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Abstract: Saliency prediction has recently gained a large number of attention for
the sake of the rapid development of deep neural networks in computer vision
tasks. However, there are still dilemmas that need to be addressed. In this paper,
we design a visual saliency prediction model using attention-based cross-model
integration strategies in RGB-D images. Unlike other symmetric feature extrac-
tion networks, we exploit asymmetric networks to effectively extract depth fea-
tures as the complementary information of RGB information. Then we propose
attention modules to integrate cross-modal feature information and emphasize
the feature representation of salient regions, meanwhile neglect the surrounding
unimportant pixels, so as to reduce the lost of channel details during the feature
extraction. Moreover, we contribute successive dilated convolution modules to
reduce training parameters and to attain multi-scale reception fields by using
dilated convolution layers, also, the successive dilated convolution modules can
promote the interaction of two complementary information. Finally, we build
the decoder process to explore the continuity and attributes of different levels
of enhanced features by gradually concatenating outputs of proposed modules
and obtaining final high-quality saliency prediction maps. Experimental results
on two widely-agreed datasets demonstrate that our model outperforms than other
six state-of-the-art saliency models according to four measure metrics.
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1 Introduction

Nowadays, with the wake and development of computer vision, visual saliency prediction becomes a
fundamental and challenging task. Visual saliency prediction in computer vision aims at predicting the
eye fixation of humankind and mimicking this ability to process the flood of visual information so as to
highlight salient regions and neglect the background in a short time. The research of saliency prediction
models leads the development to many applications, such as quality assessment [1–3], image
segmentation [4,5], object detection [6–10], and object tracking [11–16]. However, there are still
two challenges that need to be addressed. First, excavate strong strategies to extract multi-level and
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multi-scale information and use rich semantic information to predict human eye-fixation. Second, remedy the
lost of details during feature extraction and effectively suppress the redundant and unimportant information
to select the most prominent or salient objects from different and even complex situations.

To break out of aforementioned challenges, we build a network with asymmetric feature extraction
strategy based on attention mechanism and successive dilated convolution layers. As shown in Fig. 1, the
network first extracts multi-scale and multi-level RGB and depth features. Since attention models can
excavate rich and significant contextual information by assigning different weighted value to
corresponding regions according to the importance and prominence of each region in images, we then
integrate RGB and depth features on the same level, and input them into an attention module. Next we
deliver the highest level features of RGB and depth streams into two successive dilated convolution
modules. Finally, we aggregate the results of attention modules with the output feature maps of dilated
convolution modules, and gradually upsample them in the decoder process. Experiments show that our
model outperforms than other six state-of-the-art saliency models.

The main contributions of this work are summarized as follows: 1) we adopt an asymmetric extraction
network to obtain multi-scale and multi-model feature information, 2) we propose attention modules to deal
with the lose of feature details, emphasize salient regions in RGB-D images with cross-modal integration, 3)
we design successive dilated convolution modules to enhance the capability of excavating interior perception
of visual features and emphasizing the feature representation.

The remainder of this paper is organized as follows. Section 2 provides a brief survey of related work.
We detail the proposed network in Section 3. Experimental results on saliency prediction are reported in
Section 4. Finally, we draw conclusions in Section 5.

2 Related Work

Conventional saliency prediction models are most biologically inspired, some of them mainly defined
and captured biological evidences, such as color, texture, contrast, others exploit higher semantic
concepts, such as faces, cars, and people. For instance, Xu et al. [17] proposed a global-contrast-based
saliency model using the weighted mean vector and including color, chromatic double opponency, and
similarity distribution, to increase the detection precision and neglect the surrounding pixels of salient
regions. Take the advantages of the Gestalt principles, Zou et al. [18] proposed a surroundedness-based
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Figure 1: The overall architecture of the proposed saliency prediction model. We leverage asymmetric
encoders to extract RGB and depth features. The output of each encoder is sent into following SDCM
and concatenated with the output of AM (FUi, i = 1, 2 … 5) gradually in the decoder process
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multiscale saliency method, which integrates the background priors, multiscale saliency maps and the final
saliency maps, to conduct figure-ground segregation. Recently, with the large spread of deep neural
convolution (DNN), the saliency prediction studies have achieved unprecedented improvement. For
example, Kroner et al. [19] predicted the human eye-fixation by designing a network with encoder-
decoder structure to extract multi-scale features by different parallel dilated convolution layers. Wang
et al. [20] proposed the attentive saliency network to detect salient objects from fixation maps. Dodge
et al. [21] built a network called MxSalNet to contain global scene semantic information in addition to
local information gathered by a convolutional neural network (CNN), so as to predict saliency for a set of
closely related images. Bak et al. [22] proposed a spatio-temporal saliency network with two-stream
fusion mechanism to predicts saliency maps. Liu et al. [23] proposed a saliency model that considers
saliency as descriptions of the combination of simple features and captures multiple contexts, finally
produces saliency maps in a comprehensive way.

