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Abstract: Video and image data is the most important and widely used format of
communication today. It is used as evidence and authenticated proof in different
domains such as law enforcement, forensic studies, journalism, and others. With
the increase of video applications and data, the problem of forgery in video and
images has also originated. Although a lot of work has been done on image for-
gery, video forensic is still a challenging area. Videos are manipulated in many
ways. Frame insertion, deletion, and frame duplication are a few of the major
challenges. Moreover, in the perspective of duplicated frames, frame rate variation
and loop detection are also key issues. Identification of forged duplication frames
for large videos with variant frame rates in real-time is not applicable due to com-
putational limitations, lack of generalization, and low-performance accuracy. This
research has investigated the problem of frame duplication with varied frame rates
using a deep learning approach. A novel deep learning framework consisting of
Inflated 3D (I3D) and Siamese-based Recurrent Neural Network (RNN) is pro-
posed to resolve the aforementioned issues. The first step in the proposed frame-
work is to extract the features and convert videos into frames. 13D network
receives an original and a forged video to detect frame-to-frame duplication. Then
multiple frames are merged to create a sequence. This sequence is passed to
Siamese-based RNN which is used for the sequence to sequence forgery detection
in video. Media Forensic Challenge (MFC) is a relatively new dataset with
various frame rates, and a huge volume of videos. MFC and Image Retrieval
and Analysis Tool (VIRAT) datasets are used for training and validation of the
proposed model. The accuracy of the proposed method with the VIRAT dataset
is 86.6% and with the MFC dataset 93%. The comparative analysis with state-
of-the-art approaches has shown the robustness of the proposed approach.

Keywords: Duplicate frame; video forgery; deep learning; RNN; Siamese; [3D

1 Introduction

The rapid advent of computationally cheap and cross-platform video editing software has enabled the huge
volume of video content available to a large number of users via the Internet [1]. In recent years, the abundance
of'video data, Al techniques, and readily available, high-performance easy to use video editing tools have given
rise to fake videos. Fraudulent activities are carried out using fake images and videos to bypass facial
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authentication, to publish fake news, and for entertainment as well. Video forgery is continuously increasing in
the digital world due to breaches of information security, consequently establishing a scenario for image and
video content monitoring for forgery identification [2—4]. The spread of fake videos raises security risks and
anarchy in society. Video forgery detection has applications in media science, forensic analysis, digital
investigations, and authenticity verification of a video. The purpose of video forensic technology is to
extract features to distinguish fake content frames from original videos [5].

Video forgery detection is mainly categorized as inter-frame forgery and copy-move forgery Copying
and pasting content within the same frame is referred to as copy-move forgery [6—8]. Copying and
pasting content within the same frame is referred to as copy-move forgery. Whereas Inter frame refers to
frame deletion and frame duplication. The frame duplication is examined in three different ways,
duplication of frame sequences in successive video frames, duplication of same and different dimensions
from other videos, and duplication of different lengths at many locations using correlation coefficient and
coefficient of variation. Machine learning have been used for video forger detection using a number of
approaches. Initially, most of the work for image forgery detection has been done using Support Vector
Machine (SVM). Later, neural network-based techniques also addressed the problem of video forgery for
frame duplication detection [1].

Recently, Deep learning methods and specifically Convolution Neural Networks (CNNs) have gained
tremendous success due to its powerful ability of automatic learning of features for large-scale video
classification [7,9,10]. Copy move forgery problem is investigated a lot, however, inter-frame duplication is
not explored much and still is not applicable in real-time due to computational limitations and robustness
issues for real-time scenarios. Existing approaches in the literature suffer from low accuracy rates, low
efficiency, and high computational complexity. Further, most of the existing approaches are trained on
datasets with a limited sample size; which is not enough to unleash the potential of deep learning
performance. Moreover, most of the existing work does not address variable frame rates for sample videos.
Which is a challenging issue as multiple platforms with different hardware and software sources exist today.
The purpose of this study is to investigate deep learning method for video forgery detection on large
datasets with varied frame rates. A deep neural network approach is presented to classify the forged videos
by finding duplicated frames in a video. The silent features of the proposed approach are as following.

e The proposed deep learning approach has integrated the functionalities of two neural network-based
methods, i.e., I3D and Siamese-based Recurrent Neural Network (RNN). Off-the self, fine-tuned 13D
model integration has improved the speed of the process to handle huge data size. Siamese-based
RNN provides a robust forgery detection mechanism.

e The proposed approach is trained and tested on the most cited VIRAT [11] dataset and newly
published MFC dataset [12]. MFC dataset is a recently published benchmark video dataset and is
more challenging, rich, and offers varied frame rates than VIRAT. Very limited work is reported to
explore its potential for forgery detection.

e The proposed approach has shown improved performance on both VIRAT and MFC datasets than
existing approaches.

