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Abstract: This study uses several artificial intelligence approaches to detect and
estimate electrical faults in photovoltaic (PV) farms. The fault detection
approaches of random forest, logistic regression, naive Bayes, AdaBoost, and
CN2 rule induction were selected from a total of 12 techniques because they pro-
duced better decisions for fault detection. The proposed techniques were designed
using distributed PV current measurements, plant current, plant voltage, and
power. Temperature, radiation, and fault resistance were treated randomly. The
proposed classification model was created using the Orange platform. A classifi-
cation tree was visualized, consisting of seven nodes and four leaves, with a depth
of four levels and edge width relative to parents. Thirty fault features attributes,
four of them major, supported fault detection through the selected algorithms.
The different fault types occurring in a PV farm were considered, including string
fault, string-to-ground fault, and string-to-string fault. The selected classifiers
were evaluated, and their performance was compared with respect to the impor-
tant decision factors of precision, recall, classification accuracy, F-measure, spe-
cificity, and area under the receiver-operating curve. Using Simulink/MATLAB,
a grid-connected 250-kW PV farm was implemented, including the converters
control. Results confirmed that AdaBoost achieved the best performance.

Keywords: AdaBoost algorithm; fault detection; logistic regression; Orange data
mining; photovoltaic farm

1 Introduction

Photovoltaic (PV) power plants, having come into existence in 1982, are the pioneer source of
renewable energy. With the number of installations worldwide growing, they are one of the main sources
of renewable energy. The global cumulative capacity of installed PV plants reached 627 GW at the end of
2019 [1]. Fig. 1 shows that PV plants achieved higher generated power than other sources of renewable
energy. Studies [2–4] have focused on how to enhance the integration of PV electrification services.
However, more attention must be given to determining how to achieve service continuity in PV plants,
particularly against fault conditions.
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PV plants can be subjected to faults that affect their service continuity and lifetime. Many factors can
cause such faults, which affect PV components. The causes and their effects have been discussed in the
literature [5]. In such cases, efficiency and reliability are reduced, and components can be damaged,
depending on the fault type. The risk of fire is a result of ground, arc, and line-to-line faults. Therefore,
the fast detection and elimination of these faults are important to maintain PV service continuity with the
desired efficiency and reliability. However, protection algorithms such as overcurrent, distance, and
differential relaying are not applicable to PV fault detection. In addition, classification techniques are
often not suitable or appropriate for fault detection in PV systems. Generally, the classification techniques
are trained and designed to classify fault features and differentiate between faulty and healthy PV
conditions. Training is the main task in classifying fault cases, and testing is the next stage, in which the
efficiency of classification techniques can be evaluated.

Faults in a PV array can be classified according to their time characteristics, such as permanent faults
(e.g., line-to-line, line-to-ground, bridging, open-circuit, and arc), intermittent faults (e.g., dust, snow, and
bird droppings), or incipient faults [5]. Such faults must be detected and cleared quickly in order to
maintain the service continuity of a PV plant and prevent catastrophic failure. Common faults in PV
arrays include ground and line-to-line faults, which are associated with arcs [6]. Several techniques have
been proposed to resolve these faults. Some detection methods [7–16] are intended to detect faults related
to any component of grid-connected PV systems, such as PV array systems, underground cable systems
that collect energy, and power converters to ascertain the connection to the grid.

Neural network-based fault detection has been proposed for PV systems [12], but the study did not
include a comparison of the detection algorithms for the purpose of determining which one was the best.
Common PV array faults, such as open-circuit, short-circuit, degradation, and shading faults, were
detected using thresholds of voltage and currents [13]. However, this method lacks accuracy when PV
arrays receive continuously changing irradiation. In addition, faults that accumulate over time were not
evaluated, and the presence of the protection diode makes fault detection in PV arrays difficult.
Measurements of array voltages, currents, irradiance, and temperature were used to detect faults by
computing the Thevenin equivalent resistance of the PV array [14]. Although a fault detection algorithm
used a cross-correlation function to detect series arc faults, it did not examine shunt faults [15]. When the
challenges of detecting line-to-line faults in PV systems were discussed, this fault detection method was
restricted to the challenges of overcurrent protective relaying [16].

