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Abstract: In this study, optimal regression learner methods were used to predict
the corrosion behavior of aluminum–silicon alloys (Al–Si) with various Si ratios
in different media. Al–Si alloys with 0, 1%, 8%, 11.2%, and 15% Si were tested in
different media with different pH values at different stirring speeds (0, 300, 600,
750, 900, 1050, and 1200 rpm). Corrosion behavior was evaluated via electroche-
mical potentiodynamic test. The corrosion rates (CRs) obtained from the corro-
sion tests were utilized in the formation of datasets of various machine
regression learner optimization (MRLO) methods, namely, decision tree, support
vector machine, Gaussian process regression, and ensemble method. Stirring
speeds, solution pH, and Si ratio were adopted as inputs, whereas the CRs were
employed as the outputs. These parameters were applied to build optimal models
of the four MRLO methods. The regression learner methods were implemented
and conducted in 2020b MATLAB/software regression learner toolbox. The
MRLO methods were validated by comparing them with an artificial neural net-
work (ANN) model. Experimental results showed that the CR of the Al–Si alloys
increased with the increase in stirring speeds. The highest CR was recorded at
pH 3.5. Moreover, the addition of Si to pure Al as a hypoeutectic alloy (1%
and 8% Si) or a hypereutectic alloy (15% Si) improved the CR of pure Al. The
CR in the solution containing only Al2O3 particles with pH 7.75 was smaller com-
pared with that of the solution containing H2SO4. The Gaussian process regres-
sion model had the highest CR prediction accuracy with the lowest minimum
mean square error (0.000446607). The results demonstrated that the proposed
GPR model was more effective than the ANN model.

Keywords: Al–Si alloys; corrosion rate; stirring speed; prediction model; machine
regression learning optimization methods; artificial neural network

1 Introduction

Aluminum casting alloys are an essential part of the manufacturing of shaped castings, especially in the
aerospace and automotive industries, owing to their favorable properties, such as low density, good
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formability, high strength-stiffness-to-weight ratio, and good corrosion resistance. Al–Si alloys are used to
produce cylinder heads, cylinder blocks, crankshaft, and pistons [1–4]. The Si content of Al–Si alloys
determines not only their mechanical properties but also their corrosion resistance [5]. Salih et al. [6]
assessed the corrosion behavior of Al–Si alloys with different compositions in 0.1 M sodium tartrate,
sulfate, and borate solutions. They found that an increase in pH decreased polarization resistance. Mazhar
et al. [7] investigated the role of chloride in the pitting of some Al–Si alloys via electrochemical
polarization and electrochemical impedance measurements. At neutral pH, corrosion current initially
increased and then decreased with chloride ion concentrations. In another study by Mazhar et al. [8], they
evaluated some Al–Si alloys in acidic and alkaline media. The Al–Si alloys corroded at a higher rate than
pure Al in these media. In addition, they found that eutectic alloy had the highest corrosion rate (CR).

The microstructure of Al–Si alloys strongly corrosion affects resistance. The microstructure of Al–Si
alloys is constructed from α–Al solid solution and various secondary phases, such as AlFeSi, AlFeSiMn,
Mg2Si, and AlFeSiMg. The most common form of Al corrosion is pitting corrosion. Accordingly, the
dependence of corrosion behavior on the microstructure of Al–Si alloys with different Si contents is
currently being investigated. Although Si comprises a substantial volume fraction of most Al–Si alloys,
its effect on the corrosion properties of Al–Si alloys is minimal because of the low corrosion current
density that results from the high polarization of Si particles. The local cells formed by Fe and Si aid the
pitting attack on the surface of Al–Si alloys in a conductive solution. The corrosion behavior of Al–Si
alloys depends on the localized aggressive environment containing halide anions, which may break the
passivated metal surface and lead to pitting [9,10].

