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Abstract: Cardiomyopathy is a group of diseases that affect the heart and can
cause serious health problems. Segmentation and classification are important
for automating the clinical diagnosis and treatment planning for cardiomyopathy.
However, this automation is difficult because of the poor quality of cardiac mag-
netic resonance (CMR) imaging data and varying dimensions caused by move-
ment of the ventricle. To address these problems, a deep multi-task framework
based on a convolutional neural network (CNN) is proposed to segment the left
ventricle (LV) myocardium and classify cardiopathy simultaneously. The pro-
posed model consists of a longitudinal encoder–decoder structure that obtains
high- and low-level features at the same time. The encoder employs a feature pyr-
amid module (FPM) and dense atrous convolution (DAC) to extract features from
images with variable scales for classification. Meanwhile, the decoder leverages
the subpixel layer to recover spatial information caused by downsampling in
the encoder for segmentation. The approach was verified using 654 magnetic
resonance images. It achieved a Dice similarity coefficient (DSC) metric of
82.14% on segmentation and a classification accuracy of 95.72%, with an area
under the receiver operating characteristic curve (AUC) of 97.88%. The proposed
method can aid in the segmentation of cardiac magnetic images and improve the
classification accuracy of cardiopathy.

Keywords: Multi-task; cardiac magnetic resonance imaging; convolutional neural
networks; image classification; semantic segmentation

1 Introduction

Cardiomyopathy is a type of heart disease [1] that seriously threatens health and life. Radiologists use data
from cardiac native T1 mapping magnetic resonance images. With the development of cardiac magnetic
resonance (CMR) imaging technology, the diagnostic accuracy of heart-related diseases has improved
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significantly. T1 mapping is a CMR imaging technique that shows advanced clinical promise, especially in the
context of diffuse fibrosis, with the potential to provide a quantitative evaluation of diffuse myocardial fibrosis [2].

Radiologists are often required to draw outlines of the epicardium, endocardium, and blood pool
manually to measure the myocardial extracellular volume in clinical practice. Because this is time-
consuming and error-prone manual work, a fully automatic method is proposed for producing precise
segmentation masks and accurate classification predictions.

However, several challenges for automatic segmentation and classification remain: poor image quality,
ambiguous boundaries, image deformation, and varying image dimensions. Numerous methods have been
proposed to address these problems. Li et al. [3] provided an efficient boundary point and outlier
detection method for the study of the disease characteristics. Liu et al. [4] proposed an approach to find
regions of interest automatically, which is useful as a preliminary step for segmenting organs in medical
image processing. Fu et al. [5] proposed a noise-resistant superpixel segmentation method for
hyperspectral image segmentation. Wu et al. [6] proposed an optimized soft spatial pyramid matching
method to reduce feature ambiguity to solve the image classification problem.

Machine learning has led to remarkable achievements in a wide variety of fields [7–9]. In particular,
convolutional neural networks (CNNs) are a popular machine-learning method that advances the
development of computer vision in the areas of semantic segmentation [10–13], image classification [14],
and object detection [11,15,16].

Here, a multi-task CNN is proposed to segment the left ventricle (LV) myocardium and classify it at the
same time using CMR image datasets. Specifically, the network consists of two main parts: an encoder and a
decoder. In the encoder, feature pyramid modules (FPMs) are built that assemble a set of convolutions with
different dilation rates to perform multi-scale feature extraction. This enables the classifier to utilize multi-
scale high-level semantic information for better predictions. The decoder uses a combination of low- and
high-level features to refine the segmentation results along the object boundaries. Additionally, subpixel
layers are employed to upsample the segmentation mask back to the original resolution. The key
contributions are as follows.

A multi-task CNN is proposed for segmenting and classifying CMR image datasets simultaneously.

� A reusable FPM was built for multi-scale feature extraction.

� An encoder–decoder structure was employed for boundary recovery.

