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Abstract: As a regular tool for assessing and diagnosing cardiovascular disease
(CVD), medical professionals and health care centers, are highly dependent on
cardiac imaging. The purpose of dividing the cardiac images is to paint the inner
and outer walls of the heart to divide all or part of the limb’s boundaries. In order
to enhance cardiologist in the process of cardiac segmentation, new and accurate
methods are needed to divide the selected object, which is the left ventricle (LV).
Segmentation techniques aim to provide a fast segmentation process and improve
the reliability of the process. In this paper, a comparative study is made on basic
random walk (BRW), extended random walk with priors (ERW), and high-speed
random walk (HSRW) techniques. In the presented paper, we have applied three
different types of medical image segmentation techniques to many Cardiovascular
Magnetic Resonance images (CMRIs) in our experimental evaluation to lead sta-
tistically significant conclusion and confirm that our results are generalized. We
have used 125 sets of CMRIs generated from five groups of patients with different
types of cardiovascular disease to get the precise capacity of the productivity of
the introduced method. In this paper, several performance metrics are used for
instance correspondence coefficient D, distance, and PSNR. In the presented
paper, a short-axis 3D multilayer CMRIs database has been taken and applied
on many case studies to decide the outcomes of several segmentation methods.
Throughout the experiments, the performance time for three segmentation meth-
ods are also calculated and utilized in the comparison process as another impor-
tant performance factor. The experimental results show that ERW technique is the
furthermost accurate segmentation technique among all the approaches.
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1 Introduction

Cardiovascular disease (CVD) has recently been the leading cause of death and according to the latest
statistics, the biggest health problem in the world [1,2]. The detection of cardiovascular disease is necessary
since there may be a shortage of experienced surgeons when necessary.

Providentially, any problem in cardiac function or the complete cardiac cycle is reflected in the change of
shape of the left ventricle (LV) [1]. This special property can be used to control cardiac function, and this will
lead to the diagnosis of a probable medical condition that affects the heart. The analysis of the function of the
human heart requires a detailed description of the shape of the left ventricle [2]. Blood is pumped over the
carotid arteries into the area of the head and neck. The carotid arteries are in pairs on the right and left sides of
the neck [2]. The Vertebral Arteries (AV) are the vessels on both sides of the vertebra that supply the human
brain. The carotid arteries consist of vessels that extend from the area of the “Aortic Arch” to the “Circle of
Willis” area [3]. The CCA begins at the aorta and when it reaches the cervical area, these two vessels separate
as the external carotid and the internal carotid artery [4]. ECA is responsible for pumping blood to regions
outside the skull such as the face. The Circle of Willis is in the lower part of the brain. Some arteries come
together in this region. In the Circle of Willis, the ICAs branches to the brain with smaller arteries that
provide more than 80% oxygen-rich blood to the brain [1,3].

To assist the cardiac specialist to detect heart disease based on segmenting technique, a new and precise
approach is needed to detect certain objects that affect the LV. The purpose of the segmentation method is to
obtain a faster detection process and increase the process of dependability [5]. In the field of biomedical
diagnosis, image processing is considered an important part in the recognition of cardiovascular disease
(CVD) by segmentation of the cardiac image. The major aim of the segmentation of cardiac images is to
delimit the external and internal walls of the heart to segment all or part of the heart’s boundaries [6].
Consequently, precise segmentation of heart imaging is of great importance for the diagnosis and
intervention planning because it allows specialists to accurately visualize the required cardiac cavities
[3,4,6]. The information obtained from segmented CMRIs facilitates physical measurements by obtaining
a variety of measurements useful for evaluating and identifying CVDs. The efficiency of the
segmentation of medical images decides the precise diagnoses needed, guided surgical procedure or
medical treatment.

Random walking methods are considered a major research area in the field of medical segmentation [7].
Edge-based methods are called border-based methods. These methods depend on the dissatisfaction of the
properties of the image between different regions as a function of the high intensity gradient values.
Gamal Geweid, Reza Fazel-Razai et al, have actively presented a geographical method that can afford a
closed curvature in the form of a compromise between the uniformity of the curvature and the high
gradient [8]. The main obstacle to these methods is that they need worthy initialization and are extremely
sensitive to distortion. Techniques based on regions are considered best suited for segmenting structured
images based on fusion regions and growth.