Despite saliency models in 2D images have reached comparable improvement, most of them are absent
of geological cues as auxiliary information for better predicting saliency attributes. With the advent of RGB-
D sensors, depth information plays an important role in assisting RGB information as a supplement to locate
human eye-fixation points. For example, Huang et al. [24] proposed an end-to-end DNN with the fusion
strategy in higher layers for RGB-D saliency prediction. Li et al. [25] proposed a saliency model in 3D
images using the Siamese structures, which is fused in an interactive and adaptive way. Yang et al. [26]
designed a two-stage clustering scheme to deal with the negative influence of impaired depth videos so as
to predict human visual fixation in dynamic scenarios. Nowadays, many researches are inspired by visual
attention mechanism of human beings, and introduce attention models to DNN, which is a great
improvement for the accuracy and availability of saliency algorithms. For example, Zhou et al. [27]
proposed an RGB-D saliency model by applying the combination of the attention-guided bottom-up and
top-down modules, and the multi-level RGB and related depth features. Zhu et al. [28] presented a
saliency DNN model aggregating the attentional dilated features. Zhou et al. [29] proposed a flow-driven
attention network called FDAN to make full use of motion information for video saliency.

3 The Proposed Architecture

In this section, we will first briefly discuss the proposed saliency prediction model in Sec. 3.1. And we
will describe the asymmetric feature extractor in Sec. 3.2. Then, we will give a detailed demonstration of
attention modules in Sec. 3.3. Next, we will elaborate successive dilated convolution modules in Sec. 3.4.
Finally, we will describe the decoder in Sec. 3.5.

3.1 The Overall Architecture

As shown in Fig. 1, the proposed saliency model is based on four major components: the asymmetric
feature extractor (named as AFE), the cross-model integration attention modules (named as AM), the
successive dilated convolution modules (named as SDCM) and the decoder. AFE has two asymmetric
encoders, of which one stream extracts the RGB information and the other stream learns corresponding
depth vectors. AMs fuse RGB and paired depth features and enhance the feature representation. Two
SDCMs have the same structures. The only difference between two SDCMs is that they follow the end of
the RGB stream and depth stream, respectively. The decoder connects the output saliency maps of AM
and SDCM and further excavates the progression of different levels of enhanced features.

3.2 Asymmetric Feature Extractor (AFE)

Considering the depth maps are single-channel, which cannot reflect abundant geometrical cues, we
transform the depth maps into three-channel HHA [30] images. Although the Siamese encoder structure
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effectively reduces the trainable parameters and increases the accuracy of saliency models, it also brings
several bottlenecks in saliency prediction. Therefore, we design the AFE in order to fully extract
multiscale and cross-modal features in five layers, as well as reduce the Gradient descent. The AFE
contains the RGB extraction stream and the depth extraction stream. For a fair comparison with other
state-of-the-art saliency models, we use modified ResNet-50 [31] as the backbone network for the RGB
extraction stream. Concretely, we remove its average pooling layers and fully connected layers. Similarly,
we remain the five convolutional blocks of VGG-16 [32], removing the average pooling layers and fully
connected layers, as the backbone network for the depth extraction stream. Then, we pretrained both
RGB and depth extraction branches and initiate the parameters on the ImageNet database [33].

We represent features of five-stage RGB stream (BlockRi in Fig. 1) as Fi
RGB= {f iRGB} (i = 1, 2,…, 5), and

Fi
DEP= {f iDEP} (i = 1, 2,…, 5) represents five-stage features of HHA stream (BlockDi in Fig. 1). Specifically,

we adjust the size of the RGB and paired depth images to 256 × 256 pixels in width W × height H. And the

size of the ith layer is
W

2i�1
;

H

2i�1

� �
.