2 Related Work

2.1 Encoder–Decoder Structure

The encoder–decoder structure addresses the loss of spatial details caused by downsampling and
upsampling. In general, the purpose of the encoder is to progressively reduce the feature maps and
capture higher-level features, while the decoder is used to recover spatial details gradually to produce
sharper segmentation masks. This structure has been adopted in many computer vision networks,
including U-Net [12] and SegNet [17]. U-Net has two parts: a contracting path similar to an encoder for
capturing context by means of a compact feature map and a symmetric expanding path similar to a
decoder to make precise localization possible. The decoder recovers spatial information despite the
downsampling performed by the encoder.

2.2 Atrous Convolution

Atrous convolution [13,18] adds another attribute to standard convolutions, called the “dilation rate,”
which is a zero padding between the values in a regular kernel. A 3 × 3 kernel atrous convolution (also
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called “dilated convolution”) with a rate of 2 has a receptive field (RF) of the same size as a 5 × 5 regular
kernel but with only nine parameters. The atrous convolution determines the variable intensity by controlling
the rate and uses a small kernel size to capture large-range context information without increasing the
parameter count or number of computations. It has been adopted in many modern semantic segmentation
models to enlarge the receptive field and produce denser predictions. DeepLab V3 [13] uses atrous
convolutions in serial or parallel to capture multi-scale information by adopting variable dilation rates.
The latter resolves the problem of multi-scale object segmentation and makes significant improvements
over previous DeepLab versions without DenseCRF postprocessing.

2.3 Spatial Pyramid Pooling

Spatial pyramid pooling [18,19] uses a set of atrous convolutions with different rates or other spatial
pooling methods [20] to encode image features from coarser to finer levels. Multiple spatial bins crop
multiple scale features further. For example, DeepLab V3 [13] uses four parallel atrous convolutions with
different dilation rates, called “atrous spatial pyramid pooling” (ASPP). ASPP with different dilation rates
effectively captures multi-scale information. As the rates increase, the field of view becomes larger, and
the number of valid filter weight parameters decreases. However, in the extreme case when the rate value
is close to the size of the input features, the filter cannot capture the information for the entire image, and
only the center filter weight dominates, just as with a simple 1 × 1 filter. DeepLab V3 uses global
average pooling on the last feature map.

2.4 Depthwise Separable Convolution

By dividing the traditional convolutional layer into depthwise and pointwise convolutions, depthwise
separable convolution [14,21] reduces the computational cost and number of parameters without any
decrease in network performance. This has been adopted and verified by many recent neural networks.
The Xception [14] network is based entirely on depthwise separable convolution layers, assuming that the
mapping of cross-channel correspondences and spatial correlations in the feature maps of the CNN can be
completely decoupled.

3 Methods

Inspired by deconvolution, unpooling, and dilated convolution operations in some advanced models
[12,14,22,23] for reconstructing spatial detail information and generating high-resolution semantic score
maps, in this study, the encoder–decoder structure was adopted as the base architecture. As shown in
Fig. 1, the encoder is primarily responsible for semantic information extraction, whereas the decoder is
mainly responsible for spatial information recovery.

3.1 Feature Pyramid Module

Reducing the number of high-level semantic features benefits classification. High-level abstract features
result in the model becoming resistant to small transformations, distortions, and translations in the input
image. Stacking more convolution and pooling layers yields a deeper network capable of finding more
abstract features. For this reason, network depth is of crucial importance in neural network design, but
deeper networks increase the training difficulty. The decreasing gradients worsen performance while
having nothing to do with overfitting [24]. To solve these problems, the FPM was designed as shown in
Fig. 2. There are two types. Basic type A is inspired by residual connections, whereas extent type B uses
more dilated convolution layers to capture richer semantic features. The residual connection connects the
feature map reduced channels by means of a standard 1 × 1 convolution, and the feature map is extracted
using serial atrous convolution for better results.
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To obtain fewer high-level semantic features, pooling layers and convolution strides were applied
repeatedly. The classifier uses abstract feature representations for classification. To produce a dense
feature map, a series of serial atrous convolution layers was adopted to enlarge the field of view by