This study evaluates classification techniques according to their ability to detect several fault types that
occur in PV systems in order to maintain continuity of renewable power service. A 250-kW PV power plant
is simulated using MATLAB/Simulink to build the training and testing data of normal and abnormal plant
conditions. The classification techniques are random forest, logistic regression, naive Bayes, AdaBoost,
and CN2 rule induction. These were selected on the basis of their performance and accuracy. To achieve

Figure 1: Annual installations of renewable energy plants in GW [1]
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the best fault detection performance, the variables of the detection algorithm inputs are designed using
training data measured from the PV farm during different fault cases. When it came to detecting PV
faults, the AdaBoost algorithm was the most accurate of these detection and classification techniques.

2 Dataset Preparation

A simulated 250-kW PV power plant was utilized to create training and testing datasets of PV fault
cases. The PV farm and its simulation are further discussed in Appendix A. Three fault types and normal
operation (free-of-fault state) are defined. The default sets, as shown in Appendix A, are as follows. From
the figure presented in the Appendix section, the fault cases F1, F2, and F3 describe a string fault (tested
on string 1), string-to-ground fault (tested on string 1), and string-to-string fault (tested between strings
1 and 2), respectively. Training and testing datasets were built. The training dataset included
600 instances, each with 30 features and one column for classes or categories. Tab. 1 shows that the
dataset included 100 (16.67%) free-of-fault cases, 153 cases (25.5%) of string faults, 149 cases (24.83%)
of string-to-ground faults, and 198 cases (33%) of string-to-string faults. The total simulation time was
0.4 s, and a fault was assumed to occur at 0.2 s. In the training dataset, all measurements were taken after
the fault occurred in the period from 0.2 s to 0.4 s. The testing dataset contained 50 instances.
Measurements were taken in the period from 0.1 s to 0.3 s, with transient time from 0.1 s to 0.2 s, and
faults occurring from 0.2 s to 0.3 s.

All features or attributes were random measurements of temperature, radiation, and fault resistance,
ranging from 10°C to 35°C, 100 W/m2 to 1,000 W/m2, and 1 Ω to 2,000 Ω, respectively. The 30 features
(or attributes) included the average, maximum, minimum, and variance values of the current from strings
1, 2, and 3. Tab. 2 shows that each string contained two ammeters to measure the current at its top and
bottom during the simulation, and the directions of the two currents were the same. Other measurements,
such as the total average DC power, total current, and total average DC voltage, were taken. Fault
resistance and fault locations were not identified as a function by the proposed fault detection algorithms.
Only the functions of fault detection and faulted string estimation are included in the proposed algorithm.
The features that aided the most in enhancing accuracy are the following range values.

Range1 ¼ I1Amax � I1Amin (1)

Range2 ¼ I2Amax � I2Amin (2)

Range3 ¼ I1A � I1B (3)

Range4 ¼ I2A � I2B (4)

These range effects are discussed in the following section.

Table 1: Distribution of the training dataset composed of 600 test cases

Description Record percentage Count Class

Fault-free system 16.67% 100 0

String fault 25.5% 153 1

String-to-ground fault 24.83% 149 2

String-to-string fault 33.0% 198 3
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3 Dataset Parameters

The dataset represents different features, such as categorical, numeric, and time. The ranking of
attributes in the classified dataset considers the class-labeled datasets and scores attributes according to
their correlation with the class. Tab. 3 describes the scoring methods (“Inf. Gain Ratio”), which is the
expected amount of information (reduction of entropy). The gray rows in Tab. 3 show the top five rank
attributes, Range3, Range4, Range2, Range1, and I2VAR, which are arranged according to rank. The table
results show the main statistics for each attribute. The main tendency of the feature values is the mean
value for numeric features and the mode for categorical features. The dispersion of the feature values for
categorical features is the entropy of the value distribution, and for numeric features it is the coefficient of
variation. The minimum and maximum values are computed for numerical and ordinal categorical
features. The temperature T has values from 10°C to 35°C, with an average of 22.12°C. Radiation IR has
values from 106 W/m2 to 1,000 W/m2, with an average of 552.20 W/m2. The total average current is
436.04 A, and the total average power is 141.32 kW.

