
Container Application Migration Algorithm in Internet of Vehicles

Xiaoliang Lin1,*, Junxiao Shi1, Yanbo Wang1, Chenyang Liu1, Bin Lu1 and Siwen Xu2

1Information and Communication Branch of State Grid Zhejiang Electric Power Co., Ltd., Hangzhou, 310007, China
2Université Paul Sabatier-Toulouse 3, Toulouse, 31062, France

�Corresponding Author: Xiaoliang Lin. Email: 573533161@qq.com
Received: 11 March 2021; Accepted: 25 April 2021

Abstract: Internet of Vehicles (IoV) is a popular application scenario that com-
bines edge computing and the Internet of Things. Among them, service migration
caused by IoV application mobility is a research hotspot in this field. This paper
studies the migration strategy of container applications based on edge computing
in the IoV business scenario. In order to solve the difficulty in selecting the target
server of the application to be migrated in the crossroads scenario, this paper con-
verts the migration decision to the shortest path problem based on dynamic pro-
gramming, and obtains the best migration choice at the current time by finding the
migration path with the least total cost in a limited observation time, then use the
container live migration technology to implement application pre-deployment,
thereby greatly reducing service downtime, and enabling user-unaware applica-
tion migration. Simulation results show that the dynamic programming method
proposed in this paper reduces the long-term average migration total cost by
33.88% and 24.53%, respectively, compared to the nearest selection method
and the local optimal method.

Keywords: Application migration strategy; container; internet of things; edge
computing

1 Introduction

In recent years, the rapid development of the Internet of Things has resulted in massive data generated by
network edge devices [1,2]. However, the efficiency of cloud computing nowadays is insufficient to process
all of this data. It is because the cloud data center is far away from the business terminal, and today’s network
bandwidth level is difficult to match the surge in data volume [3]. Therefore, the industry proposes edge
computing technology [4,5], which aims to reduce the burden on cloud data centers by delegating some
data processing rights to network edge nodes and then running applications or processing some
calculation tasks near business terminals. Thereby the edge computing has the potential to reduce latency,
improve processing efficiency, reduce energy consumption, and save bandwidth.

Internet of Vehicles (IoV) is one of the most popular application scenarios combining edge computing
and the Internet of Things. Edge computing technology is hoped to solve the ultra-low-latency business
needs of IoV applications [6], while the IoV applications must be migrated frequently between different

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2021.018513

Article

echT PressScience

mailto:573533161@qq.com
http://dx.doi.org/10.32604/iasc.2021.018513
http://dx.doi.org/10.32604/iasc.2021.018513

edge servers due to the fast-moving speed of connected vehicles and the limited coverage of each edge server.
To ensure service continuity and minimize migration costs, the application migration should be performed by
using virtualization technology. The container has excellent characteristics such as seconds-level startup and
a small number of migration operations in virtualization technology. Therefore, compared to virtual machine
migration, container migration is more suitable for IoV application migration scenarios [7–11].

Fig. 1 depicts the migration scenario of IoV applications based on edge computing and container
technology. Containers host applications on edge servers and vehicles access the nearby edge server to
obtain the corresponding service. Each edge server has a limited-service domain. When the vehicle
moves outside the local service domain, the communication with the local server E1 will be disconnected,
and the service may be interrupted. In order to ensure service continuity, the application must be migrated
from the source server E1 to other servers (such as E3), and then the vehicle can obtain the service again
by accessing the new server.

Through the above scenario description, the research content of this paper can be divided into the
following three questions: (1) When will the migration action happen? i.e., to define the triggering
conditions for the migration decision; (2) Where will the application be migrated? i.e., to judge the best
target edge server; (3) How to carry out the migration process? i.e., to design the migration model and
migration algorithm.

The organization of the rest paper is as follows: Section 2 describes the process of establishing a
container application migration model based on edge computing in the IoV business scenario. Section 3
introduces the process of designing a container application migration algorithm based on dynamic
programming. Section 4 shows the results of simulation experiments and compares the algorithm
proposed in this paper with the other two algorithms. Section 5 summarizes the research work of this
paper and discusses some subsequent problems to be solved.