Figure 1: Schematic view of the proposed network architecture

Figure 2: Two types of proposed FPM. There are serial and parallel atrous convolutional layers with
different dilation rates, r = [3,5,7] and r = [4,8,12], respectively. The light blue block represents the
atrous convolution. The navy blue block represents the standard 1 × 1 convolution for channel reduction,
and � represents the residual connection. The last step concatenates all the multiscale feature maps as the
module output. (a) FPM Type A (b) FPM Type B
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controlling the dilation rate r. For an atrous convolutional layer with dilation rate r and kernel size k, the RF
size can be calculated using Eq. (1):

RF ¼ ðr � 1Þ � ðk � 1Þ þ k (1)

One can acquire an even larger receptive field by stacking more convolutional layers. The receptive
field of two stacked convolutional layers, with receptive field sizes of RF1 and RF2, can be calculated
using Eq. (2):

RFstack ¼ RF1 þ RF2 � 1 (2)

In this study, atrous convolutions were chosen with different rates in different layers. The varying scales
of objects are another challenge for conventional CNNs. The image pyramid extracts multi-scale feature
maps by scale inputting, and the encoder–decoder structure fuses multi-scale features between the
encoder and decoder. Inspired by spatial pyramid pooling and ASPP in other studies [13,14,19], in this
study, a set of serial and parallel atrous convolutional layers was implemented for multi-scale feature
extraction. A set of parallel atrous convolutional layers with dilation rates r = [6,12,18] and a set of serial
atrous convolutional layers with dilation rates r = [3,5,7] were employed. The combination of serial and
parallel atrous convolutional layers with different dilation rates captures multi-scale information without
multi-scale input.

The use of serial and parallel atrous convolutional layers also provides several benefits in the form of
denser feature maps, extraction of multi-scale features, and use of input images of arbitrary size.

3.2 Encoder and Decoder

Studies have shown that classification tasks should be resistant to transformations, such as shifts,
varying scales, and rotation. Generally, most modern methods [14,24] make repeated use of pooling and
convolution layers to obtain abstract semantic information. Conversely, segmentation tasks should be
sensitive to transformation. The application in this study requires pixel-wise classification while retaining
spatial and location information to produce semantic labels corresponding to the original image, even if
the image has been shifted, rotated, or rescaled. Thus, there is a conflict between classification and
segmentation tasks. To solve this problem, the encoder–decoder structure was designed as shown in
Fig. 1, where the encoder and decoder perform the classification and segmentation tasks separately and
synchronously.

As shown in Fig. 1, the encoder employs FPMs to encode the feature maps progressively and obtain
higher semantic information. Motivated by the shortcut and skip connection mechanisms in ResNet [24]
and U-Net [12], in this study, the ordinal feature map and the output feature map of the FPM type A were
concatenated as input for the following FPM type B (mentioned previously). To encode the high-level
features and multiple receptive fields, a dense atrous convolution (DAC) block [25] was used in the
middle of the encoder. The DAC block uses four atrous convolution layer branches with dilation rate of
[1,3,5] and adds the original and other features, similar to ResNet. The classifier uses the aggregated
highly abstract semantic features from the end of the encoder to obtain accurate classification results.

The decoder uses skip connections, such as U-Net, to remedy the loss of detailed spatial information
caused by the consecutive convolutional layers with stride and pooling operations. Features from the first
three FPM blocks and the last convolutional layers are gradually fused and sampled to recover sharper
object boundaries and spatial information. To increase the reduced size of the feature maps, subpixel
layers [26] are used, rather than simple bilinear interpolation. In the model, the feature maps are gradually
upscaled by a factor of 2 using each subpixel layer to recover the resolution from a convolution layer
with a stride of 2. Finally, a high-resolution segmentation mask is rebuilt according to the original image.
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3.3 Loss Function

An ineluctable difficulty during the segmentation of medical images is that classes are often unbalanced,
having many more background pixels than the target object. In cardiac images, the myocardium tissue is
expected to occupy a small and narrow area of the entire image. A model can achieve a higher accuracy
by separating pixels as the majority class. Thus, a loss function that is not affected by the unbalanced
nature of the classes should be used. In this work, the Jaccard (JACC) distance loss function [27] was
employed, rather than the common cross-entropy (CE) loss. The JACC index, also known as “intersection
over union,” is a statistic used to assess segmentation performance when ground truth is available. The
JACC distance loss function is expressed as

LJACC ¼ 1� jY \ Ŷ j
jY [ Ŷ j ¼ 1� jY \ Ŷ j

jY j þ jŶ j � jY \ Ŷ j ¼ 1�
PN

i
YiŶ i

PN

i
Yi þ

PN

i
Ŷ i �

PN

i
YiŶ i

(3)

where Y is the ground truth label map, and Yi 2 f0; 1g. Here, Ŷ is the predicted probabilistic response map by
model, Ŷi 2 ½0; 1�, and N is the number of pixels.