Table 2: Direct attributes taken from the PV plant

Attributes Data Type Descriptions

I1A Nominal Top average current on string 1

I1B Nominal Bottom average current on string 1

I2A Nominal Top average current on string 2

I2B Nominal Bottom average current on string 2

I3A Nominal Top average current on string 3

I3B Nominal Bottom average current on string 3

VDC Nominal Total average DC voltage

PDC Nominal Total average DC power

ITOTAL Nominal Total average current

T Nominal Temperature (10°C to 35°C)

IR Nominal Radiation (100 W/m2 to 1,000 W/m2)

Class Categorical Four classes (0, 1, 2, 3)

Table 3: Training dataset of 600 test cases

Name Inf. Gain
Ratio

GINI
decrease

Center Dispersion Min Max

I1 0.015 0.011 2.17 3.11 −99.26 5.66

I2 0.018 0.012 2.70 2.25 −99.26 5.89

I1max 0.006 0.004 3.17 0.46 0.60 5.75

I1min 0.015 0.011 2.07 3.46 −106.20 5.65

I1VAR 0.028 0.017 0.01 14.52 0.00 2.79

I2max 0.007 0.004 3.20 0.46 0.60 5.91

I2min 0.019 0.013 2.63 2.46 −106.2 5.76
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Fig. 2 shows the 2D visualization of classification trees. It consists of seven nodes and four leaves, with a
depth of four levels and edge width relative to parents. At the top of Fig. 2 is Range3, which affects fault
detection and classification by 33% at the first level. Range1 affects it by 60.5%, and the other ranges
affect fault detection and classification by 57.1%.

4 Classification Techniques

We used five popular data mining algorithms for each dataset, using Orange, a machine learning and data
mining platform suitable for data analyses that involve Python scripting and visual programming. The
classification techniques predict a qualitative response by analyzing data and recognizing patterns. Many
classification techniques or classifiers can be used. We chose the widely used naive Bayes [17–19],
logistic regression (ridge and lasso) [20–23], random forest [24], AdaBoost [25], and CN2 rule induction
[26,27]. Fig. 3 shows the proposed system model created on the Orange platform, with the five
referenced models for PV fault detection and classification.

Table 3 (continued).