2 Application Migration Model

This section introduces the process of establishing the migration model that used in this paper.

Figure 1: Schematic diagram of a container-based edge-cloud architecture and service migration scenarios

916 IASC, 2021, vol.29, no.3

2.1 Problem Analysis

(1) When to migrate?

This part defines the trigger conditions for migration.

Define the pre-judgment radius as dpre (dpre, dthr , where dthr is the coverage radius of the edge server
service domain). When the distance from the connected vehicle to the center of the local service domain
exceeds dpre , the vehicle tends to continue driving away from the local service domain, and the vehicle
has no stopover halfway (i.e., the vehicle’s speed should be greater than or equal to V , usually set
V ¼ 30km=h in urban road scenarios [12,13]), the connected vehicle has reached the migration trigger
condition, then immediately preparing for migration.

(2) Where to migrate?

This part describes how to select the target server.

This paper mainly discusses two driving road scenes. One is a straight road scene without branch roads,
as is shown in Fig. 2a; the other is a crossroad scene including T-shaped branch roads, as is shown in Fig. 2b.

For the straight road scene, since the connected vehicle can only keep going ahead (as is shown in
Fig. 2a), the target server is easily determined, which can be directly selected as the next available server
along the road. For the crossroad scene, since there are four driving options for the vehicle at the
intersection (as is shown in Fig. 2b): go straight, turn left, turn right, and turn around, thereby the target
server is not easy to be chosen. It needs to combine the actual traffic conditions, navigation, and other
perception information to make prediction judgments [14,15].

(3) How to migrate?

This part introduces three ideas to design the migration strategy [16,17].

Figure 2: Two driving road scenes (a) straight road scene (b) crossroad scence

IASC, 2021, vol.29, no.3 917

In the migration scenario of single-vehicle and single-application, this paper focuses on the migration
scenario of crossroads. For vehicles that are on the edge of crossroads and are about to undergo
application migration, based on the acquired vehicle trajectory data, this paper considers three selection
standards:

The first is the nearest selection method: select the available edge server closest to the connected vehicle
at the current time as the target server.

The second is the local optimal method: select the available edge server with the least migration cost at
the current time as the target server.

The third is the dynamic programming method: select the next-turn edge server corresponding to the
migration path that minimizes the total migration cost in the future limited observation time as the target server.

This paper proposes the third one, the dynamic programming method. Based on the goal of minimizing
the total migration cost, to design the migration model (in Section 2.2) and migration algorithm (in Section 3)
and then compare the third method with the first and the second method (in Section 4).

2.2 Model Building

First, make some definitions. Set the time slot t ¼ 1; 2; 3; . . ., the length of each time slot is s. The
driving trajectory in the time slot t is LðtÞ. The maximum tolerable delay of the vehicle application m is
Dmax. Considering the urban road scene, suppose that there are N edge servers in the edge network of a
certain area. Define a matrix p with a dimension of Q� N , and use it to represent the application
deployment in consecutive Q time slots, where the value of the matrix elements can only be 1 or 0. For
example, the matrix element pt;n ¼ 1 means that the application is deployed on the edge server n in the
time slot t. Otherwise, pt;n ¼ 0 means that the application is not deployed on this server. In this way,
obtain the migration situation of the application by observing the changes in the values of the two
adjacent elements of the matrix p , i.e., the matrix p represents the migration decision in consecutive Q
time slots, and pðt; t þ 1Þ represents the migration decision of two consecutive times. Define some
indicators and parameters as follows:

(1) Communication delay

(a) Transmission delay

Trans tð Þ ¼ �m;n

gLðtÞ
þ Dextra (1)

where �m;n represents the amount of data packets sent by the migrating application; gL tð Þ represents the
maximum data transfer rate between the connected source and target edge servers; Dextra represents
additional costs such as queuing delay.