For classification, the CE loss is generally employed. The CE loss can be defined as

LCE ¼ �
XC

i

yi log pið Þ (4)

where yi and pi are the ground truth label and model prediction score for each class i in C, respectively.

However, this scenario is a binary classification problem, making the binary CE (BCE) loss more
appropriate. The BCE loss is a special case of the CE loss, where C0 ¼ 2, which results in

LBCE ¼ �
XC0¼2

i¼1

yi log pið Þ ¼ �y1 log p1ð Þ � 1� y1ð Þ log 1� p1ð Þ (5)

where it is assumed that there are two classes, C1 and C2. Here, y1 2 f0; 1g and p1 2 ½0; 1� are the ground
truth label and the model prediction score for class C1, respectively, and y2 ¼ 1� y1 and p2 ¼ 1� p1,
respectively, are the ground truth label and model prediction score for class C2.

Finally, a weighted summation is made of the segmentation task and classification losses as the total loss
of the multi-task model.

Ltotal ¼ xJACCLJACC þ xBCELBCE (6)

where xJACC and xBCE are the loss weights for the JACC distance loss from segmentation and the BCE loss
from classification, respectively. These losses are discussed further in the next section.

4 Experiment Settings

To verify the effectiveness of the proposed method, the proposed model was applied to the segmentation
of the cardiac LV myocardium and classification of cardiopathy. Then, the methods were compared using a
single segmentation task and a single classification task on the same datasets.

4.1 Cardiac Magnetic Resonance Datasets

The data for the experiments were collected from one hospital and consisted of 654 2D short-axis cine
native T1 mapping magnetic resonance (MR) images. The pixel spacings of the MR images ranged from
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1.172 × 1.172 × 1.0 mm to 1.406 × 1.406 × 1.0 mm with original dimensions of 256 × 218 × 1 pixels. The
segmentation ground truth labels of the left ventricle were provided by an experienced cardiologist defining
contours manually. For classification, the categories of healthy and diseased were considered with disease
classification information diagnosed by a professional cardiologist. The datasets consisted of 577 healthy
and 77 diseased images.

4.2 Implementation Details

In the experiments, k-fold cross validation was employed to evaluate the performance and compare
methods using k = 5. The average (mean) score was calculated for each fold as the final score. The
network was implemented using Keras with a TensorFlow back end. Batch normalization [28] and
rectified linear unit activation were applied to each convolution. The RMSprop optimizer was used with a
learning rate of 0.003. The cost functions of segmentation and classification were the JACC distance and
binary cross-entropy with loss weights of 0.9 and 0.1, respectively. To enhance the generalization ability
of the network and increase the size of datasets [29], data augmentation, including image transformation
and methods based on generative adversarial networks (GANs) [30], was employed. Because of the high
time costs of GAN-based methods, a simple but efficient real-time data augmentation method was applied
during the training stage, rotating and shifting images randomly in each iteration. Model training and
testing were performed on an NVIDIA Tesla M40 GPU over a span of 40 epochs.

4.3 Evaluation Metrics

To make an impartial quantitative evaluation of the effectiveness of the proposed method, the Dice
similarity coefficient (DSC) and JACC similarity coefficient were adopted as evaluation indices [31]. The
DSC is defined as

DSCðY ; Ŷ Þ ¼ 2� jY \ Ŷ j
jY j þ jŶ j (7)

The JACC index is defined as

JaccardðY ; Ŷ Þ ¼ jY \ Ŷ j
jY [ Ŷ j ¼

jY \ Ŷ j
jY j þ jŶ j � jY \ Ŷ j (8)

where Y and Ŷ indicate the manual ground truth and automated segmentation, respectively.