New computational methods have been recently developed and introduced in various fields, including
materials science. The neural network theory based on previously acquired data, that is, training set, is
commonly used to test the success of a system by using test data. Results of artificial neural network
(ANN) are in good agreement with experimental data. Moreover, ANN obtains additional useful data
from small experimental databases. Thus, a trained neural network can achieve a very good performance.
Results of experimental tests and those obtained by using neural networks are largely coincident [11].
Corrosion features must be correctly predicted to efficiently control the progression of corrosion [12].
ANNs are regarded as a solution to the attendant problems in predicting corrosion properties.
Thike et al. [13] used a large dataset of atmospheric corrosion data of carbon steel compiled from
several resources to train and test a multilayer backpropagation ANN model, as well as two
conventional corrosion prediction models, namely, linear and Klinesmith models. Kenny et al. [14]
established an ANN with linear and sigmoidal functions to predict the CRs of Al, low carbon steel, and
Cu as a consequence of meteorological factors. Zhang et al. [15] assessed the atmospheric corrosion
performance of bainite steel in exposed offshore platforms via ANN. Lo et al. [16] developed a
regional forecasting model by using ANN to predict the atmospheric CR of Cu within general and
coastal industrial zones in Taiwan. Li et al. [17] modeled the atmospheric corrosion behavior of Al
alloys in 10 typical atmospheric corrosion test sites. Vera et al. [18] utilized several ANNs to predict
the atmospheric CRs of Al, carbon steel, galvanized steel, and Cu. Willumeit et al. [19] demonstrated
that ANN can predict well the corrosion properties of Mg alloys.

In the present work, the corrosion behavior of Al–Si alloys with various Si ratios in different media was
assessed via electrochemical potentiodynamic test. The CRs obtained from the corrosion tests were used in
the formation of datasets of four machine regression learner optimization (MRLO) methods, namely,
decision tree (DT), support vector machine (SVM), ensemble method (EN), and Gaussian process
regression (GPR), to predict the CRs. The four MRLO methods were conducted and implemented in
2020b MATLAB/software regression learner toolbox. Results showed that GPR had the best CR
prediction accuracy. Finally, the proposed GPR model was validated, and its effectiveness was compared
with that of an ANN model.
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2 Experimental Procedure

Several castings of Al–Si alloys with various compositions were prepared via permanent die-casting.
The chemical composition of the Al–Si alloys is shown in Tab. 1. In the corrosion test, the specimens
were cut into circular disks with a diameter of 10 mm and a thickness of 5 mm. The specimens were
mounted on a special acrylic mount. The specimens were prepared by grinding with 800 grit sandpaper.
A small hole was made into which the electrical connection of the specimens were mounted in the
corrosion cell.

Corrosion tests were conducted via potentiodynamic tests. The corrosion test consisted of a magnetic
stirrer, a corrosion cell composed of the test specimens, a reference calomel electrode, and an auxiliary
graphite electrode. These parts were immersed in a glass cylinder containing different solutions, as shown
in Tab. 2. The potentiodynamic corrosion test was performed at stirring speeds of 0, 300, 600, 750, 900,
1050, and 1200 rpm. Electrochemical parameters were determined using a Minslberg potentiostat/
galvanostat (PS6). The initial and final potential and the scanning rate were adjusted. The output of each
run consisted of a polarization curve through which the corrosion parameters were determined via the
Tafel extrapolation technique by using the software package supplied by the manufacturer.

3 Optimal Regression Learner Methods

The ability of the aforementioned MRLO methods in detecting the CR of the Al–Si alloys was
evaluated. The MRLO methods involved four main regression optimization techniques: DT, SVM, GPR,
and EN. Each regression optimization method has several sub-regression algorithms. For example, GPR
is categorized into squared exponential, rational quadratic, squared exponential, exponential, Matern 3/2,
and Matern 5/2. Various MRLO methods are generally used in different regression applications to
determine the best optimization regression technique according to the training dataset. Stirring speeds,

Table 1: Chemical composition of test materials (wt %)