The rest of the paper is organized as follows. Section 2 describes the prominent related research in the
domain. Section 3 presents the dataset description and Section 4 presents proposed approach. Section
5 presents results discussion and state of art comparison followed by conclusion in Section 6.

2 Related Work

In literature, a number of machine learning approaches have been introduced for video forgery detection.
Saddique et al. [13] proposed a forgery detection technique using localized texture analysis in consecutive
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frames. Christlein et al. [4] evaluated the performance of features for copy-move forgery detection using a
number of manual feature extraction techniques like Speeded up Robust Features (SURF) and Scale
Invariant Feature Transform (SHIFT), the block-based features Kernel Principal Component Analysis
(KPCA), Principal Component Analysis (PCA), Discrete Cosine Transform (DCT), Discrete Wavelet
Transform (DWT).

Amiano et al. [14] proposed a patch-match based copy-move detection method using the near neighbor
dense field concept. However, this approach did not perform well for huge data. Wu et al. [15] proposed an
approach for frame duplication and frame deletion detection using velocity and discontinuity peaks
observations in vector flow image sequence. Bidokhti [16] presented a video forgery copy-move method of
detection in MPEG (Moving Picture Expert Group) videos. Their method divides every video frame into
suspicious cleared portions to calculate optical flow coefficient for every part. It further detects forgery
when an unfamiliar trend in the optical flow coefficient object is detected. Singh et al. [17] presented a
passive blind scheme to detect duplicated frames using correlation coefficient and coefficient of variation.

Afchar et al. [18] presented two network architectures to identify forgeries efficiently with low
computational cost using a deep learning approach. Their approach focuses on Deep fake and Face2Face
the two approaches are used to generate hyper-realistic forged videos. Nguyen et al. [19] introduced a
capsule network to do replay attack forgery detection, face-swapping detection, and facial reenactment
detection on recorded videos and published images. Hosler et al. [20] presented a new standard database,
video ACID (Atomicity, Consistency, Isolation, Durability), designed to study multimedia forensics on
videos. Ulutas et al. [21] proposed a Bag-of-Words (BoW) model for frame duplication detection method.
The proposed method compares Peak Signal-To-Noise Ratio (PSNR) values of frames and feature vectors
to detect forgery. Chen et al. [8] proposed copy-move forgery regions to detect invariant moments design
using Scale-Invariant Feature Transform (SIFT) and region growing strategy. Pavlovi [6] presented a
novel method for CMFD (Copy-Move Forgery Detection), based on a multi-fractal spectrum. Liu et al.
[22] presented a K-mean clustering and super-pixel segmentation technique for image forgery detection.
Dong-Ning Zhao et al. [23] presented a passive blind scheme based on resemblance analysis to detect an
inter-frame forgery in shots using histogram variation in two adjacent frames, and SURF feature
extraction. M. Aloraini et al. [24] explored the issue of video forgery for object removal and introduced a
new approach based on sequential and patch analyses to localize forged regions and detect video forgery
by visualizing a removed object movement. They modeled video sequences as normal and anomalous
patches to define the distribution of each patch on the video level. Nguyen et al. [25] presented a method
of detecting inter-frame forgeries using Convolution Neural Network (CNN) by retraining the available
ImageNet dataset-trained CNN models to detect inter-frame forgeries, and to exploit spatial-temporal
relationships in a video. Their CNN model showed 81% accuracy.

Due to large-scale datasets availability recently, the potential of deep learning is being explored in this
domain. Recently, Bakas et al. [ 1] presented a deep learning approach for detection of inter-frame forgeries in
videos based on motion vector analysis. However, they have also not addressed the issue of variant frame
rate. Varied frame rate is a challenging issue as multiple platforms with different hardware and software
sources exist today. Similarly, the behavior of duplicate forgery detection for variable frame rate videos
such as available in MFC dataset is not studied much. Similarly, in comparison to copy-move forgery,
limited work exists for inter-frame forgery. Carreira et al. [2] introduced a Long-Short-Term-Memory
(LSTM) with two-stream 3D-ConvNet to check video forgery producing 80% accuracy. Jia et al. [3]
defined the coarse-to-fine technique based on video parameters and Over Flow (OF) features of frame to
detect copy-move forgery with high accuracy and low computation cost under different common attacks.
Avino et al. [26] used Auto Encoder integrated with RNN for forgery detection. Recently, Long et al.
[10] extracted compact features from digital videos containing both temporal and spatial information of
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video segmentation using I3D and ResNet with 84.05% accuracy on the VIRAT dataset and 85.88%
accuracy on the MFC dataset.