The feature of regional methods is that they consider the characteristics of the region. Chan-Vese
technique [9], which is an actual curve without boundaries, was presented in 2001 by Chan and Vese.
Another technique of Chan-Vese has been enhanced and introduced in 2010 by Wang, Huang and Xu.
However, for these techniques, they do not require a large image protection to differentiate the two areas
[10]. Tannenbaum and Lankton proposed a technique of active curves in 2008 located at the regional
level. To arrive at a solution adapted to this technique, the initialization of the segmentation contour must
be sufficiently close to the desired final curve [11]. Shi et al. [12] presented a real-time technique in
2008 to approximate the evolution of the curve based on quantity levels. Li, Kao, Gore and Ding
introduced a minimization of fitting technology by region in 2008 [13]. In 2009, Bernard, Friboulet,
Thevenaz and Unser presented a linear filter approach for the rapid development of the deformable model [14].
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This method is a level technique that relies on the B-spline. However, these techniques do not consider the
data provided by object borderlines [15,16].

The graph-based segmentation methods have the advantage of taking into consideration the pixel
statistics of the image by viewing the image as a graph [17]. Random walk segmentation can be defined
as a multi-label image segmentation method based on electrographic potentials [18,19]. The Random
Walk method for segmenting the image was introduced by Grady [20,21]. The Random-Walk technique
can capture both ranges and borderlines. In methods of random walk, the seeds are affected. The highest
probability for all pixels that are located on the label provides the greatest probable segmentation results.
This method is presented in an isolated space by combinatorial similarities of the theory of continuous
potential. Other random walk techniques, for instance the segmentation of multi-label random walking
images, using previous models presented by Grady in 2006 [20,21]. Correction and Regularized Random
Walk Ranking, Random Walks’ fast, parameter estimation and random segmentation, based on pre-
calculation of the eigenvector was introduced by Grady, Sinop, and Yuan in 2008, 2007 and
2018 [19,22,23]. These techniques are introduced to improve the technique of random walking. The
random-walk technique was registered as a US patent in 2017 [21].

The rest of this paper is structured as follows: Section 2 presents the BRW image segmentation method.
Section 3 introduces the random walk with pre-computations technique. In Section 4, the Random walk with
prior model is illustrated. Section 5 shows the experimental results. Finally, section 6 concludes the paper.

2 Random Walking with Seeds

The Random Walking with Seed is considered as basic random walk (BRW) image Segmentation and
was introduced by Leo Grady in [20]. In BRW, the electrical potentials of the graph theory are used to get
object details. The theoretical properties of the BRW technique have been developed with different possible
theories and related compounds of the electrical circuit. In general, the beginnings of segmentation can be
separated into three main levels [24]. In the first level, the user sets the sequential points to the border or
very close to it. The minimum path method is used to find the final boundary. In the second level, the
technique needs the definition of the initial border, and then the cost function representing the property
data of the image is minimized [25]. In the third level, the technique needs the seeds in certain regions.
Random Walk technique uses the third level of initialization. Seeds determine locations with predefined
labels. The probability xi, that the random walker beginning with the node vi first ranges a seed denoted
S, can be calculated by obtaining the circuit-theoretic based on the Dirichlet technique [16]. All seeds
with other labels are stranded and the S-labeled are considered the possibility of unity.

The function which provides a solution for the Dirichlet problem by satisfying the boundary constraints
to minimize the Dirichlet integral is called a harmonic function. The connections established between the
random walks and the electrical potentials of the graph theory lead to an appropriate method for
estimating random walking probabilities. Fig. 1 describes the harmonic function and segmentation
resulting from a 4 × 4 chart of unit weights using three seed nodes with different labels, which are (L1,
L2 and L3). Alternatively, the potential of each seed may be set to a voltage source of the unit connected
to ground, and the other nodes are grounded. Calculated electrical potentials denote the possibility that a
random walking of each electrode will touch the seed point that is presently fixed to one [20].