For binary classification tasks, one can define the discrimination evaluation based on a confusion
matrix, as shown in Tab. 1. From the confusion matrix, TP and TN are defined as the number of positive
and negative samples that were correctly classified, i.e., true positives and true negatives. In addition, FP
and FN are defined as the number of positive and negative samples incorrectly classified, i.e., false
positives and false negatives.

The confusion matrix is not a measure in itself, but most evaluation metrics rely on it. Accuracy is the
most common classification metric and is defined as

Table 1: Confusion matrix of binary classification

Actual Positive Actual Negative

Predicted Positive True Positive (TP) False Negative (FN)

Predicted Negative False Positive (FP) True Negative (TN)
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Accuracy ¼ TP þ TN

TP þ FP þ FN þ TN
(9)

However, the accuracy metric is misleading owing to unbalanced class data. Thus, sensitivity (or recall)
and specificity were also used to evaluate the classifier. Sensitivity expresses the proportion of correctly
classified positive samples:

Sensitivity ¼ TP

TP þ FN
(10)

Specificity is a measure of the proportion of negative samples that are correctly classified:

Specificity ¼ TN

TN þ FP
(11)

5 Results and Discussion

5.1 Study of Multi-Task Loss Weights

Experiments were conducted to investigate the effectiveness of various values of the multi-task loss
weights. To determine the best loss weights, different segmentation and classification loss weight
combinations were tested. The results are shown in Fig. 3, with the two lines representing the effect of
the loss weights on the segmentation and classification results. Multi-task learning improves segmentation
and classification performance. When performing a single task, with a segmentation loss weight of
1.0 and classification loss weight of 0.0 (or vice versa), the Dice value is lower than with the multitask
implementation. However, as the weights increase, the score does not always increase. Thus, it is
necessary to find a balance between segmentation and classification tasks. It was determined that the best
performance was achieved with a segmentation loss weight of 0.9 and a classification loss weight of 0.1.

5.2 Feature Pyramid Module Design Choices

Serial and parallel atrous convolution layers were designed with various dilation rates in the FPM. To
find the best parameter configuration for the dilation rates, other parameters were held constant while the
dilation rates were varied. The findings are presented in Tabs. 2 and 3. Increasing the dilation rates to

Figure 3: Influence of the multi-task loss weights on segmentation and classification performance
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[3,5,7] yielded better performance, but increasing them further led to poorer results. The model produced no
invalid results with larger dilation rates of [6,12,18]. Thus, dilation rates of [3,5,7] were adopted for the three
serial atrous convolution layers in the FPM.

The dilation rate configuration was also explored for the three parallel atrous convolution layers in FPM
type B. The results are presented in Tabs. 4 and 5. The variable-controlling approach was adopted in the
experiments, first holding constant the best settings of the serial atrous convolution layers with dilation
rates of [3,5,7] and then fine tuning the dilation rates of the three parallel atrous convolution layers.
Tabs. 4 and 5 show that the model produced the best results with dilation rates of [4,8,12]. Increasing the
rates further yielded no additional performance improvement.

Considering the balance of segmentation and classification performance, the dilation rates of the three
serial atrous convolution layers were chosen as [3,5,7], and dilation rates of the three parallel atrous
convolution layers of [4,8,12] were selected for use as the final parameter settings. These settings
provided the best segmentation DSC of 82.14% and the best classification accuracy of 95.72%.

Table 2: Segmentation metrics of various dilation rates of three serial atrous convolution layers in the FPM

Rates DSC Jaccard

[2,2,2] 81.90% 70.05%

[3,5,7] 82.14% 70.36%

[5,5,5] 81.52% 69.65%

[6,12,18] * — —

*Model did not report valid results with this setting.

Table 3: Classification metrics of various dilation rates of three serial atrous convolution lavers in the FPM

Rates Accuracy Sensitivity Specificity AUC

[2,2,2] 94.80% 98.44% 67.53% 97.33%

[3,5,7] 94.95% 97.75% 74.03% 97.10%

[5,5,5] 94.65% 97.75% 71.43% 95.20%

[6,12,18]* — — — —

*Model did not report valid results with this setting.