Alloy % Si % Cu % Mg % Mn % Fe % Ni % Cr % Zn % Al

I 0 0.002 0 0 0.18 0.011 0.082 0.003 Bal

II 1 0.1 0.9 0.4 0.5 0 0 0.2 Bal

III 8 0.02 0 0.62 0.25 1.27 0 0.002 Bal

IV 11.2 0.02 0 0.71 0.25 1.4 0 0.03 Bal

V 15 0.88 0.68 0.5 0.35 0.93 0.17 0 Bal

Table 2: Corrosion test environment

Corrosion Media Solution content (ppm) Solution pH

Condensate solution
(simulating condensate of fuel product)

184 H2SO4 3.5

82 Al2O3

900 Fe2O3

H2O Balance

H2SO4 solution 184 H2SO4 + H2O Balance 2.8

Al2O3 solution 82 Al2O3+ H2O Balance 7.75
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solution pH, and Si ratio (SR) were adopted as inputs, whereas the CRs were utilized as outputs. These
parameters were employed to build optimal models of the MRLO methods. The MRLO methods were
built using the 2020b MATLAB/software regression learner [20].

The training procedure can be summarized as follows:

1. The dataset is divided into a training dataset (84 practical dataset samples) and a testing dataset
(21 practical dataset samples).

2. A validation approach is chosen. A cross/fold validation with five folds is used in the validation
process during the training stage.

3. A regression optimization technique is selected, and the number of training learners is identified.
4. An optimization technique is selected, and the hyperparameters to use are determined.

5. The regression model selected is trained.

6. The regression model parameters selected are accessed.

7. The selected regression model is exported.

8. Steps 3 to 7 are repeated for all the other MRLO methods.

The optimal parameters of the MRLO methods were identified using different optimization techniques,
such as grid search, Bayesian optimization (BO), and random search. The BO approach is the more general
approach for optimization problems, and it is used for most machine learning regression techniques for
parameter optimization determination [21]. BO iteratively discovers the hyperparameter space, where a
probabilistic model of approximation is built based on prior estimation. Finally, the probabilistic model is
applied to estimate the optimal parameters by applying the probability values of its position and choosing
the parameters related to peak probability [22]. More details about the BO approach are presented in
[22,23]. The main optimization selection parameters used during the training are listed in Tab. 3, whereas
the optimal parameters of the MRLO methods are enumerated in Tab. 4.

Fig. 1 presents the minimum mean square error (MSE) of the different MRLO methods against the
number of iterations during the optimization process based on the training dataset samples. GPR had the
lowest MSE (0.000446607). MSE is estimated as follows:

MSE ¼ 1

N

XN

i¼1

ðOi � PiÞ2 (1)

where N is the number of dataset samples; and Oi and Pi are the ith output and the MRLO predicted
values, respectively.

Fig. 2 presents the predicted response versus the true response for the different MRLO methods during
the training stage. GPR had the best prediction response.

Table 3: Main optimization parameters used in training the machine regression learner optimization methods

Optimizer Bayesian optimization

Acquisition function Expected improvement by second plus

Maximum number of iterations 30
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4 Results and Discussion

4.1 Corrosion Behavior

The corrosion behavior of the selected Al–Si alloys in aqueous solution was complex. Results showed
that corrosion behavior depended on solution stirring speed, pH, anion, and alloy composition [6,24]. As
shown in Fig. 3, the CR of eutectic alloy (11.2% Si) was higher than that of both hypoeutectic alloy

Table 4: Optimal parameters against the machine regression learner optimization methods

MRLO Method Optimal Parameters

DT Minimum leaf size: 2
Minimum observed error: 0.025517

SVM Box constraint: 20.3741
Kernel scale: 0.40218
Epsilon: 0.003097
Kernel function: Gaussian
Standard size: False
Minimum observed error: 0.0038828

GPR Sigma: 0.00081841
Basis function: Zero
Kernel function: Nonisotropic Matern 3/2
Standard size: True
Minimum observed error: 0.0021606