The BRW technique marks an untagged pixel by implementing this computation of the possibilities that
the random walker will first reach each of the starting pixels from that untagged node. The BRW technique
must solve a system of linear equations with positive and sparse symmetry to find the probability. The final
segmentation is obtained when each node is assigned a label with the corresponding most likely seed
destination. Random walk segmentation technique contains a pair U ¼ V;Eð Þ with nodes peaks t 2 V
and boundaries e 2 E;E � V� V. A boundary e, connecting two nodes, ti and tj, is signified by eij. This
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graph is a weighted chart which gives a rate to each boundary named a weight. An edge weight eij in the
image, is signified as wðeijÞ or wij. A node degree is di ¼

P
w eij
� �

for all edges eij located on ti, wij. 0 [17].

2.1 Edge Weights

To represent the image construction and the weight of edges using BRW prejudices, a function should be
used to map the change in image intensity to edge weight. The weighting function plays a significant role for
a robust segmentation of BRW technique for image segmentation in every condition. For mapping the
change in image intensity to edge weight, the Gaussian weighting function is utilized and represented as:

wij ¼ expð�b Ii�Ij
� �2Þ (1)

where Ii shows the image density at pixel ti. Performance of the weighting function is based on the
unrestricted parameter b [11].

2.2 Construct Optimization Laplacian Matrix

The Dirichlet optimization problem has the similar explanation as the wanted random walking
possibilities. This problem can be known as the problem of obtaining a harmonic function according to
its border ranges. This function can be used to adapt the boundary conditions and reduces the integral of
Dirichlet [26]. The creation of the Laplace matrix is done by using neighbor weights for each node in the
graph. The combinatory matrix of Laplace as:

Lij ¼
di if i ¼ j;
��wij if vi and vj are adjacent nodes;
0 otherwise;

8<
: (2)

where Lij is indexed by vertices vi and vj:

2.3 Partition the Laplacian Matrix

In this section, we divided the nodes into two groups, VM and VU which denote the marked and
unmarked nodes where VM

S
VU ¼ V and VM \ VU ¼ [: The seed points are found in the group VM

notwithstanding of their label. The values in L and x are rearranged such that labeled vertices are first,
unlabeled vertices are second and B is the complementary matrix. If seeds are provided, divide L and x into:

Figure 1: Segmentation resulted from graph theoretic electrical potentials (harmonic function). (a) Initial
seeds and the obtained segmentation. (b) Random walk probability corresponding to seed L1. (c) Random
walk probability corresponding to seed L2. (d) Random walk probability corresponding to seed L3
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L ¼ LM B
BT LU

� �
; and x ¼ xM

xU

� �
; (3)

where and xM and xU represent the potentials of the labeled and unlabeled vertices, respectively.

The composition of Dirichlet D xU½ �:

D xU½ � ¼ 1

2
xTM xTU

� � LM B
BT LU

� �
xM
xU

� �
¼ 1

2
½xTMLMxM þ 2xTUB

TxM þ xTULUxU� (4)

Differentiating D xU½ � according to xU and obtaining the critical pixel at borderline conditions:

LUxU ¼ �BTxM (5)

where xM and xU represent the labeled and unlabeled potentials for all nodes, respectively. The steps of BRW
method is presented in Fig. 2. The above-mentioned methods can be taken within circuit theory. The diagram
denotes an electric circuit, the boundaries of the graph represent resistors, the random walk probability
represents the potentials, and the weights represent the conductance.

3 High-Speed Random Walker

Random Walking through pre-computations is considered a fast method of estimating random walker.
The steps of HSRW method is conclude in Fig. 3. This method is denoted as High-Speed Random Walking
Approach (HSRW). In this technique, the goal is to transfer the offline computing load that is done before the
user interaction. Offline pre-calculation is difficult because the starting positions are not known. The pre-
calculation of a small number of eigenvectors of the Laplace matrix of the graph, whatever the locations
of the seed data gives a better and rapid segmentation solution. An offline process is significant in
medical segmentation because, usually in several situations, a lot of substantial time after the acquisition
of the images is lost before segmentation. Especially the medical images frequently take weeks or days
on the servers before interaction. Random walker solution can be approximated using eigenvectors
calculations of the Laplacian matrix. Before defining the seeds, calculations can be achieved by
computing Eigen-Vector couples of eigenvalues. This can be done offline to obtain the solution of Eq. 5.
The Eigen-Vector pairs of eigenvalues decomposition of L are:

L ¼ Q�QT (6)

Input image

Compute Edge Weights 

Construct optimization Laplacian (L)