3.3 Cross-modal Integration Attention Module (AM)

Since salient regions or objects exist in not only RGB images but also depth images, we sufficiently
integrate cross-modal complementarity between corresponding RGB and depth images. Besides, during
the feature extraction of both the RGB stream and paired depth stream, channel details of hierarchical
features Fi

RGB and Fi
DEP will lose gradually. Therefore, inspired by Fu et al. [34], we propose the cross-

modal integration attention module to make the best of cross-modal information from different receptive
fields, enhance the ability of feature representation, and alleviate the loss of channel details. The structure
of AM is illustrated in Fig. 2.

We first feed f iRGB and f iDEP into convolution layers followed by a Batchnormal (BN) layer [35] and a
rectified linear unit (ReLU) activation [36] to produce new feature maps in the same size. Then we obtain
integration features f iINT 2 RC�W�H through concatenating the f iRGB with corresponding f iDEP. We reshape

the original features f iINT 2 RC�W�H into f iINT
� �RE 2 RC�M , where C, W, H, M, RE denote the channel

number, width, height, and the feature number (W×H), the reshape operation, respectively. Next, we

transpose f iINT
� �RE

matrix and denote the result as f iINT
� �RE

T . f iINT
� �RE

and f iINT
� �RE

T have the same

dimension, and we perform a matrix multiplication between the f iINT
� �RE

and the f iINT
� �RE

T , which is

represented as f iRT . The formation is as follows:
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Figure 2: The cross-model integration attention module
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f iINT
� �RE

T
¼ ½ f iINT

� �RE�T
f iRT ¼ f iINT

� �RE � f iINT
� �RE

T

(
; (1)

where T represents the transpose operation, and � represents the matrix multiplication operation. f iRT then is
followed by the two parallel steps. In the first step, Sigmoid function is used to generate feature map

f SigRT x; yð Þ 2 RM�M . In the second step, the Softmax function is exploited to produce feature map

f SofRT x; yð Þ 2 RM�M :

f SigRT x; yð Þ ¼ 1

1þ exp � f SigRT x; yð Þ
� �

j

� �

f SofRT x; yð Þ ¼
expð f SofRT x; yð Þ

� �
j
Þ

PM
j¼1 exp f SofRT x; yð Þ

� �
j

� �

8>>>>>>>><
>>>>>>>>:

; (2)

where f SofRT x; yð Þ and f SigRT x; yð Þ represent the pixel (x, y) in the feature maps. f SigRT x; yð Þ
� �

j
represents the jth

channel of f SigRT x; yð Þ, and f SofRT x; yð Þ
� �

j
represents the jth channel of f SofRT x; yð Þ, j ∈ {1, 2, … M}. The

Sigmoid function and Softmax function play a role of normalizing the weights and further defining
salient probabilities of relevant positions, and thus nonsignificant information is suppressed and
prominent cues are boosted. To a certain extent, the Sigmoid function can highlight the background
information. Therefore, we introduce a balance parameter λ to balance the performance of the two
normalization functions. λ is set to 0.3 in this paper. We add the outputs of two parallel steps together and
obtain the attention map A 2 RC�C:

A ¼ �� f SigRT x; yð Þ þ 1� �ð Þ � f SofRT x; yð Þ; (3)

We conduct the matrix multiplication between A and f iINT
� �RE

, next reshape the result into the form of
RC�W�H , and add it with f iINT . Finally, we obtain the final attention map FUi:

FUi ¼ A� f iINT
� �REh iRE

þ a� f iINT ; (4)

where α is a learnable parameter initialized to zero.

3.4 Successive Dilated Convolution Module (SDCM)

The asymmetric network extracts multi-scale features, and features in high levels include rich and
informative semantic information. For the purpose of making full use of those semantic information and
remedying shortages of the feature extraction in ordinary convolution layers, we propose the successive
dilated convolution module. The successive dilated convolution module consists of three parallel dilation
branches with skip connections, and the structure is depicted in Fig. 3. The final feature maps of SDCM
are obtained from a maxpooling layer. Each main branch of SDCM adopts a convolution layer followed
by a dilated convolution layer. Then a skip branch, containing a convolution layer and a dilated
convolution layer, concatenates with the main branch. Finally, the result becomes the input of next main
branch. In this manner, we build the SDCM.