Name Inf. Gain
Ratio

GINI
decrease

Center Dispersion Min Max

I2VAR 0.053 0.032 0.01 17.05 0.00 2.79

I3 0.007 0.004 3.17 0.46 0.60 5.84

I4 0.009 0.006 3.09 0.46 0.60 5.69

I3max 0.006 0.004 3.19 0.46 0.60 5.87

I3min 0.007 0.004 3.15 0.46 0.60 5.76

I3VAR 0.010 0.008 0.00 1.69 0.00 0.00

I4max 0.006 0.004 3.18 0.46 0.60 5.76

I4min 0.009 0.006 3.08 0.46 0.60 5.66

I5 0.007 0.004 3.15 0.46 0.60 5.69

I6 0.007 0.004 3.15 0.46 0.60 5.69

Itotal 0.005 0.003 436.04 0.05 425.97 519.04

Itotalmax 0.006 0.004 461.39 0.03 456.22 519.84

Itotalmin 0.004 0.002 410.31 0.08 393.08 517.67

Vdcmean 0.012 0.009 508.33 0.02 473.80 529.35

Vdcmax 0.005 0.003 510.43 0.02 475.94 533.49

Vdcmin 0.004 0.003 502.35 0.02 473.43 517.83

Pdcmean 0.007 0.004 141.32 0.46 25.49 263.57

IR 0.007 0.004 552.20 0.46 106.00 1000.0

T 0.005 0.004 22.12 0.34 10.00 35.00

Range1 0.349 0.204 1.11 6.48 0.00 111.47

Range2 0.399 0.269 0.57 11.22 0.00 111.47

Range3 0.699 0.497 −0.53 −5.90 −66.59 0.00

Range4 0.676 0.433 0.08 3.43 0.00 3.61

IASC, 2021, vol.30, no.2 471



The 10-fold cross-validation method was applied to test the fault detection ability of the algorithms
under study and to measure the unbiased estimate of our proposed models. In this cross-validation
method, each dataset was randomly divided into a training set and a test set (i.e., 90% and 10% of the
dataset, respectively). Accordingly, each set contained approximately the same percentage of samples of
each class. The overall performance was obtained by determining the average for all 10 iterations.

Figure 2: Visualization of the classification trees

Figure 3: Proposed system model
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The classification algorithm’s performance was evaluated according to the following factors:

� Precision and recall are two significant performance measures [28,29]. Precision is the ratio of the
number of true positive assessments to the sum of all true and false positive assessments. Recall is
the ratio of the number of true positive assessments to the number of all positive assessments.

� Classification accuracy (CA) is the ratio of the number of correct assessments to the number of all
assessments [28,30].

� The F-measure combines recall and precision. It is the ratio of the product of precision and recall to
their average [17,28].

� Specificity is the ratio of the number of true negative assessments to the number of all negative
assessments [28].

� Log loss cross-entropy considers the uncertainty of fault detection on the basis of how much it varies
from the actual label.

� Training time is the cumulative time in seconds used by a training model.

� The confusion matrix gives the number/proportion of instances between the predicted and actual
class, so as to determine specific instances that are misclassified as well as how they are
misclassified. The diagonal line in the confusion matrix contains all correctly classified instances,
and the other values contain misclassified instances.

� The area under the receiver-operating curve (AROC) is for the tested models and the corresponding
convex hull. It allows for the comparison of classification models. The curve plots a false-positive rate
horizontally and a true-positive rate vertically. The closer the AROC is to unity, the more accurate the
classifier. An AROC greater than 0.9 is excellent, 0.8 is good, 0.7 is nonsignificant, and anything
lower than 0.7 is not good.

We designed the classifiers according to the hyperparameters listed in Tab. 4, so as to achieve the best
performance of each classifier (“Model” in the table).

Tab. 5 summarizes the experimental results for the training dataset on the machine learning algorithms.
The selected classifiers in general achieved good performance, with AdaBoost and random forest producing
the best results. These two algorithms address an array of evaluation references of classification, such as
training time, AROC, accuracy, F-measure, precision, recall, log loss, and specificity (see Tab. 5). The

Table 4: Hyperparameters used for the machine learning algorithms

Model Model hyperparameters

Lasso-
Regression

Regularization type: Lasso (L1), strength C = 1.

Ridge-
Regression

Regularization type: Ridge (L2), strength C = 1.

Random Forest Number of trees=10, do not split subsets smaller than = 5.

Naive Bayes Default.

AdaBoost Base estimator = tree, number of estimators = 50, learning rate = 1, classification
algorithm = SAMME, regression loss function = exponential.

CN2 rule
induction

Rule ordering = ordered, covering algorithm = exclusive, rule search: evaluation
measure = entropy, beam width = 5, rule filtering, minimum rule coverage = 1, maximum
rule length = 5.
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evaluations of these factors are close to one, except for log loss, which is close to zero. The training time
values shown in Tab. 5 are low for most of the selected algorithms; the exception being the CN2 rule
induction algorithm. The results shown in Tab. 6 confirm that AdaBoost and random forest yield the best
performance. Tab. 6 summarizes the confusion matrix of each classifier for the training dataset. AdaBoost
achieves the most broadly successful fault detection and classification for the training dataset, with
600 fault and free-of-fault test cases. Random forest succeeds in all cases except one: a single test case
that is incorrectly identified, but detected as a fault case.

