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Abstract: Recent advances in the development of image denoising applications
for eliminating the various sources of noise in digital images have employed hard-
ware platforms based on field programmable gate arrays for attaining speed and
efficiency, which are essential factors in real-time applications. However, image
denoising providing for maximum denoising performance, speed, and efficiency
on these platforms is subject to constant innovation. To this end, the present work
proposes a high-throughput fixed-point adaptive edge noise filter architecture to
denoise digital images with additive white Gaussian noise in realtime using a non-
linear modified pixel-likeness weighted-frame technique. The proposed architec-
ture works in two stages. The first stage involves normal and conditional sorting.
The second stage is a decision-oriented output selection unit. Decision-oriented
adaptive windowing is included for better impulse noise suppression and edge
preservation. The denoising performance of the proposed denoising scheme is
demonstrated to be superior to those currently available state-of-the-art
approaches. Moreover, the power consumption is reduced by 25.01% compared
to conventional algorithms.
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1 Introduction

The Discrete Wavelet Transform (DWT) of a noisy image includes a substantial number of factors with
low SNRs, and shrinking the wavelet coefficients associated with these DWT factors with low Signal to
Noise Ratio (SNRs) was demonstrated to be a useful procedure for denoising images, particularly those
with additive white noise. In addition to digital images, the good performance of DWT-based denoising
strategies has made these strategies useful for speech signals, electrocardiograms (ECGs), and
encephalograms [1–4]. Like many recent implementations of image processing, DWT-based image
denoising is executed on Field Programmable Gate Array (FPGA) platforms owing to their good
computational performance and low resource consumption. In addition, these developments have focused
mainly on the convolution method. The denoising method utilizing DWT consists of three stages:
forward DWT (FDWT), adaptive thresholding, and inverse DWT (IDWT). While recent advances in the
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development of DWT-based image denoising employing hardware platforms based on FPGAs have
attained high computational speed and efficiency [5–7].

To this end, the present work proposes continuous use of the forward/backward pixel likeness weighted
frame (PLWF) technique for image denoising. The proposed method is planned and executed on an FPGA
platform utilizing the Xilinx System Generator (XSG), MATLAB 2017a, and the XUP Vertex-II Pro
improvement board. The Pixel Likeness Weighted Frame (PLWF) is employed in conjunction with a
modified Adaptive Edge Noise (AEN) filter to minimize noise such as salt-and-pepper and Gaussian
noise [8]. The algorithm employs two stages: separating the filtering windows into four orthogonal edge
direction patterns and the identification of the ideal directions of the edges, which are those with highly
indistinguishable pixels. Knowledge regarding the ideal directions of the edges enables the identification
of more edge pixels, which helps to reduce edge degradation during the denoising process. To this end,
the present work adopts the average deviation from the mean (i.e., the standard deviation) because it
yields better outcomes than the difference or change in other methods for estimating the noise levels of
pixels [9–13].

2 Materials and Methods

A block diagram of the proposed PLWF image denoising algorithm is presented in Fig. 1. Its architecture
consists of five principal blocks, which include odd and even line buffers, register bank, threshold
determination, and an AEN filter. These are presented in detail as follows.

Figure 1: Block diagram of the PLWF image denoising scheme
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A. Line buffers

The proposed algorithm employs a 3� 3 convolution mask. Therefore, the computation is facilitated by
four hybrid multiplexers and two line buffers, where the odd and even line buffers store pixels at odd and
even column positions, respectively. The cost and power consumption of the implementation are reduced
by adopting a double-port SRAM in the line buffers to conduct the computational activity [14–16].

B. Register bank

The register bank consists of 12 registers, Reg0 to Reg11, that accumulate the 3 � 3 pixel estimates
of the present convolution masks. The architecture of the line buffers and register bank are illustrated in
Fig. 2, where every three registers are associated sequentially to obtain evaluations of the three-pixel
rows a mask [17–21].

C. Threshold block

The threshold block design is illustrated in Fig. 3. The evaluation of whether the input value is greater or
lower than the threshold limit (Ts) is more important than the Ts itself. Accordingly, one clock cycle is
enough for the line buffer, but two clock cycles are needed for the AEN filter during the noise removal
process [22–24].

D. Adaptive edge noise filter

The two-stage pipeline design of the AEN filter is illustrated in Fig. 4. Here, the adder (ADD) unit
locates the two input sources and transfers the added value to the multiplexer. The ADD modules help in
locating the four orthogonal edge direction patterns composed of highly indistinguishable pixels [25–28].
The directional contrasts for the four edge directions are determined by the ADD units. At this point, the
smallest distinction is chosen by the DIV/9 unit. The final block provides the mean of the two-pixel
values, i.e., the output after filtering [19–31].

Figure 2: Architecture of the line buffers and register bank
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3 Pixel Likeness Weighted Frame Algorithm

A flowchart of the proposed PLWF algorithm is presented in Fig. 5. These stages are presented in detail
as follows.

Figure 3: Architecture of the threshold block

Figure 4: Architecture of the adaptive noise filter
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Stage 1: Applya two-dimensional (2D) window of size 3 � 3 to a center pixel with an 8-bit grayscale
value denoted as Pij.

Stage 2: If 0 < Pij < 255, the center pixel is considered to be uncorrupted; thus, no procedure is required
and its value is left unaltered.