EN Ensemble method: LsBoost
Number of learners: 390
Learning rate: 0.31852
Minimum leaf size: 2
Number of predictors to sample: 3
Minimum observed error: 0.0065794

Figure 1: Minimum mean square error of different machine regression learner optimization methods versus
iteration number during the optimization process based on the training dataset samples
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(1% Si and 8% Si) and hypereutectic alloy (15% Si) in different solution pH. This result was obtained
probably because of the stabilization of the oxide layer due to the incorporation of elemental Al phase in
the case of hypoeutectic alloys or elemental Si in the case of hypereutectic alloys. Moreover, the high CR
of eutectic alloy could be attributed to its relatively fine-grained structure and high surface energy [7,8].
As shown in Fig. 3, the CR in simulated condensate solution with pH 3.5 was higher than that in other
test solutions. The CR in the solution containing Al2O3 particles with pH 7.75 was very small compared
with that of the solution containing H2SO4 and simulated condensate solution because of the neutral pH
of the solution containing Al2O3 particles and the nonaggressive nature of the solution. Furthermore, the
difference in CRs obtained in the existence of different anions was clarified by the chemical nature of
corrosion reactions, which contained elemental anion species; these anions either caused the breakdown
or the construction of protective reaction products on the surface [8]. As shown in Fig. 4, the CRs
markedly increased with increasing stirring speed. High rotation speeds were accompanied by high CRs,
leading to the rapid removal of the passive film under the erosive action of Al2O3 and Fe2O3 particles.
This result implied that the resulting unpassivated metal would have more opportunities to passivate per
unit time; hence, current oscillation would increase the frequency. Two acting mechanisms were involved:
first, metal dissolution due to both the electrochemical action of acidic solution and the mechanical action
of erosive Al2O3 and Fe2O3 particles. Thus, the effects of Al2O3 and Fe2O3 particles in the solutions were
greater under stirring conditions than those under stagnant conditions. The second acting mechanism was
re-passivation due to the availability of sufficient amounts of oxygen; this re-passivation range depends
on the available oxygen according to different stirring speeds [25].

Scanning electron micrographs of the Al–Si alloys with different Si contents after the corrosion test in
simulated condensate solution are presented in Fig. 5. Both pure Al and Al–Si alloys were clearly attacked by
pitting corrosion. The severity of pitting corrosion depended on the percentage of Si in the alloy. Fig. 5a
shows that pure Al had an extensive and intensive pitting. The size of the pits was substantially reduced
by the addition of 8% Si (Fig. 5b). The attacked areas were mainly concentrated around some of the

Figure 2: Predicted response against true response for the different machine regression learner optimization
methods during the training stage
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small Si sticks. Fig. 5c shows the microstructure of eutectic alloy (11.2% Si). It consisted of long Si sticks in
the solid Al solution matrix. Given that this alloy was a eutectic alloy with a relatively fine-grained structure
and had a high energy structure, it had numerous galvanic corrosion areas. The corrosion pits that formed on
the surface of the eutectic alloy were large and indicated that a high CR occurred, in agreement with the
results obtained in Figs. 3 and 4. As shown in Fig. 5d, the microstructure of the Al–Si alloy with 15% Si
consisted of numerous flat plates and little stick-like Si particles distributed in the solid Al solution
matrix. As indicated in Fig. 3d, this alloy suffered a low degree of attack. As can be concluded from
Fig. 5, the addition of Si to pure Al as a hypoeutectic alloy or a hypereutectic alloy improved the CR of
pure Al. By contrast, the presence of Si around the composition of the eutectic alloy led to severe corrosion.

4.2 Prediction of CR by the MRLO Methods

4.2.1 Prediction Performance of the MRLO Methods
The MRLO models for GPR, DT, SVM, and EN were used to predict the CR of 21 practical dataset

samples. The prediction outputs of the four MRLO methods are summarized in Tab. 5. Results
demonstrated that the different MRLO methods, especially GPR, had a good prediction performance.