Tab. 7 shows the confusion matrix of the performance of each classifier in the testing dataset. AdaBoost
exhibits the best performance in fault detection. Although five test cases were undetected, the algorithm
successfully classified the detected fault cases. The five undetected fault cases were at high impedance,
which is close to or greater than 500 Ω resistance and half the value of irradiation. Furthermore, these
faults were in the same string (fault type) under the condition that the difference in voltage through the

Table 5: Summary of experiment results (training dataset) on the ML algorithms

Model Train time (s) AROC CA F-
measure

Precision Recall LogLoss Specificity

Random Forest 0.513 1 1 1 1 1 0.0678 1

Ridge-Regression 0.764 0.9998 0.9816 0.9816 0.98263 0.9817 0.3237 0.991

Naive Bayes 0.319 0.9932 0.9283 0.9288 0.93649 0.9283 0.2189 0.9804

Lasso-Regression 14.403 1 1 1 1 1 0.1758 1

CN2 rule induction 61.007 0.9923 0.9633 0.9633 0.96371 0.9633 0.1803 0.9862

AdaBoost 0.235 1 1 1 1 1 3.E-15 1

Table 6: Classifiers’ confusion matrix for the training dataset

Random Forest AdaBoost Naive Bayes

Predicted

0 1 2 3 Σ 0 1 2 3 Σ 0 1 2 3 Σ

Actual 0 100 0 0 0 100 0 100 0 0 0 100 0 100 0 0 0 100

1 0 153 0 0 153 1 0 153 0 0 153 1 1 146 4 2 153

2 0 0 149 0 149 2 0 0 149 0 149 2 4 0 143 2 149

3 0 0 1 197 198 3 0 0 0 198 198 3 19 0 11 168 198

Σ 100 153 150 197 600 Σ 100 153 149 198 600 Σ 124 146 158 172 600

Lasso-Regression Ridge-Regression CN2 rule induction

0 1 2 3 Σ 0 1 2 3 Σ 0 1 2 3 Σ

0 100 0 0 0 100 0 99 0 0 1 100 0 94 0 2 4 100

1 0 153 0 0 153 1 0 153 0 0 153 1 1 150 0 2 153

2 0 0 149 0 149 2 0 0 139 10 149 2 3 1 140 5 149

3 0 0 0 198 198 3 0 0 0 198 198 3 2 0 2 194 198

Σ 100 153 149 198 600 Σ 99 153 139 209 600 Σ 100 151 144 205 600
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fault resistance was small. Accordingly, their fault currents were small, and the system behavior was close to
the normal operation that limited fault detection. Furthermore, these five fault cases were not detected by the
other classifiers, which had other undetected fault cases. AdaBoost, random forest, and lasso-regression
successfully classified free-of-fault test cases. The other classifiers failed, as they incorrectly estimated the
free-of-fault test cases as detected faults, where such operations are defined as loss of classifier security.
AdaBoost showed the best performance at detecting faults, with successful identification of fault types.
Therefore, AdaBoost is the only completely reliable algorithm for fault detection and classification.

Tab. 8 summarizes the performance of the algorithms in the test dataset according to the evaluation
factors. AdaBoost performed best on the test dataset, with the highest values of AROC, CA, F-measure,
precision, recall, and specificity, at 0.967, 0.95, 0.949, 0.958, 0.950, and 0.983, respectively. This
confirms the superiority of AdaBoost as a fault classifier for PV plants.