(b) Calculation delay

Comp tð Þ ¼ ’m�m;n

em;n
þ Dqueue (2)

where ’m represents the calculation demand of the data packet sent by the application; Em;n represents the
amount of bits that the target edge server can process for the application in each time slot; Dqueue

represents the queuing delay.

918 IASC, 2021, vol.29, no.3

In summary, define the communication delay as follows:

costcomm tð Þ ¼ Trans tð Þ þ Comp tð Þ (3)

(2) Migration delay

costmig tð Þ ¼ hm
gLðtÞ
þ Dfrozen (4)

where hm represents the amount of migration data generated by the application migrating from the source
edge server to the target edge server; Dfrozen represents the freezing time of the container during the
process of migrating the application.

(3) Target server status

In order to avoid service interruption, when performing the migration decision, consider the
communication delay and the migration delay and also consider whether the target server can provide
enough resource space for the migrating application.

Suppose that the application m needs to occupy bandwidth capacity bm and storage capacity cm. For the
source server src and target server dst, represent the current idle bandwidth capacity respectively by Bsrc and
Bdst, and represent the storage capacity represented by Csrc and Cdst. The changes in the process of migrating
the application m from the source server to the target server are as follows:

Bsrc ¼ Bsrc þ bm (5)

Bdst ¼ Bdst � bm (6)

Csrc ¼ Csrc þ cm (7)

Cdst ¼ Cdst � cm (8)

(4) Direction of movement

In addition to the above factors, the moving trend of vehicles will also affect the migration decision.
Suppose the vehicle moves from point A to point B in unit time t, and define the direction vector from
point A to point B as the moving direction of the vehicle at time t, denoted as ~mt, then express the
moving direction of the vehicle at the previous time t � 1 as ~mt�1. Use the projection of ~mt on ~mt�1 to
measure their direction consistency, as follows:

jm!tjcos� ¼ m!t � m!t�1
jm!t�1j

(9)

where� is the angle between the moving directions of the vehicle at two adjacent times. When the projection
value is positive (~mtj j cos�. 0), the vehicle’s moving directions are considered to be basically the same,
and positive feedback is given to the execution of the migration decision; when the projection value is not
positive (~mtj j cos� � 0), it is considered that the moving directions of the vehicle are reversed, and negative
feedback is given to the execution of the migration decision.

(5) Optimization problem

Define the cost function as:

C tð Þ ¼ costcomm tð Þ þ costmig tð Þ (10)

where C tð Þ represents the delay of single application migration, and let C tð Þ � Dmax . Besides, the following
prerequisites should be met:

IASC, 2021, vol.29, no.3 919

Bdst � bm � 0 and Cdst � cm � 0 and ~mtj jcos�. 0 (11)

The above formulas show that the migration decision is meaningful only when the target server has
sufficient resource space for the migrating application and the vehicle follows the direction of driving
away from the local service domain.

This paper takes a limited time T to represent the long-term time. Then the long-term total cost
is defined as:

C ¼
Xt0þT�1

t¼t0
CðtÞ (12)

Then the optimization problem can be expressed as:

p ¼ argmin
p

C s:t:C tð Þ � Dmax;8t (13)

This problem can be converted into the shortest path problem and use dynamic programming to solve it.

3 Dynamic Programming Migration Algorithm

This section introduces the design process of the migration algorithm based on dynamic programming.
Define all possible deployment schemes of pðtÞ as setH , and then there are at most N elements in this set (N
is the number of edge servers). Define vectors r ¼ p tð Þ and l ¼ pðt� 1Þ , r 2 H and l 2 H , to represent the
application deployment situation at the current time and the previous time, respectively. Define sets
Hcur � H and Hpre � H to record the effective deployment schemes which meet the constraints at the
current time and the previous time, respectively. Define variable gx to represent the sum of CðtÞ from
time t0 to the current time when the application deployment is x and the application deployment is
optimal until the current time. Define variable dx to represent the sum of CðtÞ from time t0 to the
previous time when the application deployment is x and the application deployment is optimal until the
previous time. Define vectors px and qx to respectively cache the optimal migration strategy from time t0
to the current time and the previous time when the application is deployed as x. Suppose the initial
position of the connected vehicle is Lðt0 � 1Þ, the trajectory result of the vehicle in the next T time is
Lðt0; . . . ; t0 þ T � 1Þ , and the initial application deployment is p t0 � 1ð Þ . The process of application
migration algorithm using dynamic programming to select the optimal strategy is as follows:

When the initial state p t0 � 1ð Þ is determined, for all effective deployment schemes x 2 Hcur at the
current time slot t0, to establish a state transition relationship for subsequent iterative multiplexing.
According to the constraints, put the deployment solutions that meet the conditions in the set Hcur. For
each deployment situation in the set Hcur, obtain the optimal migration solution from the previous time
slot to the current time slot by solving the Bellman equation, cache the optimal migration strategy (i.e.,
the deployment matrix) up to the last time slot and calculate the sum of C tð Þ up to the last time slot for
subsequent multiplexing. Through T iterations, seek the deployment solution r� that minimizes the total
cost C (i.e., the sum of C tð Þ), and return to its corresponding migration decision matrix pr� , then locating
the current time slot to obtain the best migration decision.

920 IASC, 2021, vol.29, no.3

4 Experiments

This section introduces the results of the simulation experiments, then analyzes the results compared
with the other two algorithms.

This experiment was conducted using MATLAB simulation software to compare the container
application migration algorithm based on dynamic programming proposed in this paper (hereinafter
referred to as DPMA) with the container application migration algorithm based on the standard of
selecting the nearest available target server (hereinafter referred to as NRMA) and the container
application migration algorithm based on the standard of choosing the target server that minimizes the
current migration cost (hereinafter referred to as LOMA), respectively. In the simulation experiment, set
the same map, the same distribution of edge servers, and the same vehicle trajectory for the three
algorithms, then compare and analyze the results from the following aspects: total migration times, total
migration cost, long-term average total cost and average single migration cost.

Algorithm: Container Application Migration Algorithm based on Dynamic Programming

Input: T ;L t0 � 1; t0; . . . ; t0 þ T � 1ð Þ; pðt0 � 1Þ
Initialize: l ¼ p t0 � 1ð Þ;Hcur ¼ flg
Output: Optimal migration decision matrix pr�

1: for t ¼ t0; . . . ; t0 þ T � 1 do

2: for all effective deployment options x 2 Hcur do

3: dx ¼ cx

4: qx ¼ px

5: end for

6: Hpre Hcur

7: Hcur [

8: for all deployment options H 2 H do

9: update costcomm tð Þ; costmig tð Þ and C tð Þ according to formulas (3), (4), (10)

10: if CðtÞ � Dmax then

11: put the corresponding deployment plan H into the set Hcur

12: l� argminl dl þ C tð Þf g;8l 2 Hpre

13: pr t0; . . . ; t � 1ð Þ ¼ ql�ðt0; . . . ; t � 1Þ
14: pr tð Þ ¼ r

15: cr ¼ dl� þ C tð Þ
16: end if

17: end for

18: end for

19: r� ¼ argminr cr;8r 2 Hcur

20: return pr�

IASC, 2021, vol.29, no.3 921

4.1 Parameter Value

The values of the model parameters used in this experiment are shown in Tab. 1.

This experiment randomly generated 20 sets of data to form the data transmission rate matrix gLðtÞ in the
range of [4,20] Mbps, and thus 20 sets of simulation experiments were carried out. The problem of finding
the optimal migration decision based on dynamic programming is equal to the shortest path problem. The
graphshortestpath function in MATLAB can be used to visually display the migration path, as is shown
in Fig. 3 (only show the first group of simulation results as an example).