Figure 3: Effects of pH on the CR of Al–Si alloys

Figure 4: Effects of stirring speed on the CR of Al–Si alloys
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4.2.2 Comparison of the MRLO Methods with ANN Method
ANN is widely used for regression and classification processes. ANN consists of three main layers,

namely, an input layer, a hidden layer, and an output layer, as shown in Fig. 6. Each layer is composed of
a number of neurons. The number of input layer is equal to the number of input features. Hidden layer
neurons are selected to obtain the highest prediction accuracy, whereas output layer neurons are equal to
the number of output variables [26]. The relation between output m (Om) value and input features can be
expressed as follows:

Om ¼ Gð
Xn

i�1

wimIi � bmÞ; (2)

where G is the gain of nonlinear function used with the hidden layers, wim is the weight of ith input (Ii), and
bm is the bias of output m. ANN has different types, among which the backpropagation type is the most
widely used in regression processes [27].

Figure 5: Microstructural examination of Al–Si alloys after the corrosion test in condensate solution under
stagnant conditions (0 rpm) via scanning electron microscopy (a) Pure Al (b) 8% Si (c) 11.2% Si (d) 15% Si
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Table 5: Prediction results of the machine regression learner optimization methods with the training dataset
samples

Stirring
Speed

Solution
pH

Silicon
Ratio

CR DT SVM GPR EN

11.2 900 2.8 0.18 0.143544 0.14664 0.165156 0.143544

0 300 7.75 0.01 0.01167 0.017808 0.013636 0.01167

15 750 3.5 0.1 0.120819 0.121913 0.109375 0.120819

15 900 7.75 0.031 0.030611 0.033817 0.034959 0.030611

15 1200 3.5 0.21 0.132092 0.093915 0.133638 0.132092

1 750 3.5 0.062 0.079633 0.072711 0.059901 0.079633

15 1050 3.5 0.18 0.12524 0.103732 0.12726 0.12524

0 1050 7.75 0.047 0.027003 0.045987 0.051216 0.027003

11.2 600 7.75 0.03 0.018953 0.021991 0.02412 0.018953

11.2 0 3.5 0.048 0.05833 0.045099 0.053056 0.05833

15 750 2.8 0.07 0.047314 0.079716 0.075488 0.047314

8 1200 7.75 0.042 0.057552 0.056898 0.040271 0.057552

8 900 2.8 0.068 0.065419 0.061399 0.066104 0.065419

1 1050 7.75 0.03 0.021483 0.028083 0.03349 0.021483

11.2 1050 2.8 0.21 0.240092 0.226206 0.225073 0.240092

8 300 2.8 0.038 0.033854 0.02289 0.03471 0.033854

11.2 300 7.75 0.013 0.000918 0.002419 0.011804 0.000918

15 0 7.75 0.0026 0.00397 0.014129 0.000916 0.00397

1 750 7.75 0.022 0.026282 0.026266 0.023079 0.026282

15 1200 7.75 0.051 0.040011 0.050645 0.046168 0.040011

1 0 3.5 0.016 0.014252 0.024051 0.021563 0.014252

MSE 0.000658177 0.001063113 0.000446607 0.000658177

I1

I3

I2

O1

b1

b2

b3

b4

w11

w12

Input
Layer

Hidden
Layer

Output
Layer

Figure 6: Construction configuration of artificial neural network
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The two main training algorithms for the training process of ANN are Levenberg–Marquardt (LM) and
Bayesian regularization algorithms [28]. In this work, the LM algorithm was utilized for the training process
of the ANN model with different numbers of hidden layer neurons to determine the suitable number of
neurons of the hidden layer. The training dataset was divided into three groups, namely, training (70%),
testing (15%), and validation (15%) groups. Fig. 6 shows the MSE of the ANN model with the number
of hidden layer neurons ranging from 1 to 100. The ANN model with a hidden layer with 14 neurons
obtained the smallest MSE of 0.0241 (Fig. 7). Fig. 8 presents the regression of training, validation,
testing, and all dataset samples with 14 hidden layer neurons; the regressions were 0.9909, 0.79726,
0.93789, and 0.96117, respectively. The ANN model obtained from the training process was employed to
predict the CR with the test dataset samples. Tab. 6 presents a comparison between the proposed GPR