3 Dataset Description

Two benchmark datasets are applied in this study. First one is Video Image Retrieval and Analysis Tool
(VIRAT) action recognition dataset [11,27] which offers 29 hours of videos describing 23 different events.
As, this dataset is not for frame duplication identification, therefore, in pre-processing stage different steps
are applied to prepare it for frame duplication identification. Since our objective is to find duplicate frame
sequences, therefore, annotations available for VIRAT are ignored. After preprocessing video clips, they
will have duplicated frame sequences. Another dataset is Media Forensic Challenge (MFC) [12] which is
a recent benchmark dataset for video forgery evaluation. It offers 300,000 video clips and 11,000 high-
provenance (HP) videos with 4,000 manipulated videos and over 500 video manipulation journals with
historical statistics and annotation information for manipulation. MFC dataset offers varied frame rates in
data samples. Detail of both datasets is described in Tab. 1.

Table 1: Dataset description

Dataset Year Published Total Video frame Frame rate Format
samples

MEFC [12] 2019 3 million frames 10 fps, 29-30 fps, 60 fps, 240 fps MP4, MOV
(100 videos)

VIRAT [11] 2016 8000 frames (60 videos) 23 fps MP4

4 Proposed Framework

Deep learning has gained immense popularity due to its potential of high performance with large-scale
data. The internet age has has provided abundant video data with easy access, hence a rise in the forgery and
fake video content as well. The proposed framework is a deep learning approach based on Inflated 3D (I3D)
network and Siamese-based Recurrent Neural Network (SRNN) for frame duplication. Elements of proposed
approach are described as following.

4.1 Preprocessing

Pre-processing steps are crucial before the model’s training such as analyzing and normalization of the
dataset. Following pre-processing activities are performed on both datasets.

4.1.1 Conversion of Video to Frames

Video clips are transformed to frame sequences by a pre-processing script written using opencv library,
which captures a frame and saves it in a directory. This step is executed in an iterative process and is
continued till all frames are extracted from video clips. Similarly, all video clips in the dataset are processed.

4.1.2 Generation of Frames Duplication

Second step is to generate duplicate frames in original sequence. 16 frame sequences are created from
original video, and in each sequence after first 8 frames initial 4 frames are repeated and then next 4 frames
after 8th frame are added which form a total of 16 frames sequence. Same method is used here for each clip
and 16 frame sequences are produced for whole video clip. Therefore, in each sequence frames 1 to 4 are
duplicated at position 9 to 12. For each clip these sequences are stored separately in a new directory.
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Additionally, each frame size is changed to 224 x 224 x 3 which is default input size for [3d network. A total
of 64 sequences are generated for all videos.

4.1.3 Feature Extraction
64 frame rate is selected for sequence to sequence detection. 64 frame sequences from videos are
generated and then forged sequence from original sequence is generated.

4.2 Siamese-based RNN Integrated with ID3

A Siamese network consists of twin neural networks which accept separate inputs but are connected at the
top by an energy function. This function calculates a metric between the representations of the highest level
feature on each side. The parameters are tangled up between the twin networks [26]. The network is
symmetric, such that the top conjoining layer will measure the same metric if we present two distinct
images to the twin networks, as if we were to present the same two images, but to the opposite twins.
Siamese network help us to follow the deep leaming approach that mostly follow the sequence to sequence
detection method. Sequence method means a set of frames combine in a group that is called a sequence.

Recurrent Neural Networks (RNN) are a class of neural networks for processing sequential data. It
recalls previous data from the input series for forecast using feedback loops. Long Short Term Memory
(LSTM) is a type of RNN used in deep learning domain [10]. It includes a special cell called ‘memory
cell’ to maintain information for longer periods of time.

Proposed framework comprises of I3D (Inflated 3 Dimension) model followed by Siamese model. Two
16 frame sequences are created, one is forged as described in pre-processing steps, and the other is non-
forged. Both of these sequences are passed through I3D model and 7,1,1,1024 feature tensor is obtained
from it for both sequences. These features are saved in “.npy” format which are then used as inputs for
fine classification by Siamese RNN network. Thus, videos are converted into frames by I3D model to
create a 64 frames sequence, i.e., multiple of 16 frames. After forming 64 frames sequences, one original
input sequence, i.e., without frame duplication and the forged input sequence having 16 frames
duplicated, both are fed to I3D network to obtain 1024 vector features from its off the shelf model (last
layers which classify input are removed). Positive and negative pairs are formed from generated
sequences using a pair function. A positive pair is, if both input sequences are of same class which is
either forged or non-forged, and a negative pair is when one input sequence in the pair is forged and the
other is non-forged. After forming pairs, dataset is split into train and test set. Additionally, shape of
feature tensor is changed to 2, 192, 98, 98 where 2 represent pair (frame height and width is reduced to
98 from 224 to speed up processing and avoid memory shortage).