In Fig. 3, the node number corresponds to the number of the edge server, the weight between the two nodes
represents the migration cost from the previous node (i.e., source server) to the next node (i.e., target server),
and the red line indicates the shortest path from the start point to the endpoint, which is the global optimal
solution for the migration decision, and then track the path can get the best migration choice at every moment.

4.2 Results Analysis

(1) Total migration times

As is shown in Fig. 4, in this experiment, the total migration times of DPMA remain at 4, the total
migration times of NRMA remain at 6, and the total migration times of LOMA fluctuate between 4 and
7. Since the application migration process will inevitably consume resources and might cause network
faults or service interruptions, theoretically, in order to reduce latency, save consumption, and improve
network stability, so make the migration times as few as possible.

(2) Total migration cost and long-term average total cost

As is shown in Fig. 5, the total migration cost generated by DPMA and NRMA does not fluctuate much,
while the total migration cost of LOMA fluctuates greatly. In addition, the long-term average total cost of the
three algorithms is shown by dashed lines in Fig. 5. The comparison shows that the long-term average total
cost of DPMA is 33.88% and 24.53% lower than NRMA and LOMA, respectively.

(3) Average single migration cost

The standard of LOMA is to select the target server with the least migration cost at the current migrating
moment, so in most cases, its value of the cost that averages to a single migration is the smallest (as is shown
in Fig. 6).

Table 1: Parameters of the migration model

Name Value (Unit)

�m;n 1800 (bit)

gL tð Þ The matrix elements are randomly generated
in the range of [4,20] Mbps

’m 42

Em;n 5000000 (bit)

hm 24000 (bit)

Dextra 0.00005 (s)

Dqueue 0.00005 (s)

Dfrozen 0.0005 (s)

Dmax 0.04 (s)

922 IASC, 2021, vol.29, no.3

Figure 3: Shortest path visualization

Figure 4: Total migration times

IASC, 2021, vol.29, no.3 923

However, LOMA is easy to fall into the local optimal deadlock (as is shown in Fig. 7). That is, the local
optimal migration choice at the current moment may cause negative impacts on the migration choice at the
later moment and eventually consume more migration costs.

4.3 Experiments Summary

In summary, the container application migration algorithm based on dynamic programming can ensure
the minimal total migration cost and the minimal total migration times, as well as, it can adapt to different
network channel capacity conditions. Therefore, it is suitable for single vehicle and single application
migration scenarios. The comparative analysis of DPMA, NRMA and LOMA is shown in Tab. 2:

Figure 5: Total migration cost and long-term average total cost

Figure 6: Average single migration cost

924 IASC, 2021, vol.29, no.3

5 Conclusions

This paper builds a container application migration model based on edge computing in the IoV business
scenario, uses time delay to measure the migration cost, divides the migration cost into communication delay
and migration delay, and considers the target server status and vehicle movement trends to judge whether to
perform the migration decision. Then, this paper designs an application migration algorithm based on
dynamic programming and uses the shortest path principle to obtain the global optimal solution of the
migration decision. Finally, the simulation experiments show that the long-term average migration cost of
the dynamic programming migration method proposed in this paper is significantly lower than the other
two migration algorithms used for comparison, i.e., the dynamic programming migration method
performs better.

The future research work would consider the migration scenarios of multiple vehicles and multiple
applications.

Acknowledgement: The work is supported by the Science and Technology Project of State Grid Zhejiang
Electric Power Co., Ltd (5211XT19006F).

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

Figure 7: The local optimal deadlock (green line represents LOMA) (a) Group 16th (b) Group 17th

Table 2: Algorithm comparison analysis conclusion

Evaluation Index DPMA NRMA LOMA

Long-term average total cost Low High Medium

Migration times Few Many Medium

Results stability Good Good Poor

Algorithm complexity High Low Medium

IASC, 2021, vol.29, no.3 925

References
[1] W. S. Shi, J. Cao, Q. Zhang, Y. H. Z. Li and L. Y. Xu, “Edge computing: Vision and challenges,” IEEE Internet of

Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[2] A. Alhussain, H. Kurdi and L. Altoaimy, “A neural network-based trust management system for edge devices in
peer-to-peer networks,” Computers, Materials & Continua, vol. 59, no. 3, pp. 805–816, 2019.

