
not used, the entrance of critical resources should be placed in the queue for processing. Then the



836 IASC, 2021, vol.29, no.3

experiment compared our method with the way of using the queue. From the right figure of Fig. 9, we can
observe that the queue can only process one request at a time, but our method’s limitation can be adjusted
according to the upper limit of the semaphore accessed by the resource. Thus, the result shows our method
can save a lot of time when many requests in the critical resource at the same time.

Table 2: The feature comparison of modern robot simulators

Platform Hardware and Software Configuration Network

PC Intel Core 17-8700, 8G 1 Gbps
Ubuntu 16.04 LAN
Quadro RTX 4000, CUDA 11

Controller ARMI1176JZF-S, 512MB 1 Gbps
Ubuntu 16.04 LAN

800

700 25000

23241
600
20000
500

400 15000

(MILLI SECOND)

300
10000

Average processing time
(MILLI SECOND)

200 7382

Average transmission time

100 5000

2560
3

240 502 1104
78 170 37

7
0 2
10 20 40 80 160 320 640 1280 0 1

‘—Database semaphore 12 15 20 27 34 56 64 7 ; 32 64 128 256 512 1024 2048
7

—Our method 78 170 372 803 71 3562 7382
=Gdate 17 E 8 104 192 325 542 728 —TCPHXML 240 502 1104 2560 5208 11032 23241
The amount of request

The Amount of data

——Database semaphore ——Queue —Ourmethod ——TCP+XML

Figure 9: The comparison of (Left) transmission time and (Right) processing time

For simulation technique and CPU-GPU coherence, we implemented collision detection on the
simulation system to test the simulation’s speedup and detected whether there was an intersection
between two objects. According to the analysis results, the most critical factor affecting efficiency is the
simulation’s number of components.

First, we tested the difference in the simulation system’s speed before and after the parallelization of the
calculation of the object movement, assuming that each component is the same and all carry out a series of
identical actions. The experimental results are shown in Fig. 10. From the left figure, we find that when the
number of components is small, the difference between the two is not large, but the gap increases sharply
with the number rise. It should be noted that when the number of components exceeds 30 (exceeding the
GPU load), the speed is decreased, but overall it is faster than the result of bit parallelization.

70000

60000

50000

58323

90000
80000

70000

ime

83242

o
£
= g £ 560000
2 s
§ 8 40000 3 8 50000
24 £4
g 55 30000 S 5 40000
&g o=
S £ Z 30000
3 20000 3
= 20000
9323
10000 29 140 10000 213 1413 7231

0

—parallel
——non-parallel

21

42

21
29

5 10 30 50 100
42 72 108 73 2732
140 602 3273 14132 58323

The amount of components

—parallel —non-parallel

7 3%6 1632
g 5 10

—parallel 72 326 1632

~——non-parallel 213 1413 9323
The amount of components

0

—parallel —non-parallel

30
7231
83242

Figure 10: (Left) Motion calculation time and (Right) Collision detection time in the simulation



IASC, 2021, vol.29, no.3 837

Next, we compared the collision detection time of the components between the parallel and non-parallel
programs. In the experiment, we assumed that each element was the same and performed a series of identical
actions and collision detection operations for each component. The experimental results are also shown on
the right side of Fig. 10. It is clear that even when the number of units is small due to the vast resources
required for collision calculation and simulation movement, there is already a gap of about three times,
and the gap will increase sharply with the rise of the number of components. The experimental result
reached the gap of 10 times when the number of components was equal to 30. But the result of the
parallel operation also achieved 7231 milliseconds, which exceeded the scope of instant collision
detection and will be improved in our future work.

6 Conclusions

With the increasing popularity of smart manufacturing, we discussed the importance of ubiquitous
robotic simulation systems. In this paper, a general technique for real-time robotic simulation was
proposed and proven suitable for manufacturing. According to the actual usage, the robot’s
communication and simulation technique in this paper were developed into an independent model and
can be applied to a compatible manufacturing environment.

We cut the manufacturing system model into separate blocks that serve as a test platform for our
techniques and algorithms. The results showed that the communication and monitoring system could
effectively enhance the interoperability between the robot and each component. Finally, through the
simulation system, we can get most of the execution results and adjust them before the physical machine
operates. We also deployed our model on Robot Operating System (ROS) and achieved a good
performance because there are many types of research [15] of robot simulation bases on it in recent years.