Specifically, the first main branch contains the first traditional convolution layer with 3 × 3 kernels, and
the first dilated convolution layer, in which the dilation rate is set to 3. Then in the subsequent main branches,
the kernels of convolution layers remain the same as the first convolution layer’s, and so are the dilation rate
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of subsequent dilation rates of dilated convolution layers. All the convolution layers are followed by a BN
layer and a ReLU activation:

M0 ¼ Max f 5RGB
� �

Mi ¼ c r dil g s conv Mi�1ð Þð Þð Þð Þð Þð Þ 1 � i � 3ð Þ
�

; (5)

where conv denotes traditional convolution operation and dil denotes dilated convolution operation. σ
represents the Batchnormalization operation and γ represents the ReLU activation. Here we omit the
weights and biases. The first skip branch includes a traditional convolution layer with 3 × 3 kernels and
the dilation rate of a following dilated convolution layer is set to 2, then the kernels of convolution layers
keep the same as the first skip branch’s, and the dilation rates double in the subsequent skip branches.
Finally, the main branch concatenates with the skip branch:

Si ¼ c r dil g s conv M0ð Þð Þð Þð Þð Þð Þ
Ci ¼ concat Mi; Sið Þ

8<
: ; (6)

where concat means the concatenate operation.

3.5 The Decoder

Considering that AM has the capability to enhance all the five-level cross-modal features, and
integration features FUi output by AM contain multi-scale information from high-level semantic
information to low-level CNN features, we construct a decoder using the FUi to assist the refinement
process. As shown in Fig. 1, the combination of two RMs is the input of the decoder. We use the bilinear
interpolation to upsample feature maps to restore resolution:
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Figure 3: The overall structure of the successive dilated convolution module. 3 × 3 represents the size of
convolution kernels. The dilation means the dilation rate in dilated convolution, and the BN +ReLU
means the Batchnormal layer and the rectified linear unit (ReLU) activation
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F0 ¼ concat CRGB
3 ; CDEP

3

� �
Fi ¼ concat Fi�1; FU5�ið Þ 1 � i � 5ð Þ

�
; (7)

where CRGB
3 means feature maps obtained from RM in RGB extraction stream and CDEP

3 means the feature
maps obtained from RM in depth extraction stream. In this manner, we build the decoder to explore the
continuity and attributes of different levels of enhanced features.

For the loss function, we combine the mean squared error with the Kullback–Leibler divergence
(KLDiv) to supervise the training of proposed network. KLDiv determines the difference between the
predicted and real distributions, which helps to measure the amount of information lost using one
distribution to approximate the other. However, KLDiv is always non-negative, and thus we apply the
cross-entropy as auxiliary function, which is approaching zero as the error reduces. Given D-dimensional
images, the loss function is defined as follows:

Loss Ĝ;G
� � ¼ 1

D

XD
i¼1

G� Ĝ
� �2 þXd

i¼1

PĜ xð Þlog PĜ xð Þ
PG xð Þ ; (8)

where G is the final saliency map, and Ĝ is the label for G. PĜ xð Þ and PG xð Þ are the probabilistic
interpretations of Ĝ and G, respectively. d indicates the position of pixel.

4 Experiments and Analyses

To prove the capability of our proposed network, we conduct a series of experiments. In the following
subsections, we first introduce details of the datasets and the implementation protocol. Subsequently, ablation
studies of each component in our approach were conducted. Finally, we compared four evaluation measures
on the two datasets with six state-of-the-art methods of real-time semantic segmentation.

4.1 Datasets

In order to evaluate the proposed network, we conducted the experiments on two public representative
saliency datasets. These two datasets contain images with rich various scene information and intricate
backgrounds, which mainly captured from real-world scenes and 3D movie scenes.

NUS Saliency dataset [37] is a dataset containing 575 pairs of RGB and depth image, which are viewed
by 80 participants and provide the color stimuli, corresponding depth maps, and the ground truth represented
in the form of fixation maps. It is separated into a training set (420 images), a validation set (60 images) and a
testing set (95 images).

NCTU Fixation dataset [38] consists of 500 2D images and their depth images with a resolution of
1920 × 1080. This dataset is mainly from various scenes in existing 3D movies or video, and it includes
left view maps, right view maps, depth maps, and monocular and binocular visual fixation maps. This
dataset contains divided into a training set (332 images), a validation set (48 images), and a testing set
(120 images).

4.2 Implementation Protocol

We conducted our implementation protocol on a workstation with a GeForce GTX TITAN XP GPU
cards with 12 GB RAM and we used software code written in the publicly available PyTorch
1.1.0 framework [39]. For the backbones, we pretrained the VGG-16 and ResNet-50 networks on the
ImageNet database. Then, we fine-tuned the pretrained networks to achieve the high accuracy. We used
ReLU activation for the entire architecture. For data augmentation, we exploited horizontal flipping,
cropping, and panning to each image and random-sorting channels. We cropped the input RGB-D images
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to the size of 256 × 256 pixels. In order to avoid the insufficient memory caused by a large amount of data, we
appropriately reduce the batch size of each iteration to one and set the initial learning rate to 5E−4. The
parameters of the proposed architecture were learned by the backpropagation over 70 epochs.