and the ANN model with five samples from the testing dataset. The prediction results of GPR were
slightly different from the actual CR, whereas the prediction results of the ANN model were substantially
different from the actual CR. The overall MSE of the proposed GPR and ANN models for the testing
dataset samples (21 samples) was 0.000446607 and 0.009293406, respectively. Results demonstrated that
the proposed GPR model was more effective than the ANN model. In previous studies, the prediction
results of the ANN model were compared not only with experimental results but also with the results of
other models. Pintos et al. [29] proved that ANN-based methodology is better than a linear regression
model and has a good agreement with known data for modeling atmospheric corrosion. Cai et al. [30]
constructed two different ANN models to model the atmospheric corrosion of carbon steel and zinc.
Thike et al. [13] compared the evaluation metrics of three models. They reported that the RMSE of the
linear model (0.1356) was the highest, and ANN had a slightly lower RMSE value (0.1011) than the
Klinesmith model. According to the results of the comparison of the evaluation metrics for the three
models for new data, the ANN model exhibits a better performance than conventional models in
predicting the atmospheric corrosion of carbon steel. Moreover, the Klinesmith model provides better
prediction results than the linear model.

Figure 7: Mean square error against the number of hidden layer neurons
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5 Conclusions

The corrosion behavior of the Al–Si alloys in aqueous solutions was found to be dependent on Si
content, solution pH, and solution stirring speed. Eutectic alloy (11.2% Si) showed the highest CR under
different corrosion test conditions. Eutectic alloy presented a fine-grained structure with a high-energy
structure. Thus, it had numerous galvanic corrosion areas. The addition of Si to pure Al as a hypoeutectic
alloy (8% Si) or a hypereutectic alloy (15% Si) improved the CR of pure Al. The CR in simulated
condensate solution with pH 3.5 was higher than that in other test solutions. The CR in the solution

Figure 8: Regression of the training, validation, testing, and overall dataset samples with 14 hidden layers

Table 6: Prediction results and overall mean square error of the proposed Gaussian process regression model
and the artificial neural network method with five samples from the testing dataset samples

SS PH SR CR GPR ANN

0 300 7.75 0.01 0.013636 0.0025

15 900 7.75 0.031 0.034959 0.0245

11.2 300 7.75 0.013 0.011804 0.0452

1 750 7.75 0.022 0.023079 0.0733

15 1200 7.75 0.051 0.046168 0.0959

MSE 0.000446607 0.009293406
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containing Al2O3 particles with pH 7.75 was very small compared with that of the solution containing
H2SO4. In addition, the CR markedly increased with increasing stirring speed. Moreover, the Al–Si alloys
and Al were attacked by pitting corrosion. The four MRLO methods, namely, DT, SVM, EN, and GPR,
achieved good CR prediction accuracy. The four optimization regression methods were implemented and
conducted in MATLAB/software regression toolbox. The optimal parameters of the four methods were
determined using Bayesian optimization technique. GPR had the highest CR prediction accuracy with the
lowest MSE of 0.000446607. The proposed GPR model was validated, and its effectiveness was
compared with that of the ANN model. The overall MSE of the proposed GPR and ANN models for the
testing dataset samples (21 samples) was 0.000446607 and 0.009293406, respectively. Under the
conditions studied herein and by adopting the materials in this study, designers and process engineers can
utilize the corrosion properties of the Al–Si alloys predicted by the four MRLO methods to save on costs,
time, and experimental materials.
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