Acknowledgement: The authors would like to thank the reviewers who provided insight and expertise that
assisted in improving the research paper quality. Their comments improved the manuscript greatly. Finally,
the Editor’s comment made us realize a huge alteration in the paper and improved its quality thoroughly. We
appreciate the linguistic assistance provided by TopEdit (www.topeditsci.com) during the preparation of this
manuscript.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[1T J. Lee, H. A. Kao and S. Yang, “Service innovation and smart analytics for industry 4.0 and big data
environment,” Procedia CIRP, vol. 16, no. 1, pp. 3-8, 2014.

[2] J.C.ZagalandR.D.S. Javier, “UCHILSIM: A dynamically and visually realistic simulator for the RoboCup four
legged league,” in Proc. RSWC, Heidelberg, BER, Germany, pp. 34-35, 2004.

[3] T. Zhukabayeva, Z. Oralbekova, M. Zhartybayeva, A. Zhumadillayeva and A. Adamova, “Prospects of
development of technologies in the field of robotics and the stages of design of mobile robotic complex,” in
Proc. ICITCS, Kuala Lumpur, KL, Malaysia, pp. 14, 2015.

[4] J. Davis, T. Edgar, J. Porter, J. Bernaden and M. Sarli, “Smart manufacturing, manufacturing intelligence and
demand dynamic performance,” Computers & Chemical Engineering, vol. 47, no. 1, pp. 145-156, 2012.

[5] W. Wang, Q. Cao, X. Zhu and S. Liang, “A framework for intelligent service environments based on middleware
and general purpose task planner,” in Proc. IE, Prague, CB, Czech Republic, pp. 184-187, 2015.



838 IASC, 2021, vol.29, no.3

[6] T. Tomi¢ and S. Haddadin, “Simultaneous estimation of aerodynamic and contact forces in flying robots:
Applications to metric wind estimation and collision detection,” in Proc. ICRA, Seattle, WA, USA,
pp. 5290-5296, 2015.

[71 H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda and E. Osawa, “RoboCup: The robot world cup initiative,” in Proc.
AAMAS, New York, NY, USA, pp. 340-347, 1997.

[8] M. Asada, T. Balch, A. Bonarini, A. Bredenfeld, S. Gutmann et al., Middle size robot league rules and regulations
for 2019. Montreal, QC, Canada: RoboCup, 2018. [Online]. Available: https://msl.robocup.org/wp-content/
uploads/2018/12/Rulebook MSL2019 v20.pdf.

[9] C. Schlegel, “Communication patterns as key towards component-based robotics,” International Journal of
Advanced Robotic Systems, vol. 3, no. 1, pp. 9, 2006.

[10] E. Colgate, A. Bicchi, M. A. Peshkin, J. E. Colgate, B. Siciliano et al., Safety for physical human-robot
interaction. Berlin, BL, Germany: Springer Handbook of Robotics, 2008. [Online]. Available: https://msl.
robocup.org/wp-content/uploads/2018/12/Rulebook MSL2019 v20.pdf.

[11] A. D. Santis, B. Siciliano, A. D. Luca and A. Bicchi, “An atlas of physical human-robot interaction,” Mechanism
and Machine Theory, vol. 43, no. 3, pp. 253-270, 2008.

[12] J. Frémy, F. Michaud and M. Lauria, “Pushing a robot along—A natural interface for human-robot interaction,” in
Proc. ICRA, Anchorage, AK, USA, pp. 3440-3445, 2010.

[13] J. Vorndamme, M. Schappler and S. Haddadin, “Collision detection isolation and identification for humanoids,” in
Proc. ICRA, Singapore: Sands Expo and Convention Centre, MBS, pp. 47544761, 2017.

[14] F. Flacco, A. Paolillo and A. Kheddar, “Residual-based contacts estimation for humanoid robots,” in Proc. IEEE-
RAS, Cancun, CUN, Mexico, pp. 409415, 2016.

[15] Z. Yan, L. Fabresse, J. Laval and N. Bouraqadi, “Building a ROS-based testbed for realistic multi-robot
simulation: Taking the exploration as an example,” Robotics, vol. 6, no. 3, pp. 21, 2017.


https://msl.robocup.org/wp-content/uploads/2018/12/Rulebook_MSL2019_v20.pdf
https://msl.robocup.org/wp-content/uploads/2018/12/Rulebook_MSL2019_v20.pdf
https://msl.robocup.org/wp-content/uploads/2018/12/Rulebook_MSL2019_v20.pdf
https://msl.robocup.org/wp-content/uploads/2018/12/Rulebook_MSL2019_v20.pdf

	A General Technique for Real-Time Robotic Simulation in Manufacturing System
	Introduction
	Related Work
	The Proposed Real-Time Communication Model
	Simulation Technique and CPU-GPU Coherence
	Experimental Results
	Conclusions
	flink7
	References