Dividing the Laplacian Matrix (L) 

Solve the Linear System 

Segmented Image 

Figure 2: BRW method steps (online calculations)
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where, � represents the diagonal matrix of laplacian k minimum eigenvalues of L, and Q denotes a column of
the k resultant eigenvectors. Using accumulative K, the explanation will come closer to the precise result.
Decomposition of f according to labeled/unlabeled nodes using the feature f as follow:

Lx ¼ f ; and f ¼ fM
fU

� �
(7)

Then, when one performs a decomposition of the eigenvector of L, using Eq. (7) as follows:

Q�QTx ¼ f (8)

If E is the pseudo-inverse of L and g is defined as the eigenvector of the Laplace matrix with the zero
eigenvalue, then it is a stable vector. Then, decompose the E; in according to labeled and unlabeled nodes,
and decompose the g in according to labeled and unlabeled nodes:

E ¼ Q��1QT;E ¼ EM R
RT EU

� �
;RT ¼ QU�

�1QT
M; g ¼ gM

gU

� �
; and EL ¼ I� ggT

� �
(9)

From Eq. (7), approximates x using E:

ELx ¼ I� ggT
� �

x ¼ Ef ¼ Q��1QTf (10)

when fU ¼ 0, to find fM:

LMxM þ BxU ¼ fM (11)

Replacement of Eqs. (2) and (3) in Eqs. (5) and (7) provides:

�gUg
T
MxM þ xU � gUg

T
UxU ¼ RTfM (12)

Multiply B by Eq. (12), and then subtract it from Eq. (11):

LM þ BgUg
T
M

� �
xM þ BgUg

T
UxU ¼ I� BRT

� �
fM (13)

when BgUg
T
M

� �
is a very small amount and gUg

T
M � 0;

Input image

Offline Calculations 

Construct optimization 
Laplacian (L)

Estimate K 
Eigenvectors of L, Q

Online Calculations

Calculate E (Pseudo-
Inverse of and )

Compute Λ according 
to L, Q

Calculate 

Figure 3: HSRW method stages
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let a¼ gTUxU;P ¼ I� BRT
� �

; then:

LMxM þ BgUa ¼ PfM; (14)

where fM ¼ cfM þ fMa

From Eq. (14), can be divided into:

PcfM ¼ LMxM and PfM ¼ BgU (15)

By definition of g and from Eq. (7):

gTf ¼ gTLx ¼ 0; gTf ¼ gTMg
T
U

� � fM
fU

� �
,

gTMfM ¼ �gTUfU ¼ 0 and gTM½cfMþfMa�¼ 0 (16)

Then, a; can be found as:

a¼ � gTMcfM
gTMfM

; (17)

From Eq. (9)

xU ¼ RTfM þ gUa þ gUg
T
MxM and xU � RTfM þ gUa (18)

4 Random Walk with Priors

In statistical pattern recognition and classical machine learning, the test points are decided to be
classified without taking the relationship between them in consideration. On the other hand, in many
situations the modern spatial techniques, such as ACM, LSM and the random walk, the desired object to
be segmented may be reasonably featured by the image intensity distribution. So, the spatial technique is
preferable to be able to concentrate on the intensity information in the image and use this information to
guide the segmentation process. The BRW method is a multi-label image segmentation technique which
has good theoretical characteristics. But practically, this technique may be problematic in some
segmentation tasks. A main drawback of BRW technique is that there is no concentration on intensity
integration in the system because the technique is based on only intensity gradients not the absolute
intensity information of the image. Extended random walk method with priors is a comprehensive
technique (ERW) that utilizes images prior in the segmentation technique. The aim of ERW is to fuse the
density translated in the probability intensity prior model with the spatial interconnection of the random
walk segmentation concept in order to obtain the best segmentation results, regardless of the intensity
gradients variability. Every label is represented as a floating auxiliary node added to the graph and
connected to the other nodes. When, �s

i is the prior probability density value when the intensity at node,
vi, present in the intensity distribution of label S.

xsi ¼
�s
iPk

q¼1
�q
i

(19)

where λ is the vector containing prior probabilities of graph nodes, and γ is the weight of the vector. Once the
starting values are assumed and the previous possibilities are achieved, the Laplace operator is enhanced with
supplementary nodes. The Laplace matrix, after increasing with the prior, is separated into groups according
to the labeled, unlabeled and supplementary nodes, in the similar approach as Eq. (3),
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L ¼
LM B 0
BT LU þ cIU �c�
0 �c� cIU

2
4

3
5 (20)

The random walk possibility xU is computed as follows:

LU þ cIUð ÞxU ¼ �BTxM þ c� (21)

Fig. 4 illustrates the ERWmethod conclude steps when the prior value �i which signifies the probability
intensity using the density of node vi, λ denotes the vector containing prior probabilities of graph nodes, and γ
is the weight of the vector and it is constant.