Paired data is fed to Siamese RNN model for fine classification or for verification that input frames are
forged or not. Siamese-based RNN network is used for sequence to sequence forgery detection. It consists of
two similar networks which share exactly the same parameters, each receives one of the two input frames.
Siamese architecture of the neural network learns to distinguish between two frames in the given pair.
Siamese network verifies that video frames are forged or not by finding similarity score between frames
sequence. If similarity score is high then it means that frames are forged and duplicated. In the Siamese
network 2 convolution layers along with 3 recurrent neural network layers are used which are followed
by dense/hidden layers. A vector is produced by last layer in base model for each input sequence and
similarity score is measured through Euclidean distance. If similarity score is below 0.5 then video
frames are predicted as forged or duplicated. It performs fine level search in order to find the duplication
between frames. After getting this feature vector for each input sequence, cosine distance or L2 distance
is used to measure distance between frames. If distance is less than threshold then it implies the sequence
has duplicated frames. The overall methodology and detailed architecture of Siamese-based RNN is
demonstrated in Fig. 1.
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Figure 1: Proposed approach

4.3 Implementation and Setup

The combination of 13D (Inflated 3 Dimension) and Siamese-based RNN is used to build proposed
solution using CV2, TensorFlow [28] and Keras libraries [29] for different phases of model construction
such as Layers, Activation, Dense, Input, Batch Normalization, Cov3D, Maxpooling3D, Averagepooling3D,
Dropout, Reshape, Lambda and Global Averagepooing3D. Google COLAB Python3 is used as
development environment to build, train and test the proposed model. VIRAT and MFC both datasets are
used for training of proposed architecture. During training, Leave-One-Out (LOO) cross validation is used
to avoid overfitting and obtain performance. It is a special case of K-fold cross validation when number of
logical limit K is equal to N, i.e., number of folds equal to number of instances in data set. So the learning
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algorithm is applied once for each instance and uses all other instances as the training set and the selected instance
as a single item test set. The model is trained using 64 batch size and 0.01 learning rate. ADAM optimizer is
applied. A dropout of 25% was used for Siamese layers and a dropout of 20% was used in RNN layers. The
network parameters details and hyper-parameters finalized after fine tuning are described in Tab. 2.

Table 2: Network parameters

Network Parameters Values Network Parameters Values

13D Total Parameter 12,308,882 Batch size 64

I3D Trainable Parameters 12,294,332 Learning Rate 0.01

Siamese Total Parameter 489,708 Dropout rate Siamese layer 25%
RNN layer 20%,

Siamese Trainable Parameters 489,708 Optimizer ADAM

Epochs 6 Same padding Stride size 1

5 Results Discussion

The Accuracy score is not the true representative of a model’s performance. Therefore, a number of
metrics are used to evaluate the performance such Precision, Recall and F1 score. Moreover, area under
the ROC curve known as AUC-Score is also calculated to measure the performance. The ROC curve is a
trade-off between sensitivity and precision and tells us about the true-positive rate and false-positive rate.
If it is closest to the diagonal, then the curve is not fine. A better output is indicated by classifiers that
offer curves closer to the top-left corner. The closest the curve gets to the space of the ROC 45-degree
diagonal, the less precise the model is. All performance metrics are presented in Eqs. (1)—(4).

Recall = TP = TP / (TP + FN) 1)
Precision = TP | (TP + FP) )
Accuracy = (TP+TN) / (TP + TN + FP + FN) 3)
F1 — Score = 2" (Precision ™ Recall) | (Precision + Recall) 4)

The confusion matrix of the proposed approach is presented in Fig. 2 for both the VIRAT and the MFC
datasets. Confusion matrix of proposed methodology with VIRAT dataset shows that the true-negative is
3362 which is the percentage of actual negative which are correctly identified, true-positive is
2809 which is the percentage of actual positive which are correctly identified, false-positive is 755 which
incorrectly predicts the positive class and false-negative is 202 which incorrectly predicts the negative
class. As shown by confusion matrix the true-negative is 0.81 which is the percentage of actual negative
which are correctly identified, true-positive is 0.93 which is the percentage of actual positive which are
correctly identified, false-positive is 0.18 percent which is incorrectly predict the positive-false and false-
negative is 0.06 percent which is incorrectly predict the negative class.