4.3 Evaluation Metrics

We adopted four widely-agreed metrics to measure our saliency model to measure the performance of
the proposed model: Linear correlation coefficient (CC), Kullback-Leibler Divergence (KL-Div), area under
the curve (AUC), and normalized scanpath saliency (NSS).

1) CC is a statistic used to reflect the degree of linear correlation between the final saliency maps
proposed model (S) and the ground truth (G). The closer the CC value is to 1 or -1, the better the
saliency prediction algorithm is. We use cov to denote the covariance between the S and G, and CC is
formulated as:

CC ¼ cov S;Gð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
cov Sð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cov Gð Þp (9)

2) KLDiv, also known as relative entropy or information divergence, is an asymmetric measure of the
difference between two probability distributions. The smaller the KLDiv value is, the better the performance
of the network is. Given two probability distributions for x, which are denoted as a(x) and b(x). KLDiv is
defined as:

KLDiv ¼
Xn

i¼1
a xð Þlog a xð Þ

b xð Þ (10)

3)AUC is defined as the area under the ROC curve. The reason why AUC value is used as the evaluation
standard of the model is that in many cases, the ROC curve cannot clearly indicate which classifier has better
performance. AUC is a kind of evaluation index to measure the quality of dichotomy model, which indicates
the probability that the predicted positive cases rank before the negative ones. As a numerical value, the
model with larger AUC has better performance. AUC can be represented as:

AUC ¼
P

pos k �
Npos Npos þ 1

� �
2

NposNneg
(11)

where pos represents positive instances, and k is the ranking. ∑posk is a permanent value, which is only
relevant with the total number of positive instances. Npos and Nneg denote the number of positive and
negative instances, respectively.

4) NSS is defined by the average value of human eye-fixation points in saliency prediction model. The
bigger the NSS value is, the better the performance of the saliency prediction model is. xiG; y

i
G

� �
is

normalized to a mean of 0 and a variance of 1, M is the total number of the human eye-fixation points,
and σ() is the standard deviation. NSS is formulated as:

NSS ¼ 1

M

XM
i¼1

S xiG; y
i
G

� �� lS
rS

(12)

4.4 Ablation Study and Analyses

To verify the performance of proposed AFE, AM and SDCM, we implement ablation experiments with
different settings. We mainly report the results conducting on the NCTU dataset.
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1) Availability of AFE: AFE is used to fully extract multi-scale and multi-modal information. To confirm
the effectiveness of AFE, we remained other components of the proposed network, but changed the feature
extraction network, namely, VGGRGB+VGGDEP, ResNetRGB+ResNetDEP, VGGRGB+ResNetDEP and
VGGDEP+ResNetRGB. The subscript of RGB and DEP represent the backbone network of RGB and depth
extraction stream, respectively. For instance, VGGRGB means the backbone of RGB extraction network is
VGG-16. Tab. 1 shows that the combination of asymmetric networks can bring a better performance.
Furthermore, using VGG-16 extracting depth information and ResNet-50 extracting RGB information can
obtain the best result.

2) Availability of AM: AM is used to strengthen the feature representation and reduce the lost of details.
To testify the availability of AM, we remove the AM from the proposed network, which is denoted as P-A.
Tab. 2 shows that the AM is beneficial to the performance of the proposed saliency model. Besides, Fig. 4
visually reflects that final saliency maps in the fourth column are quite indistinct. Thus, the AM can improve
the quality of final saliency maps.

Table 1: The comparison of different extraction networks

Dataset Extraction Network CC KLDiv AUC NSS

NCTU VGGRGB+VGGDEP 0.8038 0.3301 0.8481 1.8717

ResNetRGB+ResNetDEP 0.8096 0.3886 0.8513 1.8846

VGGRGB+ResNetDEP 0.8101 0.3528 0.8556 1.9171

VGGDEP+ResNetRGB 0.8469 0.2872 0.8819 1.9901

Table 2: The comparison of effectiveness of different components

Dataset Extraction Network CC KLDiv AUC NSS

NCTU P-A 0.7774 0.5562 0.8656 1.8381

P-S 0.8228 0.3212 0.8736 1.9370

P 0.8469 0.2872 0.8819 1.9901

Figure 4: Visual comparisons of different components
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3) Availability of SDCM: SDCM can effectively integrate the feature information of different scales for
the sake of boosting the feature invariance. To prove the validity of SDCM, we remove the SDCM from the
proposed network, which is denoted as P-S. Tab. 2 demonstrates that the SDCM increases the results of four
evaluation metrics. Meanwhile, the fifth column in Fig. 4 exhibits that the involvement of SDCM enhances
the detail representation of final saliency maps.