5 Results

The BRW, HSRW, and ERW medical imaging segmentation schemes are executed on MATLAB, and
examined on a short-axis of 3D multi-slices CMRI dataset [27]. Several segmentation performance
metrics are utilized such as Dice Metric (DM), the Haussdorff distance (HS), and the Peak signal to noise
ratio (PSNR). The BRW, HSRW, and ERW segmentation schemes are executed on a short-axis of 3D
multi-slices CMRI datasets. The same multilayer CMRI dataset is segmented using various random walk
methods. The presented results were obtained through using BRW, HSRW and ERW methods on five
different groups of patients; each group contains 25 subject of multilayer CMR dataset. Experimental
results illustrate that the BRW method can achieve a good segmentation of the LV cavity. The results of
the HSRW algorithm have very comparable similarities to BRW, but with a slightly less efficiency and a
much higher execution rate. Pre-calculations reduce the performance online time in offline mode. The
average time of HSRW equals to 0.09 seconds for each slide. Raising the rate of K will improve the
comparison and makes the process of segmentation more precise, but also reduces the execution time.
The ERW technique results illustrate that this method has the greatest efficiency of segmentation. Figs. 5
to 7 show the resulting images of the BRW segmentation method on five sets of sample data. HSRW
with pre-calculation segmentation method is applied on the same sets of sample data and illustrated in
Figs. 8 to 10. Figs. 11–13 show the high efficiency segmentation using the ERW method with an earlier
model for the same sets of sample data. The results of the Random Walk segmentation overcame the

Input image 

Compute Edge Weights 

Construct optimization Laplacian (L)

Dividing the Laplacian Matrix (L) 

Solve the Linear System 

Segmented Image 

Prior model of intensities 

Figure 4: ERW technique steps (online calculations)
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potential restrictions of the prior art CMR methods. The performance of segmentation is fast compared to
segmentation methods based on edge and region. BRW precedes into account the properties of regions
and edges, as shown in Figs. 5–7. Looking at the image as a graph, the technique makes it possible to
integrate pixel relations with neighboring pixels. As a result, segmentation produces good quality BRW
technique sections when their qualitative accuracy is compared to the ground truth, and this is also
evident from the Tab. 1 measurements in the diastolic and systolic phases in Tab. 2 as well as in the
complete cardiac cycle noticed. Figs. 8–10 illustrate the HSRW results. There are no dissimilarities
observed in furthermost cases of CMR slides in the figures, but the correspondence measurements of the
DM, PSNR and HS coefficients present that the results of the HSRW technique are worse than those of
the BRW method. This presents that HSRW is an effective estimation of the random walk influence as
mentioned in Tab. 1 and throughout the cardiac cycle in Tab. 2. The values of PSNR and DM are lower,
whereas HS is higher than the BRW method, but with slight dissimilarities between HSRW and BRW
methods throughout the blood circulation. The impact of execution eigenvectors pre-calculations is
perfect when the execution time is faster than the BRW method and, in fact, more efficient than other
segmentation method for LV heart segmentation. With the identical dataset, the ERW method shows a
significant enhancement in efficiency, as presented in Figs. 11–13. From the scores, we can see that the
segmentation is smoother and cleaner. The ERW method considers boundaries and areas, such as BRW,
using the relations between adjacent pixels in the image. It also considers the additional regional
advantage by including the assumptions that affect the results of the segmentation. Mean segmentation
quality measurements are computed from the segmented images using correspondence measurements for
instance DM, HS, and PSNR and verified for each method in the diastolic and systolic stages as
presented in Tab. 1. Based on results, it can be determined that methods of random walk are enhanced in
diastolic diagnosis and that their outcomes in the systolic stage are also of good efficiency. The results of
the random walk segmentation methods in the complete blood circulation are shown in Tab. 2. The
cardiac cycle similarity amounts indicate that DM and PSNR capacities of ERW are improved than the
corresponding capacities in the case of the HSRW and BRW approaches; however, the HS measurements
are lower than the equivalent measurements, as illustrated in Tab. 2. This designates that the ERW
technique is the furthermost accurate segmentation technique among all the approaches stated above. The
ERW technique has the uppermost value of PSNR, and the HSRW method has the lowermost value that
denotes the uppermost speed in segmentation process.