The Confusion matrix of the proposed approach with MFC dataset presents the true negative as
0.92 which is the percentage of actual negative which are correctly identified, true-positive as 0.94 which
is the percentage of actual positive which are correctly identified. False positive is 0.07 which incorrectly
predicts the positive class and false-negative is 0.05 which incorrectly predicts the negative class. The
confusion matrix of the proposed approach with MFC dataset presents the true negative as 3710 which is
the percentage of actual negative which are correctly identified, and true positive as 3595 which is the
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percentage of actual positive which are correctly identified. False-positive is 321 which incorrectly predicts

the positive class and false-negative is 206 which incorrectly predicts the negative class.
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Figure 2: Confusion matrix of proposed approach with VIRAT dataset (left), MFC dataset (right)

ROC curves of the proposed approach with VIRAT and MFC datasets are presented in Figs. 3 and 4,
respectively. The AUC score on VIRAT dataset for ‘not forged’ data is 88.3% and it shows true positive
and false positive rate of proposed methodology. Which implies that there is 88.3% chance that the model
will be able to distinguish between negative class and positive class. The AUC score for ‘forged’ data is
84.8% and it shows true positive and false positive rate of the proposed methodology. Which implies that

there is 84.8% chance that the model will be able to distinguish between negative class and positive class.
AUC score of the proposed methodology on MFC dataset for ‘not forged’ data is 96% and it shows true-
positive and false positive rate of proposed methodology. Which implies that there is 96% chance that the
model will be able to distinguish between negative class and positive class. The AUC Score for ‘forged’
data is 90% and it shows true-positive and false-positive rate of the proposed approach. Which implies
that there is 90% chance that the model will be able to distinguish between negative class and positive class.
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Figure 3: ROC curve of the proposed approach with VIRAT dataset
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Tab. 3 presents the summary of evaluation scores of Siamese network and proposed Siamese-based
RNN-+I3D network for both datasets as per different performance metric. Siamese network accuracy with
VIRAT dataset is 83.6%, precision is 85.1%, recall is 83.6% F1 score is 83.4% and MCC is 68.7%.
Siamese network accuracy with MFC dataset that is 89.5%, precision is 90.7%, recall is 89.5% F1.score
is 89.5% and MCC is 80.3%. The proposed methodology accuracy with MFC dataset that is 93.3%,
precision is 93.3%, recall is 93.3% F1 score is 93.3% and MCC is 86.6%. ROC curve of the proposed
approach for both datasets is above the threshold diagonal plot which shows the robustness and effective

training of the proposed approach.

Table 3: Performance metric detail of the proposed approach

Parameters VIRAT Dataset MFC Dataset
Accuracy 86.6% 93.3%
Precision 87.5% 93.3%
Recall 86.6% 93.3%

F1 Score 86.5% 93.3%

MCC 71.7% 86.65%
AUC Score (Forged) 85% 91%

AUC Score (Not Forged) 88% 97%

Tab. 4 describes the state of the art comparison with the proposed approach. In previous approaches
Siamese network is performed without linking with any other neural network. However, Long et al. [17]
presented Siamese-based ResNet with 84.05% accuracy in VIRAT dataset and 85.88% accuracy with
MFC dataset. Jabeen et al. [17] provided 81% accuracy using Inception V3. Instead of using Siamese-
based ResNet, we have applied Siamese-based RNN and improved the accuracy and F1 score by on both

datasets VIRAT and MFC.
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Table 4: Performance comparison with state-of-the-art

Methods (MFC Dataset) Accuracy  Methods (VIRAT dataset)  Accuracy

C. Long et al. [10], 2019  85.88% C. Long et al. [17] 2019 84.05%
Jabeen et al. [9], 2020 81% Bhattacharya et al. [30] 78%
Proposed Methodology 93% Proposed Methodology 86.6%

6 Conclusion

In this study, a deep learning approach is presented to detect duplicate frame video forgery for varied
frame rate with improved performance. The proposed approach is a Siamese (twin) RNN integrated with
I3D and identifies frame duplication from the group of forged sequence frames. The proposed approach is
tested using MFC and VIRAT datasets. The proposed approach demonstrated 93.3% F1 score on MFC
and 86.5% on VIRAT dataset. The results are comparable with state of art approaches. Future work
recommendation is to adapt transfer learning in proposed approach for enhanced and automated feature
extraction and fast training process. In this context, behavior investigation of many pre-trained CNN
models is required to acquire high performance and robustness for real-time applications.
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