Figure 5: Flow chart of the proposed PLWF algorithm
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Stage 3: If Pij = zero or 255, then the center pixel is corrupted by salt-and-pepper noise. This yields two
possible cases.

Case I: The window includes pixels with values that are not exclusively 0 or 255. Then, find the adaptive
edge of the remaining pixels and replace Pij with its adaptive value.

Case II: The window includes pixels with values that are only 0, 255, or both. Then, the center pixel may
be either zero or 255; again this is a small issue. Then, replace Pij with the mean deviation (Fig. 5).

Stage 4: Apply stages 1–3 to every pixel in the image.

4 Results and Discussion

The performance and operational characteristics of the proposed PLWF algorithm were compared
to those of various other state-of-the-art noise-removal algorithms, including iterative pixel compression
(IPC), and those based on the discrete cosine transform (DCT) and the DWT. To this end, the algorithms
were applied to standard Lena and Cameraman8-bit grayscale images composed of 512 � 512 pixels.
Salt and pepper noise having pixel values of 0 and 255 with equal probability was deliberately added to
all images in proportions of 10% to 90% using MATLAB. For this, a window size of 9 � 9 was
uniformly applied.

Tab. 1 shows the evaluation parameters used in the proposed system.

The results of applying the proposed PLWF algorithm to the Lena and cameraman images in MATLAB
are presented in Figs. 6 and 7, respectively.

The noise-reduction performances of the algorithms compared were evaluated according tothe peak
signal-to-noise ratio (PSNR) and mean square error (MSE), which are defined as follows [5,19]:

MSE ¼
P

M ;N I1 m; nð Þ � I2 m; nð Þ½ �2
M�N ; (1)

PSNR ¼ 10 log10
R2

MSE

� �
; (2)

where M and N are the respective numbers of rows and columns in the image, m and n are the indices of the
rows and columns, respectively, I1and I2 represent the ground truth noise-free image and the denoised image,
respectively, and R is the maximum possible pixel value in the input image (i.e., 255). Here, the noise
reduction performance of an algorithm increases with decreasing MSE and with increasing Peak Signal to
Noise Ration (PSNR).

Table 1: Evaluation parameters

Parameter Specification

Dataset Natural and raw images

Tools used Matlab and XSG

Number of images 100

Languages System C and HDL

Device Vertex-2 Pro FPGA
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The PSNR and MSE values obtained by the various noise reduction algorithms for the Lena and
cameraman images under different salt and pepper noise levels are listed in Tab. 2. In addition, we plot
the PSNR values listed here in Fig. 8 for a more intuitive comparison. These results indicate that the
proposed PLWF algorithm provides better visual quality than the other methods considered.

Figure 7: Results of applying the proposed PLWF algorithm to the cameraman image. (a) Input image
(b) Noisy image (c) Noise pixels detected (d) Denoised image first level (d) Denoised image second level

Figure 6: Results of applying the proposed PLWF algorithm to the Lena image. (a) Input image (b) Noisy
image (c) Noise pixels detected (d) Denoised image (first level) (d) Denoised image (second level)
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Other factors, such as the complexity of the hardware implementation and the power consumption of
denoising algorithms, are equally important as the denoising performance. Therefore, we compare the
percentages of the total area employed to implement the denoising algorithm and the percentage of total
power consumed by that implementation in Fig. 9. These results demonstrate that the proposed PLWF
algorithm provides minimum area complexity and power consumption compared to the other methods
considered. In addition, the complexity of logic utilization and the computational times required by the
different algorithms are listed in Tab. 3. These results further demonstrate the superiority of the hardware
implementation of the proposed PLWF algorithm.
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Figure 8: Comparison of PSNR performances obtained under different salt and pepper noise levels

Table 2: Comparison of PSNR and MSE values obtained by various noise reduction algorithms for the Lena
and cameraman images under different salt and pepper noise levels

Noise level PSNR MSE

DCT DWT IPC PLWF DCT DWT IPC PLWF

10% 42.39 42.46 46.46 48.62 0.02 0.02 0.02 0.02

20% 40.08 42.42 44.42 45.63 0.04 0.03 0.03 0.03

30% 38.84 40.96 42.96 44.51 0.05 0.05 0.05 0.04

40% 37.77 39.78 41.78 43.23 0.06 0.06 0.06 0.05

50% 36.70 38.86 40.86 42.15 0.08 0.08 0.08 0.07

60% 36.08 38.27 40.27 43.12 0.09 0.09 0.09 0.09

70% 34.57 36.54 39.54 41.02 0.11 0.11 0.11 0.10

80% 34.97 36.12 39.12 41.3 0.12 0.12 0.12 0.10

90% 34.55 36.55 38.55 40.15 0.14 0.14 0.14 0.14
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5 Conclusion

The present work addressed the need for developing image denoising algorithms with maximum
denoising performance, speed, and efficiency on FPGA platforms by proposing a high-throughput fixed-
point AEN filter architecture to denoise digital images in real time using a nonlinear modified PLWF
technique. The denoising performance of the proposed denoising scheme was demonstrated to be superior
to the denoising performances of IPC and those algorithms based on the DCT and DWT. Moreover, the
hardware implementation of the proposed PLWF algorithm required less area and less power
consumption than the other implementations considered, and the logic utilization and computational
speed were both improved.
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