Figure 5: BRW results for the first samples set

Figure 6: BRW results for the second samples set
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Figure 8: HSRW results for the first samples set

Figure 9: HSRW results for the second samples set

Figure 7: BRW results for the third samples set

Figure 10: HSRW results for the third samples set

Figure 11: ERW results for the first samples set
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Figure 13: ERW results for the third samples set

Table 1: LV blood pool segmentation results of randomwalk techniques of CMR slices in diastole and systole
phases of three groups

Phase type Segmentation technique

BRW HSRW ERW

Group #1 Diastole phase DM 0.9667 0.9648 0.9727

PSNR 27.8293 27.4996 28.9678

HS 4.36328 5.3095 3.542

Exec. time 0.8485 0.0906 0.859

Systole phase DM 0.9062 0.8922 0.9127

PSNR 20.5862 20.2595 22.9538

HS 9.5485 9.9053 8.542

Exec. time 0.9562 0.0985 0.9365

Group #2 Diastole phase DM 0.90982 0.90792 0.91582

PSNR 27.7724 27.4427 28.9109

HS 4.30640 5.25262 3.48512

Exec. time 0.79162 0.03372 0.80212

Systole phase DM 0.84932 0.83532 0.85582

PSNR 20.5293 20.2026 22.8969

HS 9.49162 9.84842 8.48512

Exec. time 0.89932 0.84162 0.87962

Group #3 Diastole phase DM 0.85294 0.85104 0.85894

PSNR 27.7155 27.3858 28.8540

HS 4.24952 5.19574 3.42824

Exec. time 0.73474 0.92316 0.74524
(Continued)

Figure 12: ERW results for the second samples set
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6 Conclusions

In this research, a comparative study of three random walk techniques (BRW, RWP, and HSRW) was
conducted to get the most precise segmentation method. These three techniques of medical image
segmentation were applied to 125 sets of cardiovascular magnetic resonance (CMR) generated from five
groups of patients with different types of cardiovascular disease to find the precise measurement of the
effectiveness of the segmentation method. The performances of the examined segmentation approaches
are estimated using MATLAB on a short-axis of 3D multi-slices CMRI datasets using various image
efficiency performance metrics like similarity coefficient, PSNR, and the distance from Hausdorff. In
addition, the performance time of each scheme is obtained for investigating to calculate segmentation
procedure speed. The paper results conclude that the BRW method provides good performance, but the
ERW method is the most precise of the extreme similarity measurements because of the priority
consideration. In HSRW, the correspondence results are very similar to the equivalent match amounts in
BRW with slightly smaller match prices, but considerably less execution time. The Pre-calculations in
HSRW offline approach decreases execution time in the online approach.
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Table 1 (continued).

Phase type Segmentation technique

BRW HSRW ERW

Systole phase DM 0.79244 0.77844 0.79894

PSNR 20.4724 20.1457 22.8400

HS 9.43474 9.79154 8.42824

Exec. time 0.84244 0.81526 0.82274

Table 2: Results of random walk methods segmentation in the complete cardiac cycle of the five groups

Segmentation technique DM PSNR HS Execution time

Group #1 BRW 0.93645 24.2078 6.95589 0.902355

HSRW 0.92845 23.8796 7.60740 0.094554

ERW 0.93645 24.2078 6.95589 0.902351

Group #1 BRW 0.85231 23.2188 5.95159 0.845565

HSRW 0.84460 23.8796 6.60741 0.037765

ERW 0.85212 24.2088 5.95590 0.845565

Group #1 BRW 0.93179 23.43003 6.06701 0.847652

HSRW 0.92379 23.10183 6.71852 0.039855

ERW 0.93179 23.43003 6.06701 0.847657
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