[3] T. F. Yang, X. J. Shi, Y. Y. Li, B. B. Huang, H. Y. Xie et al., “Workload allocation based on user mobility in mobile
edge computing,” Journal on Big Data, vol. 2, no. 3, pp. 105–115, 2020.

[4] Z. Q. Tang, X. J. Zhou, F. M. Zhang, W. J. Jia and W. Zhao, “Migration modeling and learning algorithms for
containers in fog computing,” IEEE Transactions on Services Computing, vol. 12, no. 5, pp. 712–725, 2019.

[5] S. G. Wang, J. L. Xu, N. Zhang and Y. J. Liu, “A survey on service migration in mobile edge computing,” IEEE
Access, vol. 6, pp. 23511–23528, 2018.

[6] O. Salman, I. Elhajj, A. Kayssi and A. Chehab, “Edge computing enabling the Internet of Things,” in IEEE 2nd
World Forum on Internet of Things (WF-IoT 2015). Milan, Italy, pp. 603–608, 2015.

[7] B. I. Ismail, E. M. Goortani, M. B. A. Karim, W. M. Tat, S. Setapa et al., “Evaluation of docker as edge computing
platform,” in IEEE Conf. on Open Systems (ICOS 2015), Melaka, Malaysia, pp. 130–135, 2015.

[8] N. Yuan, C. Jia, J. Lu, S. Guo, W. Li et al., “A DRL-based container placement scheme with auxiliary tasks,”
Computers, Materials & Continua, vol. 64, no. 3, pp. 1657–1671, 2020.

[9] A. E. Elgazar and K. A. Harras, “Enabling seamless container migration in edge platforms,” in CHANTS’19: Proc.
of the 14th Workshop on Challenged Networks, New York, NY, USA, pp. 1–6, 2019.

[10] U. Bjorkengren, “Technologies for application migration using lightweight virtualization,” U.S. Patent,
no. 9971622, 2018.

[11] C. Pahl and B. Lee, “Containers and clusters for edge cloud architectures–a technology review,” in 3rd Int. Conf.
on Future Internet of Things and Cloud (FiCloud 2015), Rome, Italy, pp. 379–386, 2015.

[12] X. Yu, M. L. Guan, M. X. Liao and X. Fan, “Pre-migration of vehicle to network services based on priority in
mobile edge computing,” IEEE Access, vol. 7, pp. 3722–3730, 2019.

[13] M. L. Guan, “Research on the pre-migration strategy of MEC Internet of Vehicles application,” Chongqing: M.S.
theses, Chongqing University of Posts and Telecommunications, 2019.

[14] J. Liu, X. Kang, C. Dong and F. Zhang, “Simulation of real-time path planning for large-scale transportation
network using parallel computation,” Intelligent Automation & Soft Computing, vol. 25, no. 1, pp. 65–77, 2019.

[15] H. Gao, W. Huang and X. Yang, “Applying probabilistic model checking to path planning in an intelligent
transportation system using mobility trajectories and their statistical data,” Intelligent Automation & Soft
Computing, vol. 25, no. 3, pp. 547–559, 2019.

[16] P. Li, H. Q. Nie, H. Xu and L. Dong, “A minimum-aware container live migration algorithm in the cloud
environment,” International Journal of Business Data Communications and Networking, vol. 13, no. 2,
pp. 15–27, 2017.

[17] J. Y. Chen, “Design and implementation of service migration strategy in mobile edge computing environment,”
Beijing: M. S. theses, Beijing University of Posts and Telecommunications, 2018.

926 IASC, 2021, vol.29, no.3

	Container Application Migration Algorithm in Internet of Vehicles
	Introduction
	Application Migration Model
	Dynamic Programming Migration Algorithm
	Experiments
	Conclusions
	flink6
	References