4.5 Comparison with Six State-of-the-art

We contrasted the proposed method with six state-of-the-art saliency prediction models, including two
networks with two-stream structures, i.e. Fang et al. [40] and Qi et al. [41], and four saliency models in 2D
images, i.e. DeepFix [42], ML-Net [43], DVA [44], and MSI-Net [45]. We rebuilt the four RGB saliency
models through adding a depth stream, which is used as the supplement to the RGB stream. All
parameter settings are according to the recommendation of their authors. We used the same training sets,
validation sets, and test sets to train above saliency models. As shown in Tab. 3, the proposed
architecture achieved the biggest CC, AUC and NSS scores, and lowest KLDiv scores on two datasets.

This result shows that the proposed network consistently outperforms six state-of-the-art models on the
NCTU and NUS datasets. Some heatmaps simulated the eye-fixation generated by the proposed network and
the six state-of-the-art saliency models are shown in Fig. 5 for a subjective comparison. It can be seen that our
method has produced a more precise saliency maps in different challenging situations: single objects in
simple background (rows 1, 8 in Fig. 5), single objects in complex backgrounds (rows 3, 4, 5, 7 in
Fig. 5), multiple objects in simple background (row 2 in Fig. 5), and multiple objects in sophisticated
background (row 6 in Fig. 5). Fig. 5 also shows that our model can handle both low contrast (row 5, 6,
7) cases. These results demonstrate the robustness and effectiveness of our model, and verify the
availability of the AFE, AM and SDCM.

4.6 Failure Cases

Although our model can suppress the background and highlight the prominent salient regions more
effectively than other compared methods, there are still shortages. Fig. 6 demonstrates failure cases of the
proposed network. Column 1 contains the original RGB images, column 2 includes the ground truth of
simulated eye-fixation, column 3 consists of eye-fixation maps obtained by our network, column 4 contains
the ground truth of final saliency maps, and the last column includes final saliency maps produced by our

Table 3: Quantitative Comparison against six state-of-the-art saliency models

Dataset Criteria Fang’s Qi’s DeepFix ML-Net DVA MSI-Net Ours

NUS CC 0.333 0.371 0.5089 0.4326 0.4662 0.5175 0.5609

KLDiv 1.560 1.505 1.1966 1.3302 1.6007 1.1444 1.1000

AUC 0.795 0.806 0.8502 0.8422 0.8404 0.8517 0.8573

NSS 1.209 1.357 2.0319 1.6373 1.8129 2.0724 2.3185

NCTU CC 0.542 0.595 0.7418 0.5267 0.6718 0.7815 0.8469

KLDiv 0.674 0.616 0.4112 0.6868 0.8899 0.3652 0.2872

AUC 0.806 0.816 0.8541 0.7944 0.8354 0.8678 0.8819

NSS 1.264 1.373 1.7389 1.1774 1.5888 1.8334 1.9901
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architecture. As shown in Fig. 6, our model cannot handle two specific situations effectively: relatively small-
scale and large-scale objects in complex background (row 1, 2 in Fig. 6, respectively).

5 Conclusion

We design a visual saliency prediction network on the basis of attention mechanism and cross-model
integration strategies in RGB-D images. We first leverage asymmetric networks to extract two
complementary information of RGB information and depth information as cross-model features. To

Figure 5: Visual comparisons to six state-of-the-art saliency models on NCTU dataset

Figure 6: Failure cases of three specific situations
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achieve using cross-model information and accurately predict the human eye-fixation in complex situations,
we propose attention modules to integrate them, and attention modules can enhance salient regions and
lighten the surrounding unimportant background. To further reduce parameters for training and promote
the interaction of cross-modal features, we build successive dilated convolution modules. Then we
gradually aggregate salient features. Finally, the decoder process provides high-quality final saliency
prediction maps. Experimental results on two widely-agreed datasets demonstrate that our model
outperforms than other six state-of-the-art saliency models. In future work, we will improve and
generalize the proposed method for low contrast scenarios and apply the network in different computer
vision applications.
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