Table 7: Classifiers’ confusion matrix for the test dataset

Random Forest AdaBoost Naive Bayes

0 1 2 3 Σ 0 1 2 3 Σ 0 1 2 3 Σ

0 25 0 0 0 25 0 25 0 0 0 25 0 9 9 1 6 25

1 7 18 0 0 25 1 5 20 0 0 25 1 10 10 5 0 25

2 0 11 14 0 25 2 0 0 25 0 25 2 0 6 19 0 25

3 0 0 1 24 25 3 0 0 0 25 25 3 0 0 3 22 25

Σ 32 29 15 24 100 Σ 30 20 25 25 100 Σ 19 25 28 28 100

Lasso-Regression Ridge-Regression CN2 rule induction

0 1 2 3 Σ 0 1 2 3 Σ 0 1 2 3 Σ

0 25 0 0 0 25 0 22 0 0 3 25 0 3 20 0 2 25

1 12 13 0 0 25 1 16 8 0 1 25 1 5 11 6 3 25

2 0 12 13 0 25 2 1 7 16 1 25 2 0 12 13 0 25

3 0 0 0 25 25 3 0 0 0 25 25 3 0 0 2 23 25

Σ 37 25 13 25 100 Σ 39 15 16 30 100 Σ 8 43 19 28 100

Table 8: Summary of experiment results of the test dataset on the ML algorithms

Model AROC CA F-measure Precision Recall Specificity

AdaBoost 0.967 0.95 0.949 0.958 0.950 0.983

Random Forest 0.956 0.810 0.806 0.834 0.810 0.937

Lasso-Regression 0.956 0.760 0.753 0.799 0.760 0.920

Ridge-Regression 0.911 0.710 0.694 0.733 0.710 0.903

Naive Bayes 0.849 0.600 0.589 0.584 0.600 0.867

CN2 rule induction 0.773 0.500 0.485 0.518 0.500 0.833
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5 Conclusions

The ability of five algorithms to detect faults in PV plants was evaluated. These were based on six
classifiers: random forest, ridge-regression, naive Bayes, logistic regression, CN2 rule induction, and
AdaBoost. The fault dataset was obtained from the simulation of a 250-kW PV plant using
Simulink/MATLAB. Of the six classifiers, CN2 rule induction exhibited the lowest performance in fault
detection. The best performance was shown by AdaBoost, which could detect and indicate fault
conditions such as string faults, string-to-ground faults, and string-to-string faults. Test results show that
AdaBoost achieved the absolute highest values of AROC, CA, F-measure, precision, recall, and
specificity, which were 0.967, 0.95, 0.949, 0.958, 0.950, and 0.983, respectively. Moreover, AdaBoost
could achieve 100% fault detection despite the presence of fault cases with high resistance that produced
a low level of current distribution changes. In general, AdaBoost performed successfully for training and
testing fault cases, thereby confirming its efficacy.
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Appendix A

Fig. A1 shows the simulated PV power system created using Simulink/MATLAB. Fig. A1(a) shows that
it is grid-connected by a three-level inverter. The inverter is an IGBT bridge that is PWM-controlled. The
inverter control was designed to implement the maximum power point tracking of the PV system based
on the perturbation and observation approach. As depicted in the Simulink circuit in Fig. A1(b), a three-
phase 0.25/250-kV power transformer was used to interconnect the PV system with the electric power
grid. The grid domain had two short transmission lines. The first line was 14 km long and directed to the
120-kV power equivalent grid through a power transformer. The second line was an 8-km feeder directed
to a static load. As depicted in Fig. A1(c), the PV system contained 88 parallel strings, each involving
seven series modules. Each module had 128 cells, a maximum power of 414.801 W at 72.9 V, current of
5.69 A, open-circuit voltage of 85.3 V, and short-circuit current of 6.09 A.
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Figure A1: Diagram of the grid-connected PV simulated system. a. Schematic of the grid-connected PV
panel created using MATLAB/Simulink b. MATLAB/Simulink circuit of the power grid c. Matrix
allocation of the PV power farm
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