Table 4: Segmentation metrics for various dilation rates of the three parallel atrous convolution layers in the
FPM type B

Rates DSC Jaccard

[2,4,6] 81.80% 69.93%

[3,5,7] 81.94% 70.06%

[4,8,12] 82.14% 70.38%

[6,12,18] 82.14% 70.36%
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5.3 Validation of Proposed Method

Three examples of qualitative segmentation results are shown in Fig. 4. The segmentation results were
closer to the manual ground truth and outperformed the segmentation results generated the state-of-the-art
algorithm single segmentation methods of U-Net [12] and Deeplab V3+ [32]. The proposed methods
were also compared with U-Net and Deeplab V3+ according to the DSC and JACC measurements. The
quantitative evaluation results of segmentation are presented in Tab. 6. The proposed method achieved a
mean DSC value of 82.14%, better than the U-Net DSC of 79.16% and Deeplab V3+ DSC of 82.05%.

original CMR image       ground truth Dice 88.02% Dice 90.97% Dice 93.31%

original CMR image       ground truth Dice 85.29% Dice 91.75% Dice 92.44%

original CMR image       ground truth Dice 90.18% Dice 91.57% Dice 92.11%

(a) (b) (c) (d) (e)

Figure 4: Qualitative segmentation comparison examples. Columns from left to right: (a) original MR
images, (b) ground truth, (c) segmentation results with U-Net, (d) segmentation results with Deeplab
V3+, and (e) segmentation results with the proposed method. Color representation of (c)–(e) is as follows —
blue: correct pixels; red: unidentified pixels; and green: misidentified pixels

Table 5: Classification metrics for various dilation rates of the three parallel atrous convolution layers in the
FPM type B

Rates Accuracy Sensitivity Specificity AUC

[2,4,6] 94.95% 97.05% 79.22% 97.50%

[3,5,7] 94.34% 96.36% 79.22% 95.46%

[4,8,12] 95.72% 98.09% 77.92% 97.88%

[6,12,18] 94.95% 97.75% 74.03% 97.10%
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The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC)
were also compared with some modern single classification networks to assess the classification
performance. The quantitative evaluation results of the classification are presented in Tab. 7. The proposed
method achieved a mean accuracy value of 0.855 compared with 0.741 for ResNet50 and 0.849 for Xception.

Fig. 5 shows the calculated peak signal-to-noise ratio (PSNR) [33] values for all 654 images,
which ranged from 24.151 to 28.622. The PSNR values are mainly concentrated around 27.259. This
shows that the automatic segmentation results are quite close to the segmentation label, and the method
has excellent robustness.

Table 6: Comparison of quantitative segmentation results

Network DSC Jaccard

U-Net 79.16% 66.59%

Deeplab V3+ 82.05% 70.28%

Proposed 82.14% 70.38%

Table 7: Comparison of quantitative classification results. The results of VGG16 are invalid because it predicted
all samples as the majority class (positive)

Network Accuracy Sensitivity Specificity AUC

VGG16 88.23% 100% 0 50%

ResNet50 92.66% 96.71% 62.34% 95.65%

Inception V3 92.05% 94.63% 72.73% 96.05%

Xception 93.12% 95.67% 74.03% 96.67%

Proposed 95.72% 98.09% 77.92% 97.88%

Figure 5: Scatter diagram of PSNR values for the 654 dataset images
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The qualitative and quantitative results demonstrated that the proposed multi-task network achieved
good performance in terms of segmentation and classification.

6 Conclusion

In this work, an effective method for segmenting cardiac LV myocardium images and classifying cardiac
disease simultaneously was proposed. The method employs a multi-task model consisting of an encoder and
a decoder. The encoder is primarily responsible for extracting abstract semantic features for classification.
The decoder fuses high- and low-level features and leverages the subpixel layer to recover full spatial
information for segmentation. The FPM and DAC blocks were also introduced into the network structure
to capture more high-level features and multiscale information without multiscale input. The experimental
results for the CMR image dataset proved the practicability and effectiveness